3rd International Scientific and Professional Conference
CORRIDOR 10
a sustainable way of integrations
Belgrade, 25 October 2012
Proceedings of the conference
ISBN 978-86-83059-09-6
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3rd International Scientific and Professional Conference
”Corridor 10 - a sustainable way of integrations”
Belgrade, 25 October 2012
Belgrade Chamber of Commerce
Proceedings of the conference
Organized by
R&D Institute “Kirilo Savić” a.d. Belgrade
and
Association of Transport and Telecommunications of the Belgrade Chamber of
Commerce
in cooperation with the
Faculty of Transport and Traffic Engineering, University of Belgrade
and
Institute of Traffic and Transport Ljubljana I.I.c.
Supported by
Ministry of Transport
and
Ministry of Education, Science and Technological Development
of the Republic of Serbia
Belgrade, 2012
I
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ZBORNIK RADOVA/PROCCEDINGS
3. međunarodna naučno-stručna konferencija
»Koridor 10 - održivi put integracija »
Beograd, 20.10.2011.
The 3rd International Scientific and Professional Conference
»Corridor 10 - a sustainable way of
integrations«
Urednik/Editor:
dr Tomislav JOVANOVIĆ, Institut »Kirilo Savić« a.d.
Recenzenti/ Reviewers:
dr Tomislav JOVANOVIĆ, Institut »Kirilo Savić« a.d.
dr Predrag PETROVIĆ, Institut »Kirilo Savić« a.d.
dr Vesna PAVELKIĆ, Institut »Kirilo Savić« a.d.
dr Olivera ERIĆ, Institut »Kirilo Savić« a.d.
dr Ivana ATANASOVSKA, Institut »Kirilo Savić« a.d.
dr Mirjana Puharić, Institut »Kirilo Savić« a.d.
dr Milan Janić, Delft University of Technology, Delft, The NETHERLANDS
Uređivački odbor/Editorial Board:
Prof. dr Snežana KOMATINA-PETROVIĆ, IZIIS Skopje, FYROM
dr Vesna PAVELKIĆ, Institut »Kirilo Savić« a.d.
dr Ivana ATANASOVSKA, Institut »Kirilo Savić« a.d.
mr Dragan STEFANOVIĆ, Privredna komora Beograda – Udruženje saobraćaja i
Telekomunikacija
dr Mirjana Puharić, Institut »Kirilo Savić« a.d.
Izdavač/Publisher:
Institut ”Kirilo Savić” a.d., Beograd
Tiraž: 200 primeraka
ISBN: 978-86-83059-09-6
Svi radovi u zborniku su recenzirani/ All papers in Proceedings are reviewed
Copyright © Institut ”Kirilo Savić”a.d., 2012.
Organizatori/Organizers:
Institut »Kirilo Savic« a.d.
Privredna komora Beograda - udruženje saobraćaja i telekomunikacija
Belgrade, 2012
II
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Organizing Committee
Tomislav JOVANOVIĆ, »Kirilo Savić« Institute a.d. Belgrade, President of the Conference
Organizing Committee
Dragoljub STEFANOVIĆ, Association of Transport and Telecommunications of the Belgrade
Chamber of Commerce, Conference Coordinator, Vice-President of the
Conference Organizing Committee
Branko BOJOVIĆ,
Magazine of the Association of Civil Engineers, Geotechnical Engineers,
Architects and Town Planers »IZGRADNJA«, Editor in Chief, member
Nebojša BOJOVIĆ,
University of Belgrade, Faculty of Transport and Traffic Engineering,
member
Slavko VESKOVIĆ,
University of Belgrade, Faculty of Transport and Traffic Engineering,
member
Miloš JELIĆ,
»Kirilo Savić« Institute a.d. Belgrade, member
Predrag PETROVIĆ,
»Kirilo Savić« Institute a.d. Belgrade, member
Vesna PAVELKIĆ,
»Kirilo Savić« Institute a.d. Belgrade, member
Ivana ATANASOVSKA, »Kirilo Savić« Institute a.d. Belgrade, member
Dušan MIJUCA,
»Kirilo Savić« Institute a.d. Belgrade, member
Suzana GRAOVAC,
»Kirilo Savić« Institute a.d. Belgrade, member
Milan ŽIVANOVIĆ,
»Kirilo Savić« Institute a.d. Belgrade, member
Scientific Committee
Miloš IVIĆ,
University of Belgrade, Faculty of Transport and Traffic Engineering,
President of the Conference Scientific Committee
Miroljub JEVTIĆ,
»Kirilo Savić« Institute a.d. Belgrade, Vice-President of the Conference
Scientific Committee
Branimir STANIĆ,
University of Belgrade, Faculty of Transport and Traffic Engineering, Dean,
member
Slobodan GVOZDENOVIĆ, University of Belgrade, Faculty of Transport and Traffic Engineering,
member
Borislav STOJKOV,
Republic Agency for Spatial Planning of the Rebublic of Serbia, member
Dragomir MANDIĆ,
University of Belgrade, Faculty of Transport and Traffic Engineering,
member
Milan MARKOVIĆ,
University of Belgrade, Faculty of Transport and Traffic Engineering,
member
Milan VUJANIĆ,
University of Belgrade, Faculty of Transport and Traffic Engineering,
member
Katarina VUKADINOVIĆ, University of Belgrade, Faculty of Transport and Traffic Engineering,
member
Gojko RIKALOVIĆ,
University of Belgrade, Faculty of Economics, member
Zdenka J. POPOVIĆ,
University of Belgrade, Faculty of Civil Engineering, member
Miloš JELIĆ,
»Kirilo Savić« Institute a.d. Belgrade, member
Olivera ERIĆ,
»Kirilo Savić« Institute a.d. Belgrade, member
Vesna ZLATANOVIĆ-TOMAŠEVIĆ, Engineers Association of Belgrade, member
Tomislav JOVANOVIĆ, »Kirilo Savić« Institute a.d. Belgrade, member
Mirjana PUHARIĆ,
»Kirilo Savić« Institute a.d. Belgrade, member
Belgrade, 2012
III
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Dušan TEODOROVIĆ,
Professor Emeritus, Virginia Polytechnic Institute and State University, USA ,
member
Milan JANIĆ,
Senior Researcher, OTB Research Institute for the Built Environment, Delft
University of Technology, Delft, The NETHERLANDS, member
Vaska ATANASOVA,
University «St. Kliment Ohridski«-Bitola, Faculty of Technical Sciences,
FYROM, member
Peter VERLIČ,
Institute of Traffic and Transport Ljubljana I.I.c., SLOVENIA, member
Momčilo ŠARENAC,
Institute of Traffic and Transport Ljubljana I.I.c., SLOVENIA, member
Peter MÁRTON,
University of Žilina, Faculty of Management Science&Informatics,
Department of Transport Networks, SLOVAKIA, member
Stjepan LAKUŠIĆ,
University of Zagreb, Faculty of Civil Engineering, CROATIA, member
Snežana KOMATINA-PETROVIĆ, Visiting Professor, IZIIS Skopje, FYROM, member
Primož KRANJEC,
Institute of Traffic and Transport Ljubljana I.I.c, SLOVENIA, member
Perica GOJKOVIĆ,
University of East Sarajevo, Faculty of Transport and Traffic Engineering
Doboj, REPUBLIC OF SRPSKA, member
Ratko ĐURIČIĆ,
University of East Sarajevo, Faculty of Transport and Traffic Engineering
Doboj, REPUBLIC OF SRPSKA, member
Branimir BOŠKOVIĆ, Directorate for Railways, Republic of Serbia, member
Poster Presentation:
Vesna PAVELKIĆ,
Institut »Kirilo Savić« Belgrade, Chairman of the Poster Presentation
Belgrade, 2012
IV
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
CIP - Каталогизација у публикацији
Народна библиотека Србије, Београд
625(082)(0.034.2)
502.131.1:656(082)(0.034.2)
625.711.1(4)(082)(0.034.2)
МЕЂУНАРОДНА научно-стручна конференција
Коридор 10 - одрживи пут интеграција (3 ;
2012 ; Београд)
Proceedings of the Conference
[Elektronski izvor] = [Zbornik radova] / 3rd
International Scientific and Professional
Conference Corridor 10 - a Sustainable Way of
Integrations, Belgrade, 25 October 2012 = [3.
međunarodna naučno-stručna konferencija
Koridor 10 - održivi put integracija,
Beograd, 25.10.2012.] ; [organized by]
Institut "Kirilo Savić" ... [et al.] ;
[urednik, editor Tomislav Jovanović]. Beograd : Institut "Kirilo Savić", 2012
(Beograd : Institut "Kirilo Savić"). - 1
elektronski optički disk (CD-ROM) ; 12 cm
Sistemski zahtevi: Nisu navedeni. - Nasl. sa
naslovnog ekrana. - Radovi na srp. i engl.
jeziku. - Tiraž 200. - Bibliografija uz svaki
rad. - Napomene i bibliografske reference uz
tekst. - Abstracts.
ISBN 978-86-83059-09-6
1. Институт "Кирило Савић" (Београд)
a) Саобраћај - Одрживи развој - Зборници
b) Саобраћајне мреже - Коридор 10 - Зборници
COBISS.SR-ID 196039180
Belgrade, 2012
V
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
TABLE OF CONTENTS
GEO-STRATEŠKI IZAZOVI PROSTORA KORIDORA 10 - ISTORIJSKA, SAOBRAĆAJNA,
EKONOMSKA I KULTURNA GEOGRAFIJA PROSTORA
1
ODRŽIVI RAZVOJ SAOBRAĆAJNOG SISTEMA U FUNKCIJI RAZVOJA PRIVREDE
23
THE IMPORTANCE OF REGIONAL RAILWAY LINES REVITALIZATION FOR CORRIDOR
X IN THE REPUBLIC OF SERBIA
29
THE METHODOLOGY FOR CALCULATING ELIGIBILITY OF INVESTMENT IN PUBLIC
RAILWAY INFRASTRUCTURE IN REPUBLIC OF SLOVENIA
36
PLANNING A COMPLETION OF CORIDORS AS A STRATEGIC PRIORITY
44
HARMONIZATION OF TECHNICAL REGULATIONS IN THE AREA OF RAILWAY TRACK
MAINTENANCE
50
FINANCIAL ANALYSIS OF RAIL INFRASTRUCTURE PROJECTS
61
RAILWAY TRAFFIC AND THE MODERN TRANSPORT TECHNOLOGIES-BASIS FOR
DEVELOPMENT OF TRANSPORT SYSTEM OF CORRIDOR X
69
MARSHALLING YARDS ALONG THE PANEUROPEAN RAILWAY CORRIDORS
73
THE CURRENT STATUS OF PREPARATION AND REALIZATION OF TRANSEUROPEAN RAILWAY LINES PASSING THROUGH THE TERRITORY OF THE SLOVAK
REPUBLIC
80
CHANGES OF FLOWS IN ECONOMY SUPPLY CHAINS OF BIH: INFLUENCES ON
INVESTMENT PRIORITIES ON CORRIDORS X AND VII
90
OPPORTUNITIES OF THE REPUBLIC OF SLOVENIA AND THE REGION IN THE
FRAMEWORK OF THE EUROPEAN RAILWAY NETWORK
96
A COMPARATIVE ANALYSIS OF CORRIDOR 10 WITH CORRIDOR 4
106
ANALYSIS STATE OF THE RAILWAY LINE ON CORRIDOR 10 , WHICH PASS
THROUGH SERBIA, IN TERMS OF THE MAXIMUM TECHNICAL SPEED
116
THE IMPORTANCE OF THE CORRIDOR 10 OF ECONOMIC DEVELOPMENT OF
SERBIAN
124
Belgrade, 2012
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
FACILITATING SPECIFIC TRANSPORT SERVICES ALONG THE CORRIDOR X IN
ORDER TO ATTRACT TRAFFIC FLOWS
138
RAILWAY SIDINGS IN SLOVENIA- PROBLEMS AND MEASURES TO INCREASE THEIR
ATTRACTIVENESS
151
INTERMODAL INFRASTRUCTURE PLANNING IN LJUBLJANA: FIELD SURVEY AS A
METHOD FOR PUBLIC PARTICIPATION
159
MODERN RAILROAD TERMINALS AS RELATED TO URBAN MATRIX DEVELOPMENT
165
PROVIDING CO-MODALITY OF PUBLIC PASSENGER TRANSPORT THROUGH A
STANDARDIZED UNIFIED ELECTRONIC TICKETING SYSTEM IN SLOVENIA
173
COST ANALYSIS FOR INTRODUCTION OF NEW INTERMODAL TRANSPORT
SERVICES IN ALPINE REGION
186
COMPUTER AIDED SUPPORT FOR MODELLING OF RAILWAY CAPACITY CONTAINED
IN UIC 406 LEAFLET
198
CONCEPTION OF TRAIN OPERATION TECHNOLOGY ON LJUBLJANA RAILWAY
STATION DURING EXECUTION OF CONSTRUCTION WORKS SUPPORTED BY
RAILSYS ENGINEERING SOFTWARE
209
RESEARCH SOME AERODYNAMICS PHENOMENON OF HIGH-SPEED TRAINS IN
LOW-SPEED WIND TUNNEL
220
ROLLING CONTACT FATIGUE OF RAILS
227
RAIL INSPECTION BY EDDY CURRENT METHOD
238
NOISE REDUCTION IN RAILWAY INFRASTRUCTURE
252
ELECTROMAGNETIC FIELD UNDER THE ELECTRIC OVERHEAD SYSTEM 25 KV, 50
HZ OF SERBIAN RAILWAYS
265
DISMANTLING OF VESSELS AS A SUSTAINABLE PROCESS
281
REVIEW OF THE TRACK CHARACTERISTICS ON THE CORRIDOR 10 TRACKLINE
SEGMENT
290
Belgrade, 2012
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
NUMERICAL SIMULATION OF SPREADING CO2 AND SO2 EMITTED FROM STACK
KOSTOLAC B ABOVE THE MUSEUM VIMINACIJUM
300
ECOTRACK - NEW TYPE OF BALLASTLESS TRACK SYSTEM
310
TRANSPORTATION DEMANDS OF OIL AND OIL DERIVATES ALONG THE CORRIDOR
X ON TERRITORY OF THE REPUBLIC OF SERBIA
311
POSTER PREZENTACIJE
312
Belgrade, 2012
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
GEO-STRATEŠKI IZAZOVI PROSTORA KORIDORA 10 - istorijska,
saobraćajna, ekonomska i kulturna geografija prostora
Branko BOJOVIĆ, dipl. ing. arh., glavni urednik časopisa „Izgradnja“, Beograd,
Srbija
Apstrakt
U prvom delu referata autor konstatuje postojanje i trajanje geopolitičkih limese na dodirima
uticajnih sfera svetskih centara moći. Posebno se osvrće na Balkan kao geopolitički limes koji traje
više od dve hiljade godina i koji je od vremena imperijalizma pa do danas predmet imperijalnog
inženjeringa raznih vrsta. Stvaranje novih naroda, država i drugih političkih teritorija traje i danas uz
sve veću zavisnost tih naroda i političkih teritorija od današnjih centara političke moći.
U drugom delu teksta autor ističe stav da su balkanske zemlje pa i Srbija u procesu tranzicije
zahvaćene temeljnom deindustrijalizacijom i to najboljeg i najvažnijeg dela privrede, čime su
pretvorene u poljoprivredne i sirovinske zemlje i tržište za zemlje – nosioce političke moći. Sve manje
političke teritorije sve više se zadužuju radi izgradnje velikih saobraćajnih infrastruktura. U ovim
poduhvatima treba biti oprezan, jer iskustvo Srbije pokazuje da Srbija nije ozbiljno valorizovala svoju
poziciju na moravsko-vardarskom železničkom i autoputskom koridoru.
U zaključku autor iznosi da su velike infrastrukture uzrok, ali i posledica razvoja, ali da izgradnja
visokokapacitetnih infrastruktura uz nedovoljno razvijenu, pre svega prerađivačku privredu izaziva
dalje zaostajanje sekunadrnog sektora, što ima trajne posledice po privredni razvoj.
Ključne reči: geopolitika, uticijane sfere, koridori, razvoj.
Belgrade, 2012
1
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Rat je nastavak politike drugim sredstvima
Karl Fon Klauzevic
Politika je nastavak rata drugim sredstvima
Branko od Bojovića
1. UVOD
Od strane organizatora pozvan sam da dam skroman doprinos ovom skupu. Poziv sam prihvatio
uprkos brojnim obavezama i ograničenjima. Kao čovek koji se već 50 godina bavi prostornim i
urbanističkim planiranjem, trudio sam se da razumem geopolitičke pojave i procese, koje su bitne za
promišljanje razvoja političkih entiteta odnosno teritorija. Ozbiljno planiranje prostora i naselja nije
moguće bez ozbiljnog razumevanja geopolitike. Pod geopolitkom u ovom slučaju podrazumevam i
klasično shvaćenu geopolitiku tj. i klasićno shvaćene geopolitičke interese država i naroda, ali i
geopolitičke odnose unutar pojedinih geopolitičkih teritorija jer je svaki oblik teritorijalnog
organizovanja istovremeno i oblik internih geopolitičkih odnosa unutar neke političke teritorije.
Mislim da je važno da kažem da sve što je izloženo u ovom tekstu predstavlja isključivo moj lični stav,
odnosno moju istinu o problemu o kome je reč.
U pripremi video-prezentacije pomogao mi je gospodin Dragoljub Štrbac, geograf, istraživač u
Geografskom institutu „Jovan Cvijić“ Srpske akademije nauke i umetnosti.
2. OPŠTE NAPOMENE
Na dodirima velikih (ali često i malih) naroda, religija, imperija i ideologija formiraju se rubna područja,
neka vrsta geopolitičkih limesa. To su područja gde se iscrpljju uticaji nosilaca geopolitičke moći, to su
političke teritorije u današnjem svetu u kojima se dodiruju, sudaraju ili sukobljavaju interesne sfere
nosilaca geopolitičke moći. Granice uticajnih sfera menjaju se ratnim, ali i tzv. mirnodopskim
sredstvima, u koja se ubrajaju ekonomski ratovi, javni i prikriveni, ratovi verski, demografski,
kulturološki, etnički, propagandni i dr. Smene ratnih i mirnodopskih dejstava izazivaju stalno talasanje
u rubnim prostorima odnosno geopolitičkim limesima, a stalne promene koje se u tim graničnim
područjima dešavaju izazivaju trajnu nestabilnost naroda i država.
Kroz istoriju čovečanstva i svetsku filozofiju već hiljadama godina se traga za suštinom čoveka. Čovek
je definisan kao homo sapiens, homo erektus, homo secsualis, homo ludens, homo oekonomikus,
homo politikus, kao biće prakse i na mnoge druge načine. Hiljadama godina zaboravlja se da je čovek
pre svega biće prostora i to, koliko je meni poznato, prvi dobro i jasno uočava Špengler u „Propasti
Zapada“. Čovek je biće prostora najmanje na tri načina.
Najpre, čovek je prirodno determinisan tako da može da živi isključivo na vasionskom modulu koji se
zove Zemlja. Istina prilagođen različitosti zemaljskih prostora. Zatim, čovek kao najpre instinktivni, a
kasnije kao svesni graditelj stalno prilagođava prirodni prostor svojim potrebama, čovek prostor gradi i
uređuje, odnosno antropogenizuje. Konačno, ljudi se kao pojedinci, porodice, plemena, narodi,
države, kao predstavnici ideologija i sl., takođe bore za prostor. Ovladavanje resursima, ali i prostorom
Belgrade, 2012
2
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
koji je sam po sebi resurs, kao i drugim ljudima je večiti cilj politike. U tom smislu homo politikus je,
istovremeno i neizbežno, i čovek prostora.
Borba za prostor je bitan elemenat politike oduvek, sama suština politike koja traje kroz celu istoriju
čoveka kao biološkog i socialnog bića, ta borba se ispoljava u svim oblicima socijalne organizacije.
Mislim da je apsolutno tačan aforizam jednog beogradskog aforističara koji je napisao: „Istorija? Sve je
to samo borba za geografiju“.
Cela današnja zemljina kugla pokrivena je starim i novim geopolitičkim limesima kao što se može
videti na slici 1.
Slika 1. Karta sa starim i novim geopolitičkim limesima
Spisak geopolitičkih limesa u svetu (osim Afrike) dat je u prilogu ovog rada.
Belgrade, 2012
3
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3. BALKAN KAO GEOPOLITIČKI LIMES
Prostor Balkana je geopolitički limes već hiljadama godina. Istorijski, ali i materijalni dokaz toga je
izgradnja rimskog limesa na Dunavu i Raniji u 1.veku n.e. Da bi se pristupilo izgradnji, za ono vreme
kolosalnog sistema fortifikacija unutar ovog limesa, problem je morao postojati bar nekoliko stotina
godina pre toga. Na teritoriji Balkana razgraničavale su se administrativne jedinice Rimskog carstva u
vreme tetrarhije, preko Balkana su se razgraničili istočno i zapadno Rimsko carstvo, pravoslavlje i
katolicizam itd.
U dve hiljade godina, Balkanom su vladale četiri imperije – Rim, Vizantija, Osmanska Turska i Austrija,
a aspiracije na prostor Blkana iskazivale su i na njemu se privremeno bazirale Rusija i Sovjetski
Savez, Britanja, Francuska, Nemačka, SAD, pa čak i Kina u vreme razlaza Albanije i SSSR-a.
Istovremeno sa vlašću velikih imperija na Blakanu su se formirale mnoge države i razne druge
političke teritorije, u raznim statusima u odnosu na četiri imperije koje su vladale prostorom Balkana i
imperija koje su imale aspiracije na prostor Balkana.
Narodi Balkana su izmešani rasno, kulturološki, verski, jezički i na mnoge druge načine.
Razgraničenje među balkanskim narodima su od najmanje dve vrste. Nekom vrstom funkcionalnih
razgraničenja mogli bi da nazovemo etnička, jezička i verska razgraničenja. Nekom vrstom interesnih
razgraničenja mogli bi da nazovemo razgraničenja koja se dešavaju uglavnom pod uticajem spoljnih
faktora, jer stvaranje država i nacija na Balkanu ni danas nije završeno. Balkan je u poslednjih oko tri
stotine godina mesto imperijalnog i etničkog inženjeringa koji traje i danas. Ovde iznosim samo jedan
primer.
U Maloj enciklopediji Prosvete odrednica o rumunskom jeziku sadrži dva fragmenta koja navodim:
„Rumunski jezik je po poreklu romanski, strukturi i rečniku, jedini direktni potomak govornog latinskog
koji se sačuvao u balkanskim provincijama Rimske Imperije. U procesu formiranja asimilirao je
slovenske i druge leksičke elemente. Slovenski uticaj prisutan je u toponimici i jednom delu
poljoprivredne i crkvene terminologije.“
„U pisanoj književnosti, crkvenoslovenski jezik, pored toga što se upotrebljavao u crkvi, bio je i
književni jezik do 18. veka. Ćirilsko pismo održalo se sve do 1860., kad je umesto njega uvedena
latinica; najstariji pisani spomenik je iz XV v. Štamparsku veštinu doneo je srpski štampar kaluđer
Makarije, koji je posle gubitka nezavisnosti Crne Gore i prestanka rada štamparije na Obodu, odn.
Cetinju, otišao u Rumuniju. U XVI v. Štampane su crkvene knjige.“
Ova dva citata otvaraju mnogo pitanja – navodim samo dva - tri. Kakav je to direktan potomak
govornog latinskgo jezika koji je asmimilirao slovenske leksičke elementa, a pisao se ćirilicom. Zar nije
logičnije predpostaviti da se na prostoru današnje Rumunije govorila neka varijanta staroslovenskog
jezika sa puno romanizama. Kako je moguće da je crkveno-slovenski jezik potisnuo sasvim izvesno
superioran latinski jezik i njegovog direktnog ptomka rumunski jezik, itd. Očito, radi se o kolonijalnom i
imperijalnom inženjeringu iz druge polovineXIX veka, kada je formirana izmišljena rumunska nacija i
kada je uveden očigledno izmišljeni rumunski jezik. Da je tako potvrđuje jedna bitna činjenica iz istorije
Srbije. Naime, bliske veze Obrenovića i rumunskog plemstva, sve negde do Berlinskog kongresa,
očigledno su se zasnivale ne samo na materijalnim interesima, već i na lakoj jezičkoj komunikaciji.
Ono što je izneto napred potvrđuje i bezbroj drugih činjenica. Veliki rumunski teniser Cirijak, čovek koji
je doživeo veliku međunarodnu reputaciju i čovek koji je omogućio uspon svom prijatelju našem Bobi
Živonijoviću, stvarno se sa starinom prezivao Kirijakos.
Cilj ovakvog etničkog inženjeringa ostvaren je. Velika slovenska masa od Vladivostoka do Jadrana,
prekinuta je stvaranjem rumunske nacije i države, a tvorci tog imperijalnog inženjeringa time su u
stvari dobili odrešene ruke u odnosu na slovenski elemenat na Balkanu, pre svega slovenski elemenat
pravoslavne vere.
Belgrade, 2012
4
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Balkan dolazi u centar svetske političke pažnje posle poraza Osmanske Turske pod Bečom 1683.
godine. Tada se otvara tzv. Istočno pitanje koje do dana današnjeg nije doživelo svoje konačno
rešenje.
Samo tri godine posle odbrane Beča, godine 1686. Pjer Kopen radi kartu deobe Balkana između sila
pobednica. U podeli Balkana učestvuju Venecija, Austrija, Poljska, Francuska, Engleska, Španija,
Portugalija, Sveta Stolica, Modena i Parma i na kraju Malteški vitezovi. Prostor Balkana se deli kao
pustolina, kao ničija zemlja (slika 2).
Slika 2 Karta podele Balkana iz 1686. godine
Godine 1772. Kara radi drugu podelu Balkana u kojoj učestvuju Austrija, Pruska, Francuska i Venecija
(slika 3).
Slika 3 Karta podele Balkana iz 1772. godine
Belgrade, 2012
5
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Ruska carica Katarina II i Austrijski car Jozef II, iste te 1772. godine započinju pregovore o deobi
uticajnih sfera na Balkanu, pregovore nastavljaju 1782. godine, a 1787. godine u Jalti potpisuju
sporazum. Balkan treba da pripadne trima carevinama – Rusiji, Austriji i Turskoj. Razgraničenje Ruske
i Austirjske interesne sfere je na Staroj Planini, kako se vidi iz priložene karte (slika 4).
Ova karta u određenom smislu važi i
danas – njom se definiše pojam
Zapadnog Balkana koji je u čestoj
upotrebi od raspada druge Jugoslavije.
Da je ovaj ugovor u određenom smislu
živ, vidi se iz činjenice da u rešavanju
problema
Zapadnog
Balkana
u
poslednjih
dvadesetak
godina
učestvuju, pored ostalih, Jirži Dinstbir,
Medlin
Oldbrajt,
Rihard
Holbruk,
Volgang
Petrič,
Miroslav
Lajčak,
František Lipka, Štefan File i mnogi
drugi političari sa teritorije nekadašnje
Austrijske
carevine,
odnosno
Austrougarske.
Slika 4 Karta podele Balkana iz 1777. godine
U želji da trajno potisne Tursku sa Balkana, ruski imperator Aleksandar I 1808. godine, predviđa
podelu Balkana između Rusije, Austrije i Francuske. (slika 5).
Slika 5 Karta podele Balkana iz 1808. godine
Belgrade, 2012
6
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Dvadeset godina kasnije, 1828. godine Joanis Kapodistrija daje jedan revolucionaran predlog. On
takođe predviđa potiskivanje Turske sa Balkana, ali predviđa da Balkan pripadne balkanskim
narodima, tako da predlaže stvaranje država Dačije (Rumunije), Srbije, Makedonije, Epira i Grčke, dok
bi Konstantinopolj (Carigrad) ostao slobodan grad (slika 6).
Slika 6 Karta podele Balkana iz 1828. godine
Belgrade, 2012
7
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Karta Evrope iz 1830. godine (slika 7) pokazuju da velike sile koje su vladale Evropom nisu imale
razumevanja za ideju Kapodistrije. Na prostoru Jugoistočne Evrope dodiruju se Austrija, Osmanska
Turska i Rusija, ali se unutar evropskog dela Osmanske Turske naziru počeci nezavisnosti balkanskih
naroda i država – Grčke, Srbije i Rumunije.
Slika 7 Karta Evrope iz 1830. godine
Belgrade, 2012
8
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Karta iz 1914. godine pokazuje pojavu velikog broja malih država na teritoriji Balkana koje su
naslednici evropskog dela Osmanskog carstva. (slika 8).
Slika 8 Karta Evrope iz 1914. godine
Belgrade, 2012
9
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Pred Drugi svetski rat na prostoru Balkana vidi se malo ukrupnjavanje političkih teritorija, jer su
stvorene prva Jugoslavija i Rumunija. Može se uzeti da je ovo kratkotrajno ukrupnjavanje neka vrsta
istorijskog ekcesa, bar kada se radi o prostoru Jugoslavije. (slika 9)
Slika 9 Karta Evrope u periodu 1918 - 1938. godine
Drugi svetski rat završen je tektonskim poremećajima na evropskom tlu, jer je Sovjetski Savez
potisnuo zemlje Centralne i Zapadne Evrope na zapad, pre svega Poljsku i Nemačku. (slika 10)
Belgrade, 2012
10
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 10 Karta Evrope nakon 1945. godine
Konačno, karta Evrope iz oko 1990. godine, posle raspada Sovjetskog Saveza (slika 11), pokazuje da
je ceo evropski prostor od Baltičkog do Jadranskog i Egejskog mora pokriven malim državama,
odnosno malim političkim teritorijama, koje sve skupa čine neku vrstu geopolitičkog limesa između
Rusije i Evrope.
Slika 11 Karta Evrope nakon 1990. godine
Usitnjavanje prostora Osmanskog i Austrijskog carstva, odnosno Austrougarske, posledica je kako
dejstva velikih sila tako i lokalnih nacionalizama. U procesu raspada imperija i nastanka velikog broja
Belgrade, 2012
11
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
malih nacionalnih država, dolazi do
pojave velikog broja sukoba između tih
država, koje se zavađaju i međusobno
ratuju, vekovima i decenijama. Kao
primer navodim kartu koja prikazuje
aspiracije Bugarske
prema tajnom
ugovoru iz 1915. godine koje se tiču
teritorije ondašnje Srbije. Tajni sporazum
sklopljen je između Bugarske i Centralnih
sila (slika 12). Kao kuorizitet navodim da
je u procesu raspada druge Jugoslavije,
jedan od vodećih hrvatskih frankovaca,
sa sličnom kartom putovao u Bugarsku.
Želja je bila da Hrvatska i Bugarska
uspostave zajedničku granicu na Velikoj i
Južnoj Moravi. Naime, priložena karta je
unekoliko korigovana.
Slika 12 Plan podele teritorije Kraljevine
Srbije između Bugarske i Centralnih sila
iz 1915. godine
Međusobna omraženost balkanskih naroda je dugotrajna, kako se vidi iz karte genocida (slika 13).
Karta prikazuje zone genocida nad srpskim narodom, koje su učinili fašisti iz redova Hrvata, Mađara,
Nemaca, Albanaca, Italijana i Bugara. Karta nije potpuna, jer je u Rumuniji posle 1948. godine
izvršeno masovno preseljavanje Srba iz Rumunskog Banata u Baragan - pustaru u delti Dunava.
Druga Jugoslavija i Srbija to pitanje nikada nisu postavile javno, imajući u vidu svoje „prijateljstvo“ sa
Rumunima, ali Rumuni danas, u vezi sa vlaškim pitanjem, u Istočnoj Srbiji, spremni su na svaku vrstu
političke ucene kada se radi o ulasku Srbije u Evropsku Uniju. Isto tako, od 1919. godine pa do
današnjeg dana u Mađarskoj se vrši prislina mađarizacija Srba, jer se svaka Zlata rođena kao Srpkinja
u mađarske matične knjige upisuje kao Aranka, ali obratno, nijedna Aranka u Srbiji se ne upisuje kao
Zlata. Nekada se govorilo da je Jugoslavija okružena brigama (Bugarska, Rumunija, Italija, Grčka,
Albanija, Mađarska, Austrija). Izgleda da tek nailazi vreme da se govori o tome da su srpski narod i
Srbija izloženi genocidu još od prve polovine 14. veka pa do naših dana.
Belgrade, 2012
12
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 13 Karta genocida na području SFR Jugoslavije
4. O KORIDORIMA I POVODOM KORIDORA
Pojam infrastrukture pojavljuje se u vreme Napoleonovih ratova, kao zbirni pojam za teritorijalne
instalacije koje treba da obezbede funkcionisanje teritorija u vezi sa planiranim ratnim dejstvima.
Infrastrukturni sistemi otvaraju prostor za svaku vrstu razvoja, ekonomskog, socijalnog i drugog, jer su
ti sistemi i uzrok i posledica razvoja. Međutim, u dijalektici života i politike infrastrukturni sistemi i
pojedinačne infrastrukture mogu da vrše i funkciju spajanja i funkciju razvdvajanja političkih teritorija,
naroda i država. Tipičan primer te vrste je Dunavski koridor koji prolazeći kroz Vojvodinu, koja je sa
obe strane Dunava naseljena istim stanovništvom ima integrativni karakter, dok je Dunav hiljadama
godina bio elemenat razgraničenja Rumunije i Bugarski i političkih teritorija koje su im prethodile.
Pošto je težište našeg skupa na koridorima 7 i 10, a pre svega na koridoru 10, nalazim da je umesno
da iznesem nekoliko opštih napomena o infrastrukturnim sistemima, Balkanu, Zapadnom Balkanu i
Srbiji.
Karta rimskih puteva (slika 14) pokazuje istorijske putne pravce na prostoru Balkana u rimsko vreme.
U prilozima 16 i 17, prikazane su putna i železnička infrastruktura prema evropskim dokumentima iz
Belgrade, 2012
13
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
oko 2000. godine (slika 15a i slika 15b). Treba obratiti pažnju na znatno manju gustinu putne i
železničke mreže u Jugositičnoj Evropi u odnosu Centralnu i Zapadnu Evropu. Konačno, nedavno
usvojen plan Republike Srbije, prikazuje položaj Srbije u odnosu na evropske koridore (slika 16).
Slika 14 Karta rimskih puteva
a)
b)
Slika 15 Puta i železnička mreža iz perioda oko 2000. godine
Belgrade, 2012
14
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 16 Položaj Srbije u odnosu na panevropske Koridore
Posle sloma svetskog socijalističkog pokreta, koji je vođen na način Sovjetskog Saveza, tj. od
devedesetih godina prošlog veka, na prostoru druge Jugoslavije i Srbije nastaje ko zna koji po redu
proces tranzicije, odnosno nastaje novi prelazni period.
Tranzicija u Srbiji podrazumeva uvođenje kapitalizma kroz proces privatizacije, temeljnu
deindustrijalizaciju, naročito onih proizvodnji koje su tehnološki bile najvrednije, gašenje i potpun
nestanak velikih preduzeća, pojavu velikog broja firmi u oblasti male privrede, sa vrlo ustinjenom
akumulacijom, nemogućnost tehnološkog i ekonomskog razvoja, zbog gašenja proizvodnje i usitnjene
akumulacije, pojava komercijalnih banaka, koje su orijentisane samo na sticanje profita i potpuno
odsustvo razvojnih banaka koje bi mogle da pospeše ekonomski, tehnološki i svaki drugi razvoj. Srbija
je pretvorena u sirovinsko područje, došlo je do urušavanja čitavog niza institucija, urušavanja
celokupnog vrednosnog sistema naroda, redukovano je učešće države u podeli rada među državama i
smanjeno je učešće države u svetskom bogatstvu.
Belgrade, 2012
15
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Kao ilustraciju za ove tvrdnje navodim da je tokom napada NATO na Srbiju potpuno uništena fabrika
automobila Zastava, dok fabrika oružja Zastava uopšte nije bombardovana. Rezultat tranzicionih
promena i rata je potpuno opustošenje Srbije čiji je društveni proizvod danas samo 40% društvenog
proizvoda iz 1989. godine. Došlo je do masovnog osiromašenja i nezaposlenosti, vodeće nacionalne
institucije kao što su Narodni muzej, Muzej savremene umetnosti, Narodna biblioteka i druge,
godinama ne rade. Došlo je do potpune marginalizacije i provincijalizacije svih država Zapadnog
Balkana, pa i Srbije.
U procesu raspada Jugoslavije nastale su nove tzv. nezavisne države koje imaju skoro sve osim
nezavisnosti, čemu pre svega doprinose poslušničke političke elite na vlasti. Te zemlje su stvarno
objekti, a ne subjekti politike. Te zemlje sa malim političkim teritorijama, malim demografskim
kapacitetom, ekonomski onemoćale, razjedinjene i suprotstavljene, preuzimaju sve veće i veće
obaveze u izgradnji transevropskih saobraćajnica. Te države imaju suverinitet samo onda kada se
zadužuju, u svim ostalim slučajevima one su predmet manipulacija svetskih centara političke moći.
Istina, od izgradnje velikih infrastrukturnih sistema, odnosno koridora ima nekih koristi u sferi usluga,
ali je svo to zapošljavanje bez tehnologije i bez objektivnog, stvarnog ekonomskog razvoja.
Na primeru Srbije i njenog razvoja posle Berilnskog kongresa 1878. godine, trebalo bi se ozbiljno
zamisliti. Srbija je završila prugu prema Solunu i Carigradu 1884. godine, ali ako pogledate srednje
gradove na moravskom železničkom koridoru, primetićete da oni nisu ništa bolji nego gradovi iste
veličine u Bugarskoj. Ako pogledate koridor autoputa od Beograda do Niša, osim Ćuprije, Jagodine i
Paraćina, autoput nije bio generator nikakvog stvarnog ekonomskog i drugog razvoja. Dunav prolazi
kroz Srbiju u dužini od 400 km, a Srbija nema relevantnu rečnu flotu, donedavno nije bilo ni jedne
marine na Dunavu i praktično ni jedne benzinske stanice na kojoj bi jahtmeni mogli svoje brodove da
snabdeju gorivom. Srbija nije valorizovala svoje pozicije na postojećim rečnim, železničkim i putnim
koridorima, koji u stvari službe primarno interesima tranzita. Meni lično, pretnje da će putni i drugi
koridori zaobići Srbiju ne izgledaju ni malo tragično. Koridori kroz Srbiju, Srbiji kao državi i narodu u
Srbiji doneli su surove nasrtaje u dva svetska rata, odnosno velike štete i objektivno i male koristi.
Ako su male države Evrope suverene kada se zadužuju za izgradnju velikih infrastrukturnih sistema,
one se objektivno nalaze u statusu ograničenog suveriniteta, u svim drugim stvarima - one su vrlo
zavisne u domenu politike, ekonomije, finansija, vojnom domenu i dr.
Veliki geopolitički igrači, odnosno centri geopolitičke i imperijalne moći investicije i razvoj uslovljavaju
izgradnjom infrastrukturnih koridora, pružajući malim zemljama nadu u kakav takav ekonomski razvoj.
Stvarno, centri moći zainteresovani su za tržište, za jeftinu radnu snagu, odnosno ljudske resurse, za
prirodne resurse, za vojno baziranje i sl. Da se radi o surovim imperijalnim interesima pokazuje npr.
autoput i železnički koridor od Beograda do Zagreba gde osim Sremske Mitrovice i Slavonskog Broda
nema značajnijih naselja ni ozbiljnijeg ekonomskog razvoja, isti je slučaj u železničkom i autoputskom
koridoru od Beograda do Niša itd. Jednostavno, koridori velike propusne moći, putni i železnički nisu
garant da će do ozbiljnog i opšteg razvoja malih država uopšte doći. Otuda je zaduživanje i
prezaduživanje malih država rizičan i pomalo samoubilački posao. To se vidi na primeru Grčke, kojoj
je omogućeno da se prezaduži, a kada je došlo do dužničke krize, iz centara geopolitičke moći, kao
slučajno i pomalo uzgred, Grčkoj je savetovano da proda ostrva ne bi li se razdužila, Samo toliko.
Sve te male države nemaju praktično ništa za izvoz – ni po kvalitetu, ni po količini. Sve te zemlje su
samo tranzitni prostor u službi centara geopolitičke moći. Te centre interesuju koridori unutar ograda,
prostor izvan žice za njih je od sekundarnog interesa. Koridori povezuju velike geopolitičke igrače, oni
su samo manjim delom značajni za sistem lokalnih potreba i pružaju nadu da će jednog dana neki
investitori doći, a možda i neće doći.
Karakteristično je da zbog velikih finansijskih napora male države zapostavljaju izgradnju i
modernizaciju kapilarne putne mreže, a to znači i regionalni razvoj, što znači dalje zaostajanje u
Belgrade, 2012
16
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
razvoju prostora izvan koridora. To izaziva negativne demografske procese, kao što je napuštanje
brdsko-planinskog prostora i naseljavanje stanovništva u malom broju gradova i duž koridora, što
dovodi do pražnjenja teritorija koje imaju potencijala za razvoj, preopterećenje gradova koji nemaju
kapaciteta za zapošljavanje nove radne snage itd.
Postavlja se pitanje gde je izlaz iz ovakve situacije.
Teorijski model je veoma jednostavan i mogao bi da bude produktivan. On bi podrazumevao
ujedinjavanje malih zemalja i malih naroda oko zajedničkih interesa što bi dovelo do njihovog
zajedničkog ekonomskog jačanja na sektoru finansija, tehnološkog razvoja, industrijske i
poljoprivredne proizvodnje, vojnog jačanja i dr. To bi značilo izlazak tih zemalja iz statusa država
drugog reda u kome se one danas nalaze, a taj njihov status potvrđuju i dva priloga navedena u
prethodnom delu teksta koji prikazuju gustinu železničke i putne mreže (slika 15 a i b).
Posmatrano prekseološki ovakav scenario je nemoguć. Mali narodi i države koji su koliko juče huškani
jedne na druge i naoružavani za međusobna ratna dejstva, ne mogu ući u ozbiljne kooperativne
odnose čak i onda kada je to njihov interes. Posledice višestrukih ratovanja, stalnog suprotstavljanja
interesa ne mogu se prevazići dekretima koja donose centri političke moći. Potrebno je da prođu
generacije da se takve stvari zaborave.
Kada se o Srbiji radi to se veoma dobro vidi. Pred Prvi svetski rat, Austrougarska je držala Vojvodinu i
Bosnu i Hercegovinu, a u Bugarskoj je bila na vlasti nemačka dinastija Koburga. Srbija je bila sa tri
strane okružena zemlja, čime je njena sudbina trebalo da bude trajno rešena. Po cenu ogromnih
ljudskih i materijalnih žrtava, Srbija je izbegla sudbinu koja joj je bila namenjena. U Drugom svetskom
ratu Jugoslavija je napadnuta bukvalno sa svih strana. U današnjem vremenu, prevremenim prijemom
Rumunije i Bugarske u Evropsku Uniju, Srbija je uvedena ponovo u jedan oblik „prijateljske“
geopolitičke blokade, jer je sa svih strana okružena zemljama Evropske Unije i NATO saveza, itd. Sve
su ovo okolnosti od bitnog značaja za pitanje izgradnje i infrastrukturnih koridora kroz Srbiju. Vekovna
i višedecenijska neprijateljstva i otvoreni problemi koji postoje između malih država, ne rešavaju se
već se ignorišu od centara geopolitičke moći, ali oni su klica budućih sukoba koji će se ispoljiti kad-tad.
Srbija ima loša iskustva sa susedima. Balkanski savez s početka prošlog veka doveo je do ratova
među saveznicima. Prva i druga Jugoslavija su bili sa aspekta Srba i srpskih interesa vrlo loše
političko iskustvo, jer su uspostavljlene mnoge asimetrije na štetu Srba i Srbije, od kojih neke i dalje
traju. Takav je npr. proces privatizacije u Srbiji u kome su Slovenija, Hrvatska i Bugarska kupile mnoge
fabrike u Srbiji i to bez reciprociteta, jer srpska privreda u tim država nije mogla da kupi ništa.
Racionalni scenario razvoja za Srbiju je, koncentracija na svoj nacionalni i državni interes kao
apsolutni prioritet. To podrazumeva uvođenje u vlast nacionalno rasvešćene političke elite, ubrzan
ekonomski razvoj, ubrzan razvoj obrazovanja, ubrazan tehnološki razvoj, finansijsko osamostaljenje,
vojno jačanje, valorizacija i kapitalizacija ljudskih i prirodnih resursa, saradnja sa svim zemljama i
narodima bez ksenofobija, ideoloških i političkih predrasuda, sa primarnim osloncem na prijateljske
zemlje itd. Imam utisak da je vreme za ovakav odnos prema problemima u Srbiji otpočelo. Polazeći od
ovakvih pretpostavki mislim da treba preispitati sve razvojne politike u Srbiji, pa i izgradnju
infrastrukturnih koridora.
Belgrade, 2012
17
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
5. ZAKLJUČAK
Veliki infrastrukturni, a pre svega saobraćajni sistemi su i uzrok i posledica razvoja. Primarne
saobraćajne infrastrukture otvaraju prostor za privredni i svaki drugi razvoj, a posle toga treba da
povećavaju svoje kapacitete shodno ostvarenom pre svega privrednom razvoju.
U uslovima uništene najvrednije privredne proizvodnje izgradnja velikih tj. visokokapacitetnih
saobraćajnih infrastruktura je u stvari opredeljenje za status zemlje koja je poljoprivredno i sirovinsko
područje po karakteru proizvodnje, a tranzitno područje po karakteru saobraćaja. Zadužavanje za
izgradnju velikih saobraćajnih infrastruktura bez stvarnih garancija za razvoj privrede izaziva sumnju u
opravdanost ovakvo postavljenih investicionih prioriteta, jer malolitražna privreda sve to može da
izgradi samo po cenu ozbiljne redukcije razvoja proizvodnih delova privrede. Zato izgradnji velikih
infrastrukturnih sistema treba pristupiti oprezno i bez euforije.
Belgrade, 2012
18
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
LITEATURA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
Vasilj Popović: Istočno pitanje, Službeni list SRJ i Balkanaloški institut SANU, Beograd,
1996.god.
Jugoslovenski geoprostor, Centar za marksizam Univerziteta u Beogradu, 1989. god.
Aleksandar Aleksandrovič Zinovjev: Slom ruskog komunizma, BIGZ, Beograd, 2003.god.
Roj Medvedev: Putin, Novosti, Beograd, 2007. god.
Osvald Špengler: Propast Zapada, Književne novine, Beograd, 1990. god.
Bartelemi Kurmon i Darko Ribnikar: Asimetrični ratovi, NIC Vojska, Beograd, 2003.god.
Vladimir Dedijer: Interesne sfere, Prosveta, Beograd, 1980. god.
N.N.golovin: Čemu teži Velika Britanija, Geca Kon, Beograd, 1938. god.
Miodrag Vujošević, Slavka Zeković, Tamara Maričić: Postsocijalistička tranzicija u Srbiji i
teritorijalni kapital Srbije, Institut za arhitekturu i urbanizam Srbije, 2010.god.
Branko Bojović: Marginalije na temu „Imperija i limes“, Ekonomika, broj 8-9/1996.god.
Stevan K.Pavlović: Istorija Balkana 1804-1945, Klio, Beograd, 2004. god.
Dragomir Arnautović: Istorija srpskih železnica 1850-1918, Beograd, 1934. god.
Petar Milenković: Istorija građenja železnica i železnička politika kod nas (1850-1935),
Beograd, 1936. god.
Đurađ Mrđenović: Gvozdeni put Srbije, Beograd, 1974. god.
Vladimir Nikolić: Istorija železnica Srbije, Vojvodine, Crne Gore i Kosova, Beograd,
1980.god.
Sećanje na budućnost – od prvog gvozdenog puta do moderne železnice u SRJ – 18501995, Beograd, 1995.god.
Nikolaj Jakovljević Danilevski: Rusija i Evropa, Službeni list SRJ, Beograd, 1994.hgod.
Bora Glišić: Nušić njim samim, Vuk Karadžić, Beograd, 1966-god.
Henri Kisindžer: Memoari 1 i 2, Mladost, Zagreb, 1981.god.
Noam Čomski: Šta to hoće Amerika, Čigoja, 1999.god.
Atlas svih vojišta II svetskog rata, Štamparija Drag Gregorića, Beograd, 1942.god.
Školski geografski atlasi, raznih godina , Zavod za izdravanje udžbenika, Beograd
Školski istorijski atlasi, raznih godina Zavod za izdavanje udžbenika, Beograd
Jean Touscoz: Atlas geopolitique, Larousse, Paris, 1988.god.
Georges Duby: Atlas historiques, Larousse, Paris, 1987.god.
Belgrade, 2012
19
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
PRILOG
Spisak geopolitičkih limesa u svetu (osim Afrike)
•
Pacifički region
– Vanuatu (Novi Hebridi)
– Kiribati (Gilbertova, Feniksova i Ostrva Lajn)
– Maršalska Ostrva
– Mikronezija (Karolinska Ostrva)
– Nauru
– Papua - Nova Gvineja
– Solomonska Ostrva
– Tonga
– Tuvalu (Elisova Ostrva)
– Fidži
– Novi Zeland
•
Daleki istok ( dodir Kina - Japan)
– Južna Koreja
– Severna Koreja
– Tajvan (Formoza)
Daleki istok ( dodir Rusija - Kina)
– Mongolija
– Mandžurija (Kina)
•
•
Indonezija – kopneni i ostrvaski deo
– Vijetnam
– Kampučija (Kambodža)
– Laos
– Mijanmar (Burma)
– Tajland
– Bangladeš
– Brunej
– Indonezija
– Maldivi
– Malezija
– Singapur
– Filipini
– Šri Lanka (Cejlon)
Belgrade, 2012
20
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
•
Himalaji
– Butan
– Nepal
– Kašmir (Indija)
– Tibet (Kina)
•
Srednja Azija
– Kazahstan
– Kirgizija
– Tadžikistan
– Turkmenistan
– Uzbekistan
•
Kavkaz
– Abhazija
– Azerbejdžan
– Gruzija
– Jermenija
– Južna Osetija
•
Bliski istok
– Izrael
– Jordan
– Liban
– Sirija
•
Male države Evrope - stare
– Andora
– Vatikan
– Lihtenštajn
– Luksemburg
– Monako
– San Marino
•
Pribaltik
– Estonija
– Letonija
– Litvanija
Belgrade, 2012
21
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
•
Zapadna Evropa – romansko–germanski kompromis
– Belgija
– Luksemburg
– Holandija
•
Srednja Amerika
– Antigva i Barbuda
– Barbados
– Bahami
– Belize
– Gvajana
– Gvatemala
– Grenada
– Dominikana
– Dominikanska Republika
– El Salvador
– Jamajka
– Kostarika
– Kuba
– Nikaragva
– Panama
– Portoriko (SAD)
– Sv. Vinsent i Genadini
– Sv. Kristofer (Kits) i Nevis
– Sv. Lucija
– Trinidad i Tobago
– Haiti
– Honduras
•
Južna Amerika – Severni deo
– Gvajana
– Surinam
Belgrade, 2012
22
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ODRŽIVI RAZVOJ SAOBRAĆAJNOG SISTEMA U FUNKCIJI
RAZVOJA PRIVREDE
mr Dragan Stefanović, Privredna komora Beograda, Srbija
Slavica Petrović, Privredna komora Beograda, Srbija
1. MAKROSAOBRAĆAJNE TENDENCIIJE
Na prostoru Republike Srbije tranzicioni procesi i skroman razvoj tržišta sa ekonomskom krizom, utiču
na sve privredne aktivnosti. Sveukupne promene na međunarodnom i nacionalnom prostoru zahtevaju
da se za postojeće i planirane povoljnije uslove sprovedu određene aktivnosti i konzistentne strategije
razvoja saobraćajnog sistema. U okiru ukupnog razvoja privrede i društva, značajna uloga saobraćaja
prostorno integriše i stimuliše razvoj mnogih delatnosti, a direktno i indirektno razvija i povezuje
prostore. U Srbiji su zastupljeni svi vidovi saobraćaja, ali ne prezentiraju dovoljno svoju kompleksnu
ulogu i značaj za privredu i društvo. Veći potencijal resursa nije iskorišćen, te u pojedinim granama
zaostajemo za zemljama u svetu.
Integracioni procesi, trendovi, globalizacija tržišta i porast značaja saobraćaja uslovili su potrebu za
poboljšanje efikasnosti, ekonomičnosti, zaštite životne sredine i bezbednosti. Prioritet Republike Srbije
je poboljšanje ekonomske situacije sa razvojem privrednih odnosa sa inostranstvom, većeg plasmana
proizvoda i usluga, jačanju investicione atraktivnosti na planiranju i izgradnji saobraćajne
infrastrukture.
U procesu konstatnih priprema i transformacija za evropske integracije uključene su reforme, odluke i
posledice.Nova multipolarna ekonomija se ubrzano razvija, a povećavaju su globalni izazovi koji utiču
na saobraćajne sisteme zemalja i regiona. Saobraćajna politika zasniva se na zahtevima za
promenama postojećih tendencija, redefinisanja ciljeva i filozofije razvoja.
Republika Srbija je posvećena razvoju saradnje i evropskim integracijama kao odredište i garancija za
dugotrajnu stabilnost i napredak saobraćajnog sistema. Uspostavljena je partnerska i institucionalna
saradnja i povezivanje značajnih učesnika transportnog sektora, a razmatraju se razvojne mogućnosti,
potencijali i rešenja za izgradnju Koridora i organizovanje intermodalnog transporta na prostoru
regiona i zemalja EU. U planiranju, sistemski se sprovode aktivnosti za postizanje utvrđenih poslovnih
ciljeva kroz analize, evolucije i selekcije.
Saobraćajni koridori kao infrastrukturne ose Evrope treba da podstaknu razvoj privrede i društva na
prostoru zemalja i regiona.
Za razvojni put neophodno je da se obezbede povoljni poslovni ambijent za privlačenje većeg nivoa
investicija, poboljša ekonomska privlačnost, pravna regulativa i efikasnost, poveća konkurentnost kroz
restruktuiranje privrede i uspostavi novo tržište. Svetski trendovi i procesi sa makroekonomskim i
privrednim stanjem „pritisli“ su razvoj „intermodalizma“ i ako se nalazi na osloncima potencijala i
institucionalnoj mreži.
Belgrade, 2012
23
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
STANJE, PROMENE I TENDENCIJE
Evrointegracije
Stabilnost po.ek
Harmonizacija p.
Liberalizacija t.
Konkurentnost
Razvojna
politika
Investicioni
razvoj
Izvoz – podst.
Razvoj
infrastrukture
Energetika
Informacione
tehnologije
...
Ekonomska i
finansijska kriza
Državni javni dug
i deficit
Tranzicija
Pad ekonomskih
privrednih
aktivnosti
Investicije
Poslovna etika
Siva ekonomija
Nezaposlenost
Siromaštvo ..
...
Dileme?!
Štednja ili
potrošnja
ODRŽIVI
RAZVOJ
Suštinske
razvojne
promene
Strateški
projekti
Stanje uslova
Regionalna
saradnja
Podizanje opšte
konkurentnosti i
kvaliteta
Ekonomska
Jacanje
investicione
potrošnje
Kombinacija
mera
eko.slalom
DRUŠTVO I PRIVREDA
Slika 1: Aktuelne tendencije razvoja saobraćaja u funkciji privrede
Definisano plansko uređenje infrastrukture sistema Panevropskih koridora dovodi do racionalnosti,
povećanja ukupne efikasnosti i bezbednosti povezivanja najbitnijih osobina saobraćjnog sistema i
smanjenja negativnog delovanja na životnu sredinu. Procesi strateške kompozicije sistema „Tri I“
principa (Three I) i razvoj strategije za veću upotrebu Panevropskog sistema saobraćajne
infrastrukture već odavno traju. Nastavljena je operativna primena planiranog sistema uz određena
prilagođavanja po pitanju održivosti transportnog sistema i realnom razvoju i n t e r m o d a l i z m a.
Strategije i projekti razvoja, zakonska regulativa, sprovođenje direktiva sporazuma, konvencija i
standarda postavili su nove ciljeve, predloge mera i aktivnosti u svim oblastima saobraćajnog sistema
Republike Srbije i na prostorima Jugoistočnog dela Evrope. Novi koncepti regionalizacije na prostoru
Evrope stvaraju nove izazove i potencijale razvoja i saradnje. U konglomeratu dimenzija saobraćajnog
sistema nastaju nove tendencije razvoja.
Belgrade, 2012
24
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
KONGLOMERAT DIMENZIJA SAOBRAĆAJNOG SISTEMA
Povećanje
efikasnosti i
funkcionalnosti
Ekonomičnost/
racionalnost
Bezbednost/
pouzdanost
Zaštita životne
sredine
Konkurentnost /
kvalitet
Održivi razvoj sa primenom
saobraćajnih i informacionih
tehnologija
Razvoj infrastrukture, opreme i
agregata
Primena programskih podrški
veštačke integracije
Razvoj Intermodalizma
Primena novog planiranja,
upravljanja i organizacije prevoza i
infrastrukture
Primena programskih podrški
veštačke integracije
Primena sistemskih projekata
sa integralnim rešenjima
problema
Primena vrednosnih kriterijuma
društveno ekonomske opravdanosti
Valorizovanje vrednosti po
evropskim modelima
Izrada modela i prenošenje u
realno stanje
Poslovna etika
Poštovanje zakonskih i bankarskih
obaveza i organizacije
Informisanje i edukacije
T
E
N
D
E
N
C
I
J
E
R
A
Z
V
O
J
A
Slika 2: Dimenzije saobraćajno sistema
2. ZNAČAJNE PERFORMANSE RAZVOJA SAOBRAĆAJNOG SISTEMA
U značajnije performanse saobraćajnog sistema, ubrajaju se:
Povezanost sa ekonomsko-društvenim uslovima
Harmonizacija propisa i liberalozacija tržišta-konkurentnost
Novi impulsi u globalnim i regionalnim programima i projektima
Rezultati bilansa multidisciplinarnih naučno-stručnih aktivnosti
Neprekidna tehničko-tehnološka unapređenja infrastrukture, prevoznih sredstava i opreme
Primena novih metodologija za kompleksno planiranje i projektovanje
Odgovarajući izbor rešenja i optimalno dimenzionisanje organizacije i procesa
Utvrđivanje optimalnih planova upravljanja eksploatacijom
Održivi razvoj sistema - intermodalizma
Pojedinačne i integralne optimizacije po funkcijama i višeznačnim kriterijumima
Jačanje infrastrukture i kvaliteta usluga
Stručni kadrovi i neprekidno usavršavanje
Inovacije
Dobra raspodela odgovornosti i upravljanje rizikom
Motivacija kod zaposlenih
.............
3. ZNAČAJ I ULOGA INSTITUCIJA
Kompleksnost niza pitanje razvoja saobraćaja zahteva mnoga rešenja i aktivnosti upravnih i stručnih
institucija, korisnika i neprekidno zahtevaju usaglašavanje sa nacionalnim i svetskim trendovima.
Privredna društva/preduzeća se nalaze u procesima koji karakterišu rekonstrukcije, modernizacije i
realizacije programa mera i aktivnosti za osposobljavanje prevoznih sredstava, poboljšanju
performansi infrastrukture, ali i u potrebi za ekonomičnije i efikasnije poslovanje.
Belgrade, 2012
25
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
U razvoju infrastrukturnih pravaca učestvuju zainteresovani subjekti koji su objedinjeni zajedničkim
principima i interesima. Institucionalna mreža sastavljena je od nadležnih ministarstava Republike
Srbije, naučnih institucija, sistema privrednih komora, ... Svaka institucionalna mreža ima svoj značaj i
ulogu, a posebno na prostoru Koridora.
Slika 3: Značajne aktivnosti Privredne komore Beograda
ZNAČAJNE AKTIVNOSTI PRIVREDNE KOMORE BEOGRADA
Mere ekonomske politike
Razvoj privrede
Saradnja
Učešće u reševanju stanja i promena
Procesi razvojnih promena
Dinamiziranje privrednih aktivnosti
Inoviranje i realizacija strateških pravaca i projekata razvoja
Stvaranje konkurentnosti –uslova održivog razvoja
Novi oblici regionalne saradnje sa partnerima
Intenziviranje saradnje sa subjektima
Kontinuirana edukacija i inoviranje znanja
Razvoj poslovne etike
Kontinuirano usavršavanje organizacije, sadržaja i metoda rada
Izrada komercijalnih programa sa d.e.opravdanosti
..............................
Novi privredni ambijent
i optimalna struktura prema
tržištu
Značajne aktivnosti saradnje grada Beograda i Privredne komore Beograda/Udruženja saobraćaja i
telekomunikacija diferencirane su i u određenim oblastima.
1. Javni gradski saobraćaj







Velika uloga i značaj za privredu i građane
Poboljšanje efikasnosti, bezbednsoti, ekonomičnosti,
zaštite životne sredine,...
Razvoj mreže, organizacije i kvaliteta
Uvođenje novih tehničko-tehnoloških rešenja
Razvoj i uvođennje novih integrisanih kapacitetaželeznice i lakošinskog sistema
Poboljšanje saobraćajno-tehničke regulative
Inovacija postojeće ili izrada nove Strategije saobraćaja
Grada sa realnim prioritetima razvoja
2. Beogradski železnički čvor








Velika nezavršena investicija
Neiskorišćeni saobraćajni i prostorni kapaciteti
Inovacija postojećih koncepcija i prostornih rešenja
Koncepiranje modela fazne realizacije
Novi značaj i saobraćajno-komercijalne primene
Nova saobraćajna rešenja mreže
Definisanje prostora za razvoj privrednih zona
Ostvarenje društveno-ekonomske opravdanosti
Belgrade, 2012
26
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3. Robni transport








Neusklađen sa postojećim potrebama i mogućnostima
Dugoročna planska rešenja zaostaju u razvoju
Promene strukture delatnosti i aktivnosti u Gradu
Novi ekonomsko-društveni uslovi i trendovi razvoja
Razvoj novih tehničko-tehnoloških prevoznih sredstava i opreme
Razvoj Intermodalizma-Intermodalnog transporta
Nastavak Institucionalne saradnje
Razvoj i aktivnosti Intermodalnog Centra Privredne komore Beograda
SRBIJA – KAPIJA EVROPE
Potencijali održivog Intermodalnog transporta na prostoru regiona Evrope
Intermodalni razvojni centar IRC
Prednosti i mogućnosti za strateške pravce razvoja-analizirane i potvrđene
Slika 4: Potencijali intermodalnog transporta
4. Vodni saobraćaj








Postojeće stanje i uslovima nepovoljni
Strateški i planski ne sagledani potencijali
Luke, pristani, plovila, i oprema neodgovorajući
Ne postoji multimodalni-kontejnerski transport
Postoji Dunavska Strategija razvoja
Postoje određeni projekti za Akcioni Plan Dunavske Strategije
Razvoj i primena informaciono-upravljačkih sistema
Privredna komora Beograda uključena u deo privrednih aktivnosti
5. Bezbednost saobraćaja






Usvojen Zakon o bezbednosti saobraćaja na putevima sa jednim brojem Pravilnika
Primena Zakona i Pravilnika nije potpuna
Stručni Saveti za bezbednsot na lokalnom nivou delom aktivni
Lokalne planove za poboljšanje bezbednosti saobraćaja treba dopuniti
Koordinaciono Republičko telo postoji
Udruženje saobraćaja i telekomunikacija organizovalo više stručno privrednih skupova
Belgrade, 2012
27
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations


Agencija za bezbednost saobraćaja i Privredne komora Beograda potpisali Protokol o
saradnji
Formiran Stručni Radni tim za primenu Zakona
4. ZAKLJUČAK
Sa planiranim značajnijim aktivnostima na razvoju Koridora, odnosno saobraćajnih osa Reegiona,
stvaraju se novi uslovi i potencijali za saradnju i poboljšanje društveno - privrednih odnosa na prostoru
Evrope.
Postojeće makroekonomsko stanje, uslovi i trendovi značajno utiču na razvoj Koridora i intermodalnog
transporta na prostoru Evrope. Geografsko - transportne prednosti i određena rešenja u razvoju
infrastrukture su samo deo potencijala za ocene i opredeljenost koja zavisi od mnogo resursa i
investiranja, veće potrebe države da se uključi u privredne i saobraćajne aktivnosti.
Realna primena utvrđene strateške kompozicije multimodalog saobraćajnog sistema definiše se
opravdano daleko, ali i dovoljno blizu kako bi se ostvarili zajednički ciljevi društveno - ekonomskog
razvoa i saradnje na prostoru Evrope i Regiona.
Belgrade, 2012
28
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
THE IMPORTANCE OF REGIONAL RAILWAY LINES
REVITALIZATION FOR CORRIDOR X IN THE REPUBLIC OF SERBIA
Slavko Vesković, University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia
Ivan Belošević, University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia
Sanjin Milinković, University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia
Norbert Pavlović, University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia
Marko Vasiljević, University of East Sarajevo, Faculty of Transport and Traffic Engineering Doboj,
Doboj, Republic of Srpska
Abstract:
To take full advantages of two Corridors and to set up them for the servicing of the Serbian economy,
it is needed to create transport and infrastructure linkages as single logistic system. The network of
regional and local railroads and roads should connect the ports (port terminals) on the Danube and
industrial centers (zones) as major freight flow sources and destinations with railway nodes (rail road
terminals) on Corridor X. The current state of regional railroads does not provide quality linkages for
number of industrial centers with Corridor X and the most Danube ports (except for Novi Sad and
Belgrade).
Key words: railway, regional lines, revitalization
1. INTRODUCTION
To take full advantage of Corridor VII and Corridor X (Pan-European Corridors that are passing
through the Republic of Serbia) and to set up them for the servicing of the Serbian economy, it is
needed to create transport and infrastructure linkages as single logistic system. The network of
regional and local railroads and roads should connect the ports on the Danube and industrial zones as
major freight flow sources and destinations with railway nodes (rail road terminals) on Corridor X. Also,
it is necessary to connect to the other port - rail - road terminal on the Danube (Corridor VII). The
current state of regional railroads does not provide quality linkages for number of industrial centers
with Corridor X and the most Danube ports, except for Novi Sad and Belgrade (Figure 1).
Figure 1 Intersecting points of Corridor VII and Corridor X (Belgrade and Novi Sad)
Belgrade, 2012
29
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
2. ADVENTAGES OF RAILWAYS
The question is Why railroads and railways? The answer is simple and lies in the basic characteristics
of the railway as a transport system. The hub function of ports is impossible without the railroads and
railways. Specifically, a barge 1000 to 5000 tons (small and medium capacity) are serviced from one
to five trains (possibly less), or 50 to 250 trucks, which means 100 to 500 trucks driving at an
appropriate route (no less), which is best shown in Figure 2 and in Table 1.
Figure 2. Ratio between barge, train and truck
Usage of only road transport for port terminals linkage with hinterland would produce traffic and
environmental collapse in populated areas around port. It is quite clear that the Pan-European
Corridors VII and X are one of the greatest development opportunities not only for transport and
logistics in Serbia, but also its economy as a whole. Their development and modernization, as well as
the rehabilitation and modernization of regional railroads by defining and implementing a logistics
concept of Republic of Serbia will make a faster, simpler and administratively cheaper access for
products from Serbia to the European Union [2].
Table 1. Equivalent of road to the rail and inland waterway transport
Means of transport
Capacity
Equivalent in trucks
barge
1500 tons
57
wagon
50 tons
2
train
1000 tons
36
truck
26 tons
1
Belgrade, 2012
30
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3. ACTIVITIES TO ACHIEVE THE FULL FEATURES OF CORRIDOR VII AND CORRIDOR X
Any closing of a local railroad may create problems for the population and economy of given region.
The decision to close the railroad, after the initial pseudo economic benefits, in long term typically
leads to deterioration of all socio-economic indicators. In addition, it should be mentioned that the
accessibility of the region, its economic power and possible development are as important as the
profitability of the local railroad. Therefore, it is an urgent need to carry out feasibility study and to
define model for revitalization of railroads and railways on regional and local bands in the regions in
Serbia and to offer both volume and quality of the best solution in the current socio-economic times.
Financial outgoings caused by local and regional railroads in short or even medium term can not be
reduced with their closing. After their removal stops theoretical possibility that the traffic in the region
switches from roads to railroads. Because of all these arguments, political decisions based on
economic indicators are necessary for regions and their regional railroads. It should be noted that so
far there was no competent methodology for profitability of regional railways and all studies for their
effectiveness assessment were without professional background [5].
Regional and local railways have huge significance for the Serbian economy as a whole. It is known
that about 2/3 of the most significant freight sources (or the final destinations) are outside the two main
Corridors and are connected with them mostly by regional and local railroads and roads. The question
is how to set Corridor VII and Corridor X in service of the Serbian economy, not just transit transport?
First of all it is necessary to define the research methodology for feasibility study of regional railroads
revitalization. Outputs of this methodology should serve as a tool for strategic decision making [4].
Based on such research it is possible to make an action plan to revitalize and modernize regional
railroads according to the real capabilities of the state, but with the active participation of local
governments (municipalities, regions, provinces). In addition, there is a need to clearly define and
determine the status of regional railroads.
4. ANALYSIS OF REGIONAL RAILROADS AND TERMINALS IN SERBIA
Favoring of railroads that connect major port terminals and rail nodes on the Corridor X is recognized
as high interest in the action plan for revitalization of regional and local railroads. In this section we will
try to mention these railroads and terminals [6].
Ports of Belgrade and Novi Sad as intersection points of Corridor VII and Corridor X are at preferable
geographical positions. Modernization of the transport infrastructure of Corridor X will mostly solve the
problem about infrastructural linkages (Figure. 3). However, some studies have shown [3] a dilemma.
The dilemma is whether to build a second track on the existing railroad Novi Sad - Subotica or new
railroad Novi Sad - Bečej - Senta - Horgoš. Farther solution has many advantages (for example
shorter and faster connections with Budapest).
Belgrade, 2012
31
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 3. Positions of Belgrade and Novi Sad ports
Apatin is new port under construction with great potential and ambitions. Following stages are
necessary to crate port and logistic centre functionality:
Phase I: rehabilitation of railroad: Apatin factory - Sonta - 12 km.
Phase II: rehabilitation of railroad: Apatin factory - Sombor - 25 km.
Transportation route Timisoara - Kikinda - Subotica - Apatin – Bogojevo is very important for full functioning
of port and intermodal terminal. To perform its function, it is necessary to rehabilitate railroads: Kikinda Senta - Subotica, Sombor - Vrbas and Bogojevo - Odžaci - Novi Sad (Figure 4).
Figure 4. Positions of Apatin port
Another port in this region is Danube port in Bogojevo. This port is for bulk cargo, which operates on
the 3P principle (Private - Public - Partnership). It should be noted that this port has a stable
development. The limiting factor is the lack of a rail link station Bogojevo. To achieve this the railroad
Bogojevo - Danube coast should revitalized in length of I 2.7 km. Of course, for the good functioning of
the port and to realize the full potential it is needed to revitalize the railway Bogojevo - Odžaci - Novi
Sad in a length of 55 km (Figure 5).
Belgrade, 2012
32
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 5. Positions of Danube port in Bogojevo
The port Bačka Palanka is a port for bulk cargo but with a lot of related unknowns. The limiting factor
is poor connection with the railroad Bogojevo - Odžaci - Novi Sad. It is necessary to revitalize the
railroad Bačka Palanka - Karavukovo in a length of 17 km and the railroad Bogojevo - Odžaci - Novi
Sad (Figure 6).
Figure 6. Position of Bačka Palanka port
Next port is Pančevo, one of the most important ports in Serbia. It is a mixed port, but predominantly
for general cargo. Project documentation for the intermodal terminal and RoRo terminal are being
prepared. The limiting factors for the development of the port are poor state of the railroads to
Zrenjanin and Vršac and unsuitable link with Belgrade (Figure 7).
For port Pančevo and its connection with Corridor X and industrial centers in Serbia, it is necessary to
do the following:
Revitalization of railroad Pančevo - Zrenjanin - Kikinda in a length of 80 km.
Modernization of railroad Pančevo – Vršac in the length of 90 km.
Construction of a bridge over the Danube at Vinča and new railroad Pančevo - Belgrade.
Also, we sugest considering of railway bridge across the Danube upstream from Belgrade as a basis
for the planning of a new railroad Pančevo - Batajnica on left bank of the Danube [1] .
Downstream the Danube the next port is Smederevo. It is a port to service the needs of Smederevo
Steel Plant. It should be noted that the railroad to Mala Krsna is in good condition (Figure 8). The next
port in the planning documents is Kovin. The port has a very good geographic position. Unfortunately,
there is no railway connection. It is necessary to revitalize the old railroad Kovin - Bavanište and to
construct a new railroad Bavanište - Starčevo - Pančevo (Figure 9). It should be noted that in
professional circles is still a dilemma to replace a bridge at Vinča with a new railway bridge near Kovin.
It should be resolved professionally and strategically choose.
Belgrade, 2012
33
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 7. Position of Pančevo port
Figure 8. Position of Smederevo port
Figure 9. Position of Kovin port
Port Prahovo was very important port with more than 3 million tons work on an annual level. It still has
very significant flows of goods for Macedonia and Greece. To achieve an approximate volume of work
as twenty years ago, it is necessary to revitalize the lines that are in poor condition Pozarevac - Pine Vražogrnac a length of 80 km and Prahovo - Zajecar - Niš a length of 90 km.
Figure 10. Position of Prahovo port
For the economy and residents of central and western Serbia it is very important to continue the
revitalization of the railroad Požega - Kraljevo - Stalać (Figure 11).
Belgrade, 2012
34
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 11. Railroad Požega – Kraljevo – Stalac
5. CONCLUSIONS
Based on the above analysis it can be seen strong need to perform research for revitalization of a
number of regional and local railroads. This research is in context to offer both volume and quality of
the best solution in the current social - economic time for freight and passenger transport. Therefore, it
is necessary to develop and define the methodology of research for feasibility study of regional
railroad revitalization. Output as well as proposals for the organization of regional models of
passenger and freight transpport should serve as a tool for strategic decisions to be taken by Serbian
Railways, Ministry of Infrastructure Republic of Serbia and local governments. The output of these
activities resultes in an action plan to revitalize regional and local railroads in Serbia. It should be
noted that the Executive Council of AP Vojvodina and the Municipality of four regions (West Backa
District, North Backa District, South Banat District and Central Banat District) funded this study of the
railroad revitalization and rail freight and passenger traffic on the lines in these regions.
ACKNOWLEDGMENTS
This paper is realized and supported in a frame of Serbian-Slovak science and technology cooperation within the research project “Reconstruction and revitalization of railway infrastructure in
accordance with regional development” (No. 680-00-140/2012-09/10 in Serbia and No. SK-SRB-005011 in Slovakia).
REFERENCES
[1] Group of authors: A study of railway's integration in the Belgrade public transit system, ITTE and JUGINUS, Belgrade,
2006.
[2] Group of authors: Research of the effect of modernization of railways to create a unique modern transportation system of
Serbia and effective environmental protection, ITTE, Belgrade, 2008-2011.
[3] Group of authors: Revitalization of railways and railway passenger and freight traffic in Zapadnobački County, ITTE, Belgrade,
2007.
[4] Jovanović V. and other: A simulation model for determining the parameters of the railway modernization and feasibility
assessment, YUINFO Information Society of Serbia, Kopaonik, Serbia, 2010.
[5] Stojić, G.: Model Development for Evaluation the Management of Railway Infrastructure (PhD
dissertation). Faculty of Technical Sciences, Novi Sad, Serbia, 2010.
[6] Vesković S, Milinković S: Program and the Importance of Regional Railroads Revitalization, II
Conference: "Danube Corridor: elements for a strategy of infrastructure development, transport,
logistics and tourism", Municipality Apatin, Vojvodina Chamber of Commerce Committee on
Transportation and Communications, Pančevo , Serbia, 2010.
Belgrade, 2012
35
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
THE METHODOLOGY FOR CALCULATING ELIGIBILITY OF
INVESTMENT IN PUBLIC RAILWAY INFRASTRUCTURE IN
REPUBLIC OF SLOVENIA
Mira Žagar, Prometniinstitut Ljubljana d.o.o., Ljubljana, Slovenia
Aleksandar Dobrijević, Prometniinstitut Ljubljana d.o.o., Ljubljana, Slovenia
Adnan Genjac, Prometniinstitut Ljubljana d.o.o., Ljubljana, Slovenia
Vida Bolha, Prometniinstitut Ljubljana d.o.o., Ljubljana, Slovenia
Abstract
The article deals with the methodological approach in determining the financial and economic analysis
of the profitability of investments in public railway infrastructure in Republic of Slovenia. Cost-benefit
analysis (as a comparison the scenario "with" and the scenario "without" the project) is used as a
method, which is consistent with the recommendations of the European Commission and with national
legislation in Republic of Slovenia.
The financial and economic analyses are performed, which requires treatment from different aspects,
the financial analysis is made from the perspective of the investor and economic analysis is made from
the perspective of national benefits.
Basic starting points which are usually taken into account within the financial and economic analysis
and expert basis which are necessary for financial and economic analysis are shown.
The central part of the article describes the methodology for calculation of profitability indicators which
were calculated for the investments that were considered within the Study »Public railway
infrastructure development needs in Slovenia«, where the main economic benefits are: increasing of
line capacity, increasing of traffic safety, optimizing management of public railway infrastructure,
savings of train exploitation costs, savings of travelling time, prevented outflow of cargo and
passengers from the railways to roads and savings of energy consumption. Since the study deals with
the investment measures on the strategic level, a catalogue of risk with the risk and sensitivity analysis
was made.
In conclusion, the article presents which projects are suitable for co-financing by the Cohesion fund of
European Union and the methodology of calculation the co-financing rate.
Key words: public railway infrastructure, investment, eligibility, line capacity, cost benefit analysis
1. INTRODUCTION
Cost-benefit analysis is used as a method for determining the financial and economic analysis of the
profitability of investments in public railway infrastructure in Republic of Slovenia, which is consistent
with the national legislation in Republic of Slovenia and with the recommendations of the European
Commission.
Uniform methodology for preparation and evaluation of investments in public railway infrastructure in
Republic in Slovenia is determined by:
-
Decree on the uniform methodology for the preparation and treatment of investment
documentation in the field of public finance,
Decree on the uniform methodology for the preparation and treatment of investment
documentation in the field of public railway infrastructure.
For projects, which are co-financed with the EU funds, the methodology must be consistent with:
-
Guide to Cost-Benefit Analysis of Investment Projects (2008),
Working Document No. 4: Guidance on the Methodology for carrying out Cost-Benefit
Analysis (2006).
Belgrade, 2012
36
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Usually, the projects are considered from two perspectives:
-
-
Financial analysis, which is made from the perspective of the investor and must answer the
question: Will the estimated income at current prices exceed the estimated costs? It is
necessary to use the project cash flow forecast to calculate suitable net return indicators and
profitability of investments.
Economic analysis, which is made from the perspective of the whole society and appraises
the project`s contribution to the economic welfare of a region or country and must answer the
question: Will the total benefits, that will be generated by new infrastructure, exceed the costs
which are necessary for its construction and operation?
We move from financial to economic analysis in three steps (Cost-Benefit Analysis of Investment
Projects, 2004):
-
Elimination of taxes and subsidies and other non-market transfers,
Corrections due to the external factors (externalities),
Conversion of market to accounting prices and inclusion of additional effects in society
(determination of conversion factors).
Determination of eligibility of investments should base on cross-checking of results of both analyses.
The most common example of investments in public railway infrastructure is that the indicators of
economic analysis are positive, so the constructions brings economic welfare for society, but the
indicators of financial analysis are negative and therefore the investors will not recover the value of
investment in capital. These projects are eligible for co-financing by EU funds.
2. METHODOLOGICAL ASSUMPTIONS
To preform financial and economic analysis correctly it is necessary:
-
To determine needs with the analysis of the existing and future demand;
Clear identification of the project as a self-sufficient unit of analysis, determination of the
objectives and measures, that will enable to achieve set goals;
To study and estimate alternative options and determine which option is the optimal to achieve
set goals.
Calculation of project profitability indicators is made by using cost benefit analysis. Differential
method is used (incremental approach), which means that investment appraisal aims to compare two
1
situations – “with the project” and “without the project” . Situation “without the project” is the base
starting point for the project analysis and usually represents implementation of the do-minimum option
(alternative). Do-minimum option enables that the existing condition of the public railway infrastructure
is preserved and that the condition is not deteriorating. Situation “with the project” represents
implementation of the best alternative option.
It is necessary to determine time horizon (observation period) for which the effects of the project are
observed/calculated. According to European Union recommendation observation period for investment
in railway infrastructure is 30 years.
All calculations in the analysis are carried out at constant prices, usually at prices, that are valid at
time of working out document.
2
Costs and benefits occurring in different times must be discounted with discount rate . In Slovenia
the discount rate is set at country level with the Decree on the uniform methodology for the
preparation and treatment of investment documentation in the field of public finance in the amount of 7
%.
1
Determination of the project cash flows are based on the differences in the costs and benefits between the scenario“with the
project” and “without the project”.
2
Discount rate is annual rate at which future values are discounted to the present – multiplying the future value by a coefficient
that decreases with time.
Belgrade, 2012
37
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
If actual economically useful life of the project exceeds the chosen time horizon, at the end of the
observed period the residual value is considered in the calculation. The residual value is calculated
by considering the residual market value of fixed assets (as if it were sold at the end of the considered
time horizon) or by computing with standard accounting economic depreciation formula.
When we perform financial analysis we usually consider next costs: investment costs of the project,
maintenance costs of public railway (routine and major) and traffic management costs, as benefits we
consider inflows from the charging of user fee for the use of public railway infrastructure and residual
value.
Basic for determining investment costs are pro forma invoices from design documentation. The
grounds for determining maintenance and traffic management costs are data of infrastructure
manager, the basic for defininga user fee is the Network statement of the Republic of Slovenia.
When preparing economic analysis we consider the same costs as within financial analysis, converted
in economic values by applying conversion factors. As benefits, that single project bring about, we
usually consider prevented exploitation costs, time savings for freight and passengers, prevented
costs of exceptional events (costs of economic losses due to premature death or injuries and other
material costs) prevented external costs and residual value. We also describe benefits that cannot be
monetised.
For evaluation of economic benefits we use data from the following documents:
-
-
-
The basis for determination of savings in exploitation costs of traction vehicle/unit are data of
transport operator;
The description of the benefits from the improved traffic safety and prevention of exceptional
events is based on Reports on exceptional events, that are annually prepared by public
railway infrastructure manager in Republic of Slovenia;
The external costs are adopted from documents External costs of transport, update study
(2004)and Handbook on estimation of external costs in the transport sector (IWW, University
of Gdansk, INFRAS, ISI, February 2008);
To determine the values of travel time savings and economic losses due to premature death
or personal injury are data from the document HEATCO: Developing Harmonised European
Approaches for Transport Costing and Project Assessment; Proposal for Harmonised
Guidelines (2006).
Sensitivity testing of evaluation elements and assumptions is performed with sensitivity and risk
analyses. Sensitivity analysis allows the determination of the critical variables or parameters of the
model. Such variables are those whose variations, positive or negative, have the greatest impact on a
project’s financial and/or economic performance. A risk assessment consists of studying the
probability that a project will achieve satisfactory performance/benefits.
3. CALCULATION OF PROFITABILITY OF INVESTMENTS, THAT WERE TREATED IN THE
STUDY “PUBLIC RAILWAY INFRASTRUCTURE DEVELOPMENT NEEDS IN SLOVENIA”
In 2011 Institute of Traffic and Transport Ljubljanadraw up a study“Public railway infrastructure
development needs in Slovenia”. The study examines the possibility of rail transport subsystem
upgrades and gives the basis for long-term plan for the development of public railway infrastructure in
the next 20 year period. That development plan will, on the basis of railway transport subsystem
optimisation and strengthening of its efficiency, enable and encourage further balanced and
sustainable development of transport subsystem as a whole as well as further strengthening of
Slovenian economy competitiveness.
As part of the study we also prepared financial and economic analysis that shows profitability of
planned investments in public railway infrastructure in Republic of Slovenia on lines that are part of
Pan-European corridors V. and X.Financial and economic analyses were made on the basis of
estimation of future traffic flows in Slovenia and its neighborhood and on that ground proposed
investment measures in the upgrading and new-construction of the main corridor railway lines in
Slovenia. Considering capacity of public railway infrastructure and term of saturation of lines,
investment measures were defined, proposed and evaluated within the study, as follows:
Belgrade, 2012
38
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
-
Condition “0”represents all the renewals on the main lines of public railway infrastructure that
enables to achieve category D4;
Condition »Z1« represents all measures that according to estimation of future traffic flows
enable sufficient railway capacity until the year 2020;
Condition »Z2« represents all measures that according to estimation of future traffic flows
enable sufficient railway capacity until the year 2030.
In the first step we made calculation of profitability indicators for investments on each single main line
and in the next step we performed common calculation of profitability indicators for all investments in
lines on corridors V. and X. We considered next railway lines: s.b.-Dobova-Zidani Most, Zidani MostLjubljana, Ljubljana-Jesenice-s.b., Zidani Most-Pragersko, Pragersko-Šentilj-s.b., Pragersko-Hodošs.b., Ljubljana-Sežana-s.b., Divača-Koper.
The main effects that were considered in calculations of profitability indicators for conditions
“Z1”and“Z2”are: increase of line capacity, increase of traffic safety, optimisation of traffic management
of public railway infrastructure, savings in exploitation costs of traction vehicle/unit, savings in travel
time, prevention of outflow of freight and passengers from railway transport to road transport, savings
in energy consumption.
Investments also bring effects/benefits that were not monetised due to short time for elaboration and
strategic level of the study. Those effects should be considered in further more detailed cost benefit
analyses of proposed investments, because those benefits will contribute to a higher economic
efficiency of investment measures. It refers mainly to improved level of technical equipment of the
public railway infrastructure, reduction of specific energy consumption for traction with additive effects
due to electric energy recuperation, reduced road congestion, prevented costs for construction of
additional highway lines, road user’s benefits, value of used material, etc.
3
As a profitability criteria the following indicators were used: internal rate of return (IRR), net present
4
5
6
value (NPV) of the investment, benefit cost ratio (B/C) and relative net present value (RNPV) of the
investment, taking into account the 7 % discount rate.
We calculated profitability indicators for an observation period of 41 years, namely from the year 2010
to 2050. All calculations were carried out at constant prices of 2010.
Financial analysis was carried out from the point of view of the infrastructure owner. Among costs we
considered investment costs, public railway maintenance costs (routine and major), traffic
management costs and among benefits we considered inflows from the charging of user fee for the
use of public railway infrastructure and residual value (only for the new-construction of the public
railway infrastructure in condition“Z2”).
In economic analysis we considered also costs and benefits in terms of the overall national benefits
and are not necessary expressed in cash flows and were therefore not included in financial analysis.
Costs that were converted form financial values in economic values (using conversion factors) were:
investment costs, maintenance costs of public railway infrastructure and traffic management costs. On
the benefit side we considered residual value of the investments (for new-construction), savings in
exploitation costs of trains, travel time savings, prevented costs of exceptional events, prevented
external costs, energy savings and road user’s benefits.
A conservative approach has been used in the calculations, so that the input elements were
considered more realistic and also examined in the context of sensitivity analysis.
Calculated financial profitability indicators of investments were negative or less than 1, which for major
infrastructure investment is not unusual. Investments in infrastructure generally have negative effect
for the investor himself and they do not turn a profit, but they are very important in social terms, as
shown by the economic profitability indicators.
3
Internal rate of return is the discount rate at which a stream of costs and benefits has a net present value of zero. Internal rate
of return is compared with discount rate, in order to evaluate the performance of the proposed project.
4
Net present value is the sum that results when the discounted value of the expected costs of an investment are deducted from
the discounted value of the expected revenues.
5
Benefit cost ratio is the net present value of project benefits divided by the net present value of project costs.
6
Relative net present value is the ratio between net present value of the project and discounted investment costs.
Belgrade, 2012
39
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
When using the 7 % discount rate the economic net present value was negative, but nevertheless the
results are acceptable, as it would have a positive NPV when using 4.5 % discount rate.
In the frame of financial and economic analysis we also made a sensitivity analysis of the calculated
indicators for changes in the valuation of individual input elements. We have calculated the following
changes: increase and decrease of investment costs by 20 %, increase and decrease of the overall
effects of investment by 20 %, increase of investment costs by 20 % and at the same time reduction of
the economic effects by 20 %, decrease of investment costs by 20 %, and an increase of the
economic effects of 20 % and the consideration of 3,5 % discount rate.
Table 1: Economic profitability indicators
Change in valuation elements
Conditions "Z1"
NPV
IRR
(in
milionEUR)
Conditions "Z2"
NPV
IRR
(in million
EUR)
- Increase of investment costs by 20 %
2,71 %
-1.300,35
2,96 %
-2.089,92
- Decrease of investment costs by 20 %
7,48 %
89,64
6,81 %
-62,84
- Increase of the overall effects of investment by 20 %
5,79 %
-315,19
5,75 %
-566,81
- Decrease of the overall effects of investment by 20 %
- Increase of investment costs by 20% and at the same
time decrease of the impacts by 20 %,
- Decreaseof investment costs by 20% and at the same
time increase of the impacts by 20 %
3,15 %
-895,53
3,11 %
-1.585,95
1,42 %
-1.590,52
1,69 %
-2.599,49
8,95 %
379,80
8,27 %
446,73
- Consideration of 3,5 % discount rate
4,55 %
439,84
4,51 %
820,49
Basic calculation
4,55 %
-605,36
4,51 %
-1.076,38
The results showed that the calculation of the profitability indicators is more sensitiveon the change in
investment value then on the change in effects. Past experience shows that the investment value is
actually one of the most critical components of investment projects, because any changes in the
realization of projects (longer execution of the project, changes in technology performance, ...) reflect
to the change in investment value.
We have also simulated the best and worst case scenarios. In the best case scenario, we considered
a reduction of investment costs and at the same time increasing effects of investments by 20 %, which
showed that in this case all the economic indicators would be positive.
In the worst case scenario, we considered an increase of investment costs and at the same time
reducing effects of investment by 20 %, which showed that in this case IRR is higher than 0 while the
NPV, using a discount rate of 7 %, was negative.
Given that the European Commission has recommended the use of lower discount rates than those
prescribed in the Republic of Slovenia, we performed the calculation of the profitability indicators using
3,5 % discount rate. Also in these calculations profitability indicators in both conditions "Z1" and "Z2"
were positive.
We have made qualitative and quantitative risk analysis, namely for those risks whose existence is
most likely to arise, based on previous experience in the implementation of transport infrastructure
projects. Qualitative risk analysis has been made so, that risks were divided into five segments, which
dealt with the issue in the context of strategic documents and legislation, elaboration of documentation
and land acquisition, financing investment projects and macroeconomic effects. To each risk we gave
an assessment of the likelihood to occur, its impact on the project and risk management measures.
Quantitative risk analysis was made for the changes in investment costs of the project, as the
investment costs of the projects has proven to be one of the most critical in the sensitivity analysis. We
made it on the basis of Monte-Carlo method using the software @ Risk.
Belgrade, 2012
40
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
4. CO-FINANCING PROJECTS FROM EU COHESION FUNDS
In order to reduce the existing differences and ensure a steady and sustainable development of all
States of the European Union, and in particular of all its regions, the EU has developed its regional
policy. Structural and Cohesion Funds are also part of regional policy. Regional Policy of the
European Union, along with structural and cohesion funds is a major instrument of solidarity in the EU,
through which the EU contribute to more balanced development of the whole territory of the EU and
overcome development gaps between regions.
Slovenia is also eligible for funding from the Cohesion Fund in financial perspective 2007-2013.
The project is suitable for co-financing from the Cohesion Fund, if the financial NPV is negative and
economic NPV positive. The project should contribute to the economic development of the region or
country, and must be included in the Operational Programme of Environmental and Transport
Infrastructure Development for 2007-2013.
It has to be noted that all countries for these projects have to provide part of the funds themselves and
thus close the financial construction of the project.
For financial perspective 2007-2013, Institute of Traffic and Transport Ljubljana prepared the CBA for
the following railway infrastructure projects, which were or will be financed from the Cohesion Fund:
-
Modernization of existing railway line Divača-Koper,
Reconstruction, electrification and upgrade of the Pragersko-Hodoš railway line for 160 km/h
and modernization of level crossings and implementation of subways at stations,
Implementation of digital radio system (GSM-R) on Slovenian railway network.
In the calculations, we took into account all the guidelines of the European Commission to make CBA
and we also calculated the corresponding share of EU co-financing. The calculations have been
checked and verified by the technical assistance JASPERS (Joint Assistance to Support Projects in
European Regions), which operates within the framework of the European Commission.
The basis for the calculation of the corresponding share of co-financing from EU funds is the financial
analysis of the project and identification of eligible project costs.
The level of assistance is based on the "funding gap” of the project, which is the proportion of
discounted costs of initial investment, which is not covered by the discounted net revenue of the
project. The calculation of the funding gap is produced by the method shown in the tables below.
Belgrade, 2012
41
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Table 2:
The calculation of the funding gap
Value not
discounted
Main elements and parameters
The analysis is made for the
construction
phase
and
operational phase in period of
30 years
1
Reference period (years)
2
Financial discount rate of 7%
3
Total investment cost (in euro, not discounted)
4
Total investment cost (in euro, discounted)
5
Residual value (in euro, not discounted)
6
Residual value (in euro, discounted)
7
Revenues (in euro, discounted)
8
Operating costs (in euro, discounted)
9
Net revenue = revenues - operating costs + residual value
(in euro, discounted) = (7) - (8) + (6)
10
Eligible expenditure (Article 55 (2)) = investment cost - net
revenue (in euro, discounted) = (4) - (9)
11
Value discounted
(net present value)
Funding gap rate (%) = (10)
/ (4)
Table 3:
Community contribution calculation
Value
1.
Eligible cost (in euro, not discounted)
2.
Funding gap rate (%)
3.
Decision amount, "The amount to which the cofinancing rate for the priority axis applies" (Article 41 (2))
= (1) * (2) (taking into account the maximum public
contribution according to state aid rules)
4.
Co-financing rate for the priority axis (%)
5.
Community contribution (EUR) = (3) * (4)
7
85
After calculating the Community contribution the calculation of the project financial eligibility is made
again, taking into account that Community contribution is among the revenues. Community
contribution should be adjusted so, that the financial NPV is still not higher than 0, which prevents the
granting of ineligible benefits for recipient, like over-financing of the project.
7
Themaximumco-financingratefortheCohesion Fund is 85%.
Belgrade, 2012
42
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
5. CONCLUSION
In determining the financial and economic eligibility of investments in public railway infrastructure in
Republic of Slovenia, the method of cost-benefit analysis is used (as comparison of conditions "with"
and "without" investment), which is consistent with the recommendations of the European Commission
as to the applicable law in the Republic of Slovenia. The financial eligibility is determined from the
investor’s point of view while economic eligibility is determined from the point of national benefits.
In order to produce proper Cost-benefit analysis it is necessary to:
-
determine the needs with the existing and future demand analysis
clearly define the project as an independent unit of analysis, with defined objectives and
measures to help achieve these goals
analyze and evaluate the different alternative options and determine which option meets the
objectives optimal
Generally, investments in public railway infrastructure for the investor himself have negative effect and
do not turn profit but they are very important from the social point of view, which show economic
profitability indicators. The main effects of investments that are considered in calculating the economic
profitability indicators are increasing line capacity, increasing the level of traffic safety, optimizing the
management of the public railway infrastructure, savings in train exploitation costs, intravel time
savings, preventing outflow of freight and passengers from rail to road, savings in energy
consumption.
Projects in the field of development of the railway infrastructure are usually suitable for co-financing by
EU grants. Project is in fact suitable for co-financing from the Cohesion Fund, if the financial NPV is
negative and economic NPV is positive. The project should contribute to the economic development of
the region or country, and must be included in the Operational Programme of Environmental and
Transport Infrastructure.
It has to be noted that all countries for these projects have to provide part of the funds themselves and
thus close the financial construction of the project.
6. LITERATURE AN SOURCES
[1] Decree on the uniform methodology for the preparation and treatment of investment
documentation in the field of public finance. Official Journal of RS, No. 60/06 and 54/10.
[2] Decree on the uniform methodology for the preparation and treatment of investment
documentation in the field of public railway infrastructure.Official Journal of RS, No. 06/08.
[3] European Commission, Directorate General Regional Policy (2008). Guide to cost-benefit
analysis of investment projects, Structural Funds, Cohesion Fund and Instrument for PreAccession. 257 p.
[4] European Commission, Directorate General Regional Policy (2006). The New Programming
Period 2007-2013, Guidance on the Methodology for carrying out Cost-Benefit Analysis, Working
Document No. 4.23 p.
[5] Matajič, M. et al. (2011): Strokovno-razvojnanaloga “Analizamožnosti in potreb razvoja javne
železniške infrastrukture v RepublikiSloveniji”, Prometniinstitut Ljubljana d.o.o., 732 p.
Belgrade, 2012
43
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
PLANNING A COMPLETION OF CORIDORS AS A STRATEGIC
PRIORITY
Vaska Atanasova, Ph. D, University “St. Kliment Ohridski”, Bitola, Faculty of Technical Sciences,
Department for Transport and Traffic Engineering, Macedonia
Ile Cvetanovski, Ph. D, University “St. Kliment Ohridski”, Bitola, Faculty of Technical Sciences,
Department for Transport and Traffic Engineering, Macedonia
Abstract
Traffic network in the Republic of Macedonia is characterize with two transport corridors in direction
North – South (corridor X) and East – West (corridor VIII), which are mutually crossed and represent
strategy and economic priority in the Republic of Macedonia.
In this article we are going to emphasize the importance of rehabilitation of railway corridor X,
upgrading of road corridor X and unequal development of kinds of traffic.
Key words: corridor X, planning, traffic
1. INTRODUCTION
Republic of Macedonia with its favorable geographical position has always been a country at a
crossroads. Roads and transport corridors that pass through its territory have a long tradition dating
back to ancient times. Through it passed roads that connected the East and West, Europe and the
Orient. This region passed the famous Via Egnatia, which connected the Adriatic Sea to
Constantinople. Also, the Vardar valley, with its strategic position, was a key communication corridor
for the Balkan and beyond Southern Europe. Current road corridors VIII (east-west) and X (northsouth), which connected the region with Europe and Asia, lead roots of ancient roads "Via Militaris"
(north-south) and "Via Egnatia" (east-west).
Right here in the seventies of the nineteenth century was built the first railway line in the region, from
Skopje to Thessaloniki. So, it used to be. And how is it today? Unfortunately, as we do not know to
recognize this potential that has our country. Potential to links. Therefore in extended texts will be
shown the importance of the rehabilitation of the railway corridor X and upgrading of the road corridor
X, as well as the reasons for the eradication of unequal development of kinds of traffic.
2. UNEQUAL DEVELOPMENT OF KINDS OF TRAFFIC IN REPUBLIC OF MACEDONIA
Roads and rail infrastructure and its continuous development and renewal represent an indicator for
the development of countries they own.
In the past 50 years in the traffic system of the Republic of Macedonia was extremely inconsistent
development in separate traffic branches, unfavorable particularly expressed between road and rail
transport. As a comparison of the two transport systems (road and rail), road traffic from about 8
percent in the 50’s, today has risen to about 92 percent in passenger and 89 percent in cargo traffic.
It is obvious that the implement of rail projects have been neglected at the expense of road transport
within the existing Trans – European network.
Major changes occurred in the development and modal distribution of transport between rail and road
transport in favor of road as consequence of the rapid development of the industry for production of
motor road vehicles, unequal economic conditions of these two transport systems and increasing the
flexibility of road traffic adjustment in emerging economic conditions, that is mostly due to the
possibility of transport of “door to door” and smaller transportation costs for low traffic volume,
Belgrade, 2012
44
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
especially at short distances. However, this unfavorable ratio in the use of the railways, in some extent
influenced and traffic policy which was practiced in the Republic of Macedonia.
On the development of the road and rail infrastructure in the Republic of Macedonia should not be
viewed partially, only in local frames, because the development of road and rail infrastructure in our
country is in interaction with the infrastructure of our neighboring countries, which contributes and
force the integration of the Republic of Macedonia in the region and the European Union.
Taking into account some specific comparative advantages of rail transport in terms of road, and
railway may be of interest for a massive transport of passengers and goods, national strategy must be
ensured equitable treatment and create conditions for sustainable development of the railway. It
should establish fairer competition between rail and road traffic, i.e. to determine the external costs
caused by road transport and focus transport policy toward their coverage by road users themselves.
This can affect overall transportation costs and the choice of transport vehicle to realize the carry
shipping. This approach in the transport costs analysis usually is in favor of rail transport because the
same impact less negatively to the environment compared to road transport as well as in terms of
traffic safety and reliability and energy savings.
On unequal development of kinds of traffic in the Republic of Macedonia indicate and the data that in
the period from 2001 to 2011, the shares of road cargo transport average is 90 %, while rail transport
contributes only 10 %.
Improved transport system will foster economic growth, improve citizens’ personal mobility, will reduce
transaction costs for business and will make the state more competitive and more attractive for foreign
investment. But, success in the economic growth of a country is the direct coupling and direct
dependence on the advancement or modernization of existing transportation systems and capacity,
and mutual harmonization of individual traffic branches, as well as the compliance of transport facilities
and traffic infrastructure.
3. IMPORTANCE OF THE UPGRADING OF THE ROAD CORRIDOR X
Good infrastructure is the basis for rapid economic growth and development, improved
competitiveness of the economy, faster flow of people, goods and passengers. Given the fact that the
Republic of Macedonia is on the main corridor east – west (corridor VIII) and north – south (corridor
X), it is important to realize the capital infrastructure projects that will contribute to increase the
competitiveness of the national economy, higher economic growth and balanced regional
development.
Figure 1: Road corridors VIII and X in the Republic of Macedonia
Belgrade, 2012
45
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
The Republic of Macedonia with its extremely favorable central position in the Balkan Peninsula is a
road junction, but with the current lack of development, especially in the direction east – west, it has
not been valorized. In view of construction of roads in the Republic of Macedonia appears imminent
and inevitable need of completing two international road corridors (corridor VIII and corridor X) with a
comparison of competing corridors in our environment and the need of their completion, would
rejected danger for their marginalization and avoid the possibility of becoming the Republic of
Macedonia etc. “appendicitis” on the international road map.
Corridor VIII (east – west), which is on our territory starts from Deve Bair (border with Bulgaria) to
Kafasan (border with Albania) with total length through Republic of Macedonia of 304 km, as part of
the road corridor which passes through Bulgaria – Macedonia – ends in Albania (Durres) and further
by sea through Palermo (Italy) to Tunis and Algiers. On the territory of the Republic of Macedonia from
total 304 km, 27,6 % are built on level of highway, and 8,7% are under construction.
Corridor X (north – south), which on our territory starts from Tabanovce (border with Serbia) to
Bogorodica (border with Greece) with total length through Republic of Macedonia of 176 km, which
from northern Europe through Serbia, Macedonia goes to Africa and Asia. From a total of 172 km, 132
km are build on level of motorway. Recent built sections are: section Negotino – Demir Kapija (16 km)
and section Smokvica – Gevgelija (11,3 km). Also, within the road corridor X is the sub – section d,
Veles – Medzitlija, passing and linking Veles, Prilep and Bitola with Greece, with total length of 127,1
km.
Figure 2: Length of the road corridors VIII and X on the territory of Republic of Macedonia
Corridor X is the most important element of the central transport network that connects Greece with
Austria. Its length is 1 451 km. The current average annual daily traffic on corridor X linking Salzburg
and Thessaloniki through Ljubljana, Zagreb, Belgrade and Skopje is 15 000 vehicle per day and is
expected to increase by 6 % per year, or 40 000 vehicles per day, to 2020.
In most of the territory of the Republic of Macedonia this road corridor is built as a motorway, left just a
section Demir Kapija – Smokvica with length of 28,18 km, in line with European standards, which will
complete the main axis of corridor X which pass trough Republic of Macedonia. With the construction
of the section Demir Kapija – Smokvica, will be fully completed construction of corridor X on highway
level. With the completion of this section, corridor X will become a modern section in accordance with
European standards. The main goal of construction is to reduce travel cost and travel time, faster flow
of vehicle which will positively impact on increase in the transit of persons and goods and raising the
level of trade between the countries.
Belgrade, 2012
46
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
On road corridor X passing through Republic of Macedonia, there is a competitive road corridor, and
that is the corridor IV, which passes through Romania, Bulgaria to Greece. In addition, we should now
the advantages and disadvantages of the two corridors. Corridor X has a significantly higher
proportion of construction of the highway level of competitive corridor, shorter length of the road to the
EU, shorter travel time, more natural traffic flow, while corridor IV has advantage that travels through
EU and NATO member countries, without borders, with all the advantages arising from it. It is
extremely important to emphasize that the ultimate interest of the Republic of Macedonia is not
allowed to marginalize corridor X, because in that case would become the so – called “Appendicitis”
international road map and we can lose the status crossroads and become a mere blind alley.
Upgrade corridor X will allow:
To facilitate international and transit movements of people and goods in the EU and
neighboring countries, through the modernization and construction of Pan – European corridor
X and the main regional network;
To facilitate international and transit flow of people and goods in EU and its regional
neighbors, through the completion of the national components of the Pan – European corridor
X on highway level;
To facilitate the efficient flow of people and goods, in support of a better standards of living
and socio – economic conditions in the regions, through the completion of the national
components of the Pan – European corridors X;
To promote sustainable development, especially through minimizing the negative effects of
the transport sector on the environment, as well as improve road safety;
Increase the basis operational vehicle speeds, which will significantly reduce the time of
movement, compared to the current time movement of vehicles;
Reduce of operating costs of the vehicles. The benefits of reducing of operation costs of
vehicle are results on: saving fuel and saving due the fact that vehicles will spend more
kilometers of road network in a shorter time;
Reduce accidents by improving the traffic flow;
Better level of service.
In general, the investment in the road network of the Republic of Macedonia will receive the
following benefits:
For state as the Republic of Macedonia, perhaps the most important political issue and
maintenance of geo-strategic central position in the Balkan Peninsula;
Safer traffic;
Reduced fuel consumption and reduced transportation costs;
Increasing international transit traffic through the Republic of Macedonia, due to the higher
level of service provided on our roads;
Will reduce vehicle maintenance due to damage from bad roads;
Taking care to improve the protection of the environment, because vehicles are one of the
biggest factors in environmental pollution;
Will increase the attractiveness and availability of our resorts for foreign tourists;
Construction of new roads will contribute to the development of the construction industry as
one of the main industries;
The construction of new and modernization of existing roads, increasing the attractiveness of
our country to foreign investment and others.
4. THE IMPORTANCE OF REHABILITATION OF RAILWAY CORRIDOR X
In the Republic of Macedonia in the last 40 years was not invested in the reconstruction of the railway,
not built the planned sections that Macedonian railways will be linked with railways of Bulgaria and
Albania. The Republic of Macedonia in comparison with European countries, except Greece and
Albania, which were compared with the Republic of Macedonia have and sea traffic, significantly
lagging behind the development and modernization of the railway network. Railroads, except
Tabanovce - Gevgelija (section of the Pan-European Corridor X) and Skopje - Volkovo end up as blind
sidings railroads. Railway Bitola - Kremenica (section of the Pan-European Corridor X-d) while
continuing to Greece, due to the current state of the gauge practical and it ends as a blind track.
Belgrade, 2012
47
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Railway corridor X in Republic of Macedonia, which is an essential element of the central transport
network, starting north of the border crossing Tabanovce and ends in the southern border near
Gevgelija, Bogorodica.the sub – section X-d of corridor X starts and ends at the border crossing
Kremenica near Bitola. The total length of the route of corridor X, Tabanovce - Skopje - Veles Gevgelija is 215,7 km, while the total length of the route of corridor X-d Veles - Bitola - Kremenica is
145,3 km.
Figure 3: Railway corridor X in the Republic of Macedonia
Most of the railway infrastructure in the Republic of Macedonia has not been renovated in the last 30
years. Eight percent were rehabilitated in the past 10 years. 20 years ago through the Macedonian
railways transported 10 million tons of goods per year, and 3 to 4 million tons today.
The rehabilitation of corridor X on the territory of the Republic of Macedonia has become a priority of
the Ministry of Transport. Connection on the state with the railways of the countries in the
neighborhood is of primary strategic importance to economic development and the development of
bilateral and multilateral exchange of goods and people. From a strategic point of view the state would
have a huge benefit because Republic of Macedonia has no outlet to the sea and there is a need for
rail connectivity to ports in neighboring countries. Rail transport in terms of the same would have
greater competitive ability when the country's railways are connected to another network of railways
neighboring country.
Revitalization of the railways under the regional development especially that of the neighboring
countries and taking into account the geographical transit benefits will significantly contribute to the
intensification of freight transport through the Republic of Macedonia. There is a general need for:
Reducing operating and administrative delays at rail crossings;
Restructuring, commercialization and sharing of infrastructure and operational activities under
EU norms;
Determination of commonly needed services and establishment of mechanisms for obtaining
subsidies, and
Overcoming the problem of railway finances and the need for ranking future activities to
eliminate or greatly reduce the current deficit, and at the same time provide equipping railways
for its key role in the long-term plan of the Macedonian and transport policy of European
Union.
With the rehabilitation of the railway infrastructure in the Republic of Macedonia as a strategic
transport point in the region to boost ties with neighboring countries, but also and the flow of goods
from and to Republic of Macedonia. Will increase the capacity of the corridor X, will increase the
Belgrade, 2012
48
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
speed of movement, will be reduced negative effects on the environment, will be enhanced security,
will increase the flow of international trade, freight transport, and will contribute to increasing the
competitiveness of corridor X in terms of corridor IV. Corridor X is important for Republic of Macedonia
because over 90 % of trade is conducted through it. With international rail corridors on our territory
should have primary and maximum in general to improve the functionality of the railway network in the
Republic of Macedonia, and it will increase the interest and ability to transport passengers and goods
and will create conditions for the profitable management of the railways.
Republic of Macedonia, not to become a bottleneck or not to be surrounded in international transport,
in development programs must inject as a priority the development of infrastructure of international rail
corridors that pass through our country. The development of the railway infrastructure will bring
numerous benefits to the country as the Republic of Macedonia. However rail has numerous
advantages compared to road transport. The emissions of harmful gases in transport by rail are lower
than the road and about nine times in the road and about thirty times in freight transport. Safety in rail
traffic is about thirty times better than in road traffic. Energy consumption for equal work performed in
shipping by rail is less than in road transport and about 3,5 times in passenger and about nine times in
freight transport. Regarding the deployment of land space for the same rank of a road, for railway in
terms of time takes less area about 1,5 times (one track and single-lane road) to three times (for two
track and highway). At the same time, rail transport is significantly less dependent on the adverse
weather conditions in relation to the road.
5. CONCLUTION
Road infrastructure is very important for economic development, labor mobility, and competitiveness
within the international distribution of traffic operations. It is one of the key factors that greatly affect
the economic development and spatial structure of the country / regions.
The main regional network is considered to be one of the most important policies for the provision of
long-term peace, stability and economic prosperity of South East Europe.
Construction and completion of the Pan-European Corridor X to level of highway, will contribute to
strengthening ties with neighboring countries, improving the flow of international trade, as well as
improving connectivity with its remote areas. Improved infrastructure along the Pan-European corridor
X, open up opportunities to increase traffic by connecting Central Europe with the port of Thessaloniki,
Greece.
Corridors VIII and X (road and rail) represented strategic economic priorities which will make Republic
of Macedonia to grow by only geographically, in real traffic crossroads in the Balkan. The strategic
importance of these Trans – national axes is that it will contribute to faster and safer shared
communication and transportation of passengers and goods, leading to economic security and
stability.
Mutual alignment of individual traffic branches, as well as the compliance of transport facilities and
transport infrastructure will contribute to reduce of travel costs, travel time and faster traffic flow that
will positively affect on the increase of the transit of persons and goods, and raising the level of trade
between the countries.
REFERENCES
[1] Republic of Macedonia, State statistical office
[2] Railway Pro – The railway business magazine
[3] Evaluation of the impact on the environment and social issues, Construction of a new highway
section Demir Kapija – Smokvica as a part of the Pan – European corridor 10, Technical
summary, November, 2010
[4] Aleksandar Vuchevski, Corridors that lead nowhere, Macedonian sun 714 / 7.03.2008
[5] Joint Transport Committee, Republic of Macedonia, European Community, Road Transport
Infrastructure, May, 2007
[6] http://www.roads.org.mk/tek_sostojba.html
Belgrade, 2012
49
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
HARMONIZATION OF TECHNICAL REGULATIONS IN THE AREA OF
RAILWAY TRACK MAINTENANCE
Zdenka Popović, University of Belgrade, Faculty of Civil Engineering, Belgrade, Republic of Serbia
Leposava Milosavljević, University of Belgrade, Faculty of Civil Engineering, Belgrade, Republic of
Serbia
Luka Lazarević, University of Belgrade, Faculty of Civil Engineering, Belgrade, Republic of Serbia
Abstract
The European Union has enacted various legislative measures aimed at achieving the opening up,
integration and harmonization of national railways to form a European railway network. One of the
essential preconditions for the integration of the Serbian Railways with those of the European Union is
to approximate Serbia’s railway regulations and standards to those of the EU. Harmonization of the
technical regulation in the area of railway infrastructure in the Republic of Serbia and the adoption of
the European standards in sector "Railway applications" are in progress. European Committee for
Standardization has created a group of standards EN 13848-Railway applications – Track – Track
geometry quality, which consists of six parts. The objective of creation of this group of standards is
defining a unique approach for the evaluation of track geometry quality of various European railway
infrastructures. The Institute for Standardization of Serbia has adopted and published four out of six
parts of this group of standards. On the other hand, the existing Serbian railway regulations and
logistics concerning track inspection, quality evaluation and correction of track geometry are in
collision with those of the European Union. Solving this problem, which represents the essential
barrier for integrations of the Serbian Railways to the European railway network, requires adoption of
legal and technical frameworks for the application of European standards. Only after solving the given
legal and technical limitations, harmonization of technical regulations in the area of maintenance can
be achieved. On the contrary, harmonized regulations could not be applicable in practice.
Keywords: Railway, track geometry, maintenance, harmonization, technical regulations.
1. INTRODUCTION
The European Union has brought series of regulations and standards in the area of railway
infrastructure. The aim of such activities is to achieve opening, integration and harmonization of
national railway networks with European network [14].
All railway administrations whose lines are a part of the Pan-European Corridor have an interest to
bring their capacity to a higher technical and technological level and to ensure reliable operation of
infrastructure facilities by all European operators. Given the fact that the territory of the Republic of
Serbia is an important part of the railway corridor X (30.89%), it is necessary to harmonize the
parameters of Serbian railway main lines with parameters of European railway network, using modern
technical regulations for the design and maintenance of infrastructure.
In that sense, one of the essential preconditions for the integration of the Serbian Railways with those
of the European Union is to harmonize Serbia’s railway regulations with Directives, Technical
Specifications for Interoperability and applicable technical standards.
Figure 1 shows the current status of harmonization of subordinate Acts for railway infrastructure
maintenance in Serbia.
Belgrade, 2012
50
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Fig. 1 The harmonization procedure for technical regulations for railway infrastructure
maintenance in the Republic of Serbia [9]
This paper analyses European technical regulations in the area of railway track maintenance, shows
the current level of harmonization of Serbian regulations with EU technical regulations and gives
directions for solving this task.
2. TECHNICAL REGULATIONS IN THE AREA OF RAILWAY TRACK MAINTENANCE IN EU
2.1. Technical Specification of Interoperability and the conventional railway system
maintenance
The Technical Specification of Interoperability relating to the trans-European conventional rail system Subsystem Infrastructure covers the conventional railway system maintenance from the aspect of
safety, reliability and availability, health, environmental protection and technical compatibility of the
maintenance installations for conventional rolling stock [6]. The technical installations and the
procedures used during the maintenance must ensure the safe operation of the infrastructure
subsystem and not constitute a danger to health and safety. Also, the influence of the technical
installations and the procedures must not exceed the permissible levels of nuisance with regard to the
surrounding environment.
According to [6] the Infrastructure Manager has to define, for each conventional rail line, a
maintenance plan. The plan defines types of inspection and testing and their frequency, professional
competences of staff, measuring methods and necessary procedures. Therefore the maintenance
plan shall contain at least [6]:
• a set of limit values,
• a statement about the methods, professional competences of staff and personal
protective safety equipment necessary to be used,
• the rules to be applied for the protection of people working on or near the track,
• the means used to check the respect of in-service values, and
• the measures taken (speed restriction, repair time) when prescribed values are exceeded.
Belgrade, 2012
51
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Maintenance plan is related to the following elements:
• requirements for equivalent conicity in service,
• in service geometry of switches and crossings,
•
track geometric quality and limits on isolated defects,
•
platform edge as required by the "People with reduced mobility" TSI,
•
inspection of tunnels condition as required by the "Safety in Railway Tunnels" TSI, and
•
professional competences for maintenance staff.
Figure 2 shows the concept development for creation of the maintenance plan.
Fig. 2 Concept development for creation of the maintenance plan
The basis for creation of the maintenance plan is measurement data from the railway network. In that
way, the data collected from the network using track recording vehicles gain great importance. During
measurements, exceeding of the regulated limit values is registered and if necessary appropriate
measures for traffic safety insurance can be taken. After the recording run, quality data with further
instructions regarding registered defects are uploaded on the intranet network and become available
to all the operators.
2.2. European standards concerning track geometry quality
European Committee for Standardization (CEN) has created a group of standards EN 13848 "Railway
applications – Track – Track geometry quality" which consists of six parts. The sixth part of this
standard is currently under development and the draft has been submitted to CEN members for voting
[12].
The objective of creation of this group of standards is defining a unique approach for the evaluation of
track geometry quality of various European railway infrastructures. This group of standards is a basis
for creation of the railway infrastructure maintenance plan.
The first part of this European standard "Characterisation of track geometry" specifies the
requirements for the homologation of track geometry quality as measured by various measuring
devices fitted on track recording vehicles [1]. It defines each parameter and specifies the requirements
for measurement, the analysis method and the presentation of results.
The part 2 "Measuring systems - Track recording vehicles" defines the specification for measurement
Belgrade, 2012
52
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
systems to ensure that all track-recording vehicles produce comparable results when measuring the
same track [2]. In order to achieve this, it is essential to ensure that the methods of measurement are
equivalent, the transfer functions of the filters are identical and the outputs and data storage formats
are comparable.
The part 3 "Measuring systems - Track construction and maintenance machines" [3] and the part 4
"Measuring systems - Manual and lightweight devices" [4] specifies the minimum requirements that
shall be met by measuring systems fitted on track construction and maintenance machines, or on track
geometry measuring trolleys and manually operated devices, to give an evaluation of track geometry
quality when measuring one or more parameters.
The fifth part of this European standard "Geometric quality levels" defines the minimum requirements
for the quality levels of track geometry and specifies the safety related limits for each parameter [5].
The sixth part "Characterisation of track geometry quality", which is still under approval, characterizes
the quality of track geometry based on parameters defined in the first part and specifies the different
track geometry classes which have to be considered. It covers the following topics:
• description of track geometry quality;
• classification of track quality according to track geometry parameters;
• considerations on how this classification can be used.
A detailed analysis of the first and the fifth part of EN 13848 is provided in this paper.
2.2.1.Characterisation of track geometry
The European standard EN 13848-1 applies to all track geometry parameters including:
• Track gauge (Figure 4),
• Longitudinal level (Figure 5),
• Cross level (Figure 6),
• Alignment (Figure 7), and
• Twist (Figure 8).
All these parameters are determined by the current coordinates of the corresponding points of the left
and right rail relative to a fixed rectangular XYZ co-ordinate system (Figure 3) [1]. The relative coordinate system is centred to the track with clockwise rotation and X-axis represents an extension of
the track towards the direction of running, Y-axis is parallel to the running surface, and Z-axis is
perpendicular to the running surface and points downwards.
1
2
3
running direction
running surface
track co-ordinate system
Fig. 3. Relationship between the axes of the track co-ordinate system [1]
Track gauge, G, is defined as the smallest distance between lines perpendicular to the running
surface intersecting each rail profile at points P 1 i P2 in a range from zp=0 mm to zp=14 mm below the
running surface (Figure 4) [1]:
1.1.1
(1)
G Gx
y p' x y p' x ,
2
1
Belgrade, 2012
53
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Fig. 4. Measurement of track gauge G in accordance with EN 13848-1
Deviation zp’ in z-direction of consecutive running table levels on any rail, expressed as an excursion
from the mean vertical position (reference line) and calculated from successive measurements is
longitudinal level (Figure 5) [1].
Longitudinal level of track is defined as follows:
z p' x
z p' x
1
z p' x
2
2
,
(2)
where:
z p' , z p'
1
– longitudinal levels of left and right rail.
2
1
2
running table
reference line
Fig. 5. Longitudinal level zp’ in accordance with EN 13848-1
Cross level, h, is defined as the difference in height of adjacent running tables computed from the
angle between the running surface and a horizontal reference plane. It is expressed as the height of
the vertical leg of the right-angled triangle having a hypotenuse, s1, that relates to the nominal track
gauge plus the width of the rail head, rounded to the nearest 10 mm (Figure 6) [1].
Belgrade, 2012
54
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Fig. 6. Cross level in accordance with EN 13848-1
Alignment is a deviation yp’ in y-direction of consecutive positions of point P on any rail expressed as
an excursion from the mean horizontal position (reference line) and calculated from successive
measurements is longitudinal level (Figure 7) [1].
Alignment of track is defined as follows:
y p' x
y p' x
1
y p' x
2
2
, ( y p'
1
0, y p'
0)
(3)
2
where:
y p' , y p' – alignments of left and right rail.
1
2
1
2
running surface
reference line
Fig. 7. Alignment in accordance with EN 13848-1
Twist is the algebraic difference between two cross levels taken at a defined distance apart (usually at
the distance equivalent to the wheel-base) (Figure 8) [1]. It is expressed as a gradient between two
points of measurement:
Belgrade, 2012
55
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
v
vx
h2 x
h1 x
a
[mm/m or ‰] ,
(4)
where:
v – twist [mm/m or ‰],
a – length of a measuring base [m],
h1, h2 – cross levels measured at the beginning and end of the measuring base [mm].
Fig. 8. Twist in the area of a transition curve [7]
2.2.2.Geometric quality levels
According to [1] track geometry quality is defined as assessment of excursions from the mean or
designed geometrical characteristics of specified parameters in the vertical and lateral planes which
give rise to safety concerns or have a correlation with ride quality.
Defining the geometric quality levels can be significant in [5]:
•
optimization of track geometry maintenance works;
•
optimization of vehicle ride quality and dynamic loading of the track;
•
harmonizing vehicle acceptance procedures.
Three indicators can describe the track geometric quality:
•
extreme values of isolated defects;
•
standard deviation over a defined length, typically 200 m;
•
mean value.
Belgrade, 2012
56
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Three main geometric quality levels are defined in the European Standard EN 13848-5 [5].
The first level is Immediate Action Limit (IAL). It refers to the value which, if exceeded, requires taking
measures to reduce the risk of derailment to an acceptable level. This can be done either by closing
the line, reducing speed or by correction of track geometry.
The second level is Intervention Limit (IL). It refers to the value which, if exceeded, requires corrective
maintenance in order that the immediate action limit shall not be reached before the next inspection.
The third level is Alert Limit (AL). It refers to the value which, if exceeded, requires that the track
geometry condition is analyzed and considered in the regularly planned maintenance operations.
Table 1 gives the overview of the main geometric quality levels of the track geometry parameters.
Tab.1. Quality levels of the track geometry parameters according to EN 13848-5 [9]
Nominal to peak Nominal to mean
Zero* to peak value Standard deviation
value
value
IAL
IL
AL
IAL
IL
AL
IAL
IL
AL
IAL
IL
AL
Track gauge +
+
+
+
+
+
Longitudinal
level
+
+
+
+
Alignment
+
+
+
+
Twist
+
+
+
* According to [5], mean to peak values are defined for longitudinal level and alignment. In practice the
mean will be close to zero and therefore zero to peak values may be used.
The immediate action limit values are derived from experience and from theoretical considerations of
the wheel-rail interaction.
For the track gauge, the standard provides limit values for isolated defects (minimum and maximum
nominal track gauge to peak value) and for mean track gauge (nominal track gauge to mean track
gauge over 100 m section).
For the longitudinal level and alignment mean to peak values are defined. The mean values are
calculated over a length of at least twice the higher wavelength in the D1 range: 3 m < λ ≤ 25 m or D2
range: 25 m < λ ≤ 70 m.
The immediate action limit for the track twist as the isolated defect is given as zero to peak value.
The standard gives no immediate action limit values for cross level because the risk of derailment
associated with a cross level defect is tied to twist and cant deficiency. Cant deficiency limits depend
on the track alignment design and construction rules, and the characteristics of the traffic, on each
network.
The immediate action limit for the track gauge is given as a function of maximum speed of vehicles
running on the line, while the immediate action limits for the longitudinal level and alignment are given
also as a function of wavelengths D1 and D2. The wavelength range D3: 70 m < λ ≤ 200 m (generally
this range should only be considered for line speeds greater than 250 km/h) is not taken into account,
as it is not directly linked with safety, but more with vehicle ride quality. The immediate action limit for
the twist is a function of the measurement base-length applied.
The intervention and alert limits are mainly linked with maintenance policy. Maintenance policy may be
directed either at upholding safety alone or at achieving good ride quality, lower life cycle costs or
more attractive (higher speed) services in addition to safety. The alert limits and intervention limits set
by the European infrastructure managers will be set at least to ensure safety and can be tightened to
achieve a given level of ride quality [5].
Belgrade, 2012
57
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
The track geometry limits given in EN 13848-5 differ from the three vehicle acceptance levels QN1,
QN2 and QN3 used in UIC Code 518 [11] and in EN 14363 – Railway applications – Testing for the
acceptance of running characteristics of railway vehicles – Testing of running behaviour and stationary
tests. Quality levels QN1, QN2 and QN3 are connected with testing and approval of railway vehicles
from the point of view of their dynamic behaviour. More particularly QN3 is quite different from IAL.
QN3 refers to the value which, if exceeded, leads to the track section being excluded from the analysis
because the track geometric quality encountered is not representative of usual quality standards.
Unlike IAL, level QN3 still allows regular train operations.
3. TECHNICAL REGULATIONS IN THE AREA OF RAILWAY TRACK MAINTENANCE IN THE
REPUBLIC OF SERBIA
Evaluation of the geometry condition of the lines of Serbian Railways network is performed according
to the Instruction 339 on unique criteria for track condition control [15]. All track geometry defects are
divided into three groups:
A – values up to which it is not necessary to plan and perform corrective maintenance operations,
B – defects which require planning of corrective maintenance operations, and
C – defects which are above exploitation limits and which must be immediately removed because
they jeopardize the traffic safety.
Limit values of the track geometry parameters for all three groups are referring to deviation tolerance
of maximum parameter values from the zero line. They are given as a function of category of line, i.e.
maximum speed of vehicles running on the line.
At first glance, the three groups of defects match the quality levels defined in the EN 13848-5.
However, unlike the European standard, where beside isolated defects, deviations of mean values
and standard deviations of certain parameters are also being considered, only isolated defects, i.e.
deviations of maximum parameter values from the zero line are being considered here, as stated
(Table 2).
Apart from that, there is a difference in definition of principal track geometric parameters. According to
EN 13848-1, longitudinal level and alignment present deviation from the “ideal”, i.e. designed rail
position in the vertical and horizontal plane. According to the Instruction 339 these parameters are
defined according to the mutual position of the rails, i.e. their relative position in the space [8].
Tab.2. Quality levels of the track geometry parameters according to [15]
Nominal
to
peak value
A
B
C
Track gauge
+
+
Zero to peak
value
A
B
C
+
Longitudinal
level
+
+
+
Alignment
+
+
+
Cross level
+
+
+
Twist
+
+
+
Evaluation of the condition of the track is performed based on the total length of defects in groups B
and C over the distance of 1 kilometre. The condition of one kilometre of the line can be very good,
good, satisfactory or unsatisfactory. The limit value of total length of defects in groups B and C is
Belgrade, 2012
58
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
defined. If it’s exceeded, it requires performing works right after the track recording run.
The Institute for Standardization of Serbia has adopted and published four out of six parts of this group
of standards [13].
Professional work of the Institute in the field of standardization, "Railway Applications" is conducted
within the Technical Committee P256. Considering the complexity of the field, "Railway Applications",
the Technical Committee has two sub committees: for civil engineering and for mechanical
engineering part. The Technical Committee P256 brings together representatives of the University (the
Faculty of Civil Engineering and the Faculty of Mechanical Engineering in Belgrade), the Railway
Directorate, designers, contractors and industry in the field of railways. This structure corresponds to
the standardization committee structure in the field of railways, according to the experience of the
European Union [10].
However, practical application of adopted standards EN 13848 on Serbian Railways will be possible
only after linking them with technical regulations.
4. CONCLUSION
Undisturbed and efficient traffic on the European railway network requires harmonized characteristics
of the infrastructure and rolling stock, as well as the efficient interconnection of information and
communication systems of different railway administrations and operators.
The incompatibility of the existing technical regulations in the area of railway infrastructure
maintenance in the Republic of Serbia with the EU regulations is obvious. Existing Serbian railway
regulations and logistics concerning track inspection, quality evaluation and correction of track
geometry are in collision with those of the European Union. Solving this problem, which represents the
essential barrier for integrations of the Serbian Railways to the European railway network, requires
adoption of legal and technical frameworks for the application of European standards.
Although the Railway Act (Official Gazette RS, No.18/2005) coincides with the corresponding
European Union Directives, its decrees are still not applied in practice in the area of maintenance.
According to this Act, railway infrastructure must be maintained in a condition which ensures safe and
unobstructed railway traffic, as well as quality and regular transport. In this purpose, constant
supervision and occasional inspections must be performed, as well as correction of determined
defects. Creation of an annual maintenance plan is performed according to the existing technical
regulations for the area of maintenance, which is adjusted to the application of track recording vehicle
EM 80L. The mentioned track recording vehicle cannot measure parameters defined according to [1].
Quantifications of the track geometry quality based on the locally defined parameters in the Instruction
339 essentially disable the access and usage of the public railway infrastructure to all interested
railway operators.
Technical limitations for the application of the European standards in the area of maintenance
planning are: lack of database on the reference track geometry on the existing Serbian Railways
network, the lack of strategy and material means for filling in the base, incompetence in the level of
expertise of the personnel for work on modern track recording vehicles, lack of knowledge in the area
of management and maintenance of railway infrastructure, not following Directives, Technical
Specifications of Interoperability and technical standards in this area.
Only after solving the given legal and technical limitations, can the Directorate for Railways possibly
achieve harmonization of technical regulations in the area of maintenance. On the contrary,
harmonized regulations could not be applicable in practice.
Belgrade, 2012
59
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ACKNOWLEDGMENTS
This work was supported by the Ministry of Education and Science of the Republic of Serbia through
the research projects “Research of technical-technological, staff and organisational capacity of
Serbian Railways, from the viewpoint of current and future European Union requirements” (No. 36012)
and “Reconstruction and revitalization of railway infrastructure in accordance with regional
development” (No. 680-00-140/2012-09/10).
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
CEN: EN 13848-1:2003+A1:2008 - Railway applications - Track - Track geometry quality – Part 1:
Characterisation of track geometry
CEN: EN 13848-2:2006 - Railway applications - Track - Track geometry quality – Part 2:
Measuring systems - Track recording vehicles
CEN: EN 13848-3:2009 - Railway applications - Track - Track geometry quality - Part 3:
Measuring systems - Track construction and maintenance machines
CEN: EN 13848-4:2011 - Railway applications - Track - Track geometry quality - Part 4:
Measuring systems - Manual and lightweight devices
CEN: EN 13848-5:2008+A1:2010 - Railway applications - Track - Track geometry quality - Part 5:
Geometric quality levels
ERA - Europäische Eisenbahnagentur: Referat Interoperabilität, Transeuropäisches
konventionelles Eisenbahnsystem, Technische Spezifikation für die Interoperabilität - Teilsystem
Infrastruktur, S. 1-106, 2008
L. Puzavac: Modelling of track geometry deterioration, MSc Thesis, University of Belgrade,
Faculty of Civil Engineering, Belgrade, Republic of Serbia, 2009
L. Puzavac, Popovic Z., Lazarevic L.: European standards for track geometry quality, Conference
Proceedings, Zlatibor, may 2011, pp. 509 – 514
L. Puzavac, Popovic Z., Lazarevic L., Ivic M., Kosijer M.: The maintenance planning of Serbian
railway infrastructure in accordance with European standards, 19th International Symposium
EURO-ŽEL 2011 "Recent Challenges for European Railways", Žilina, 8th-9th June 2011,
Proceedings, pp.393-400M. Walter: Interoperabilität und technische Normung der
Eisenbahninfrastruktur in Österreich, ETR, S. 312-315, Mai 2006
UIC Code 518: Testing and approval of railway vehicles from the point of view of their dynamic
behaviour – Safety – Track fatigue – Ride quality, 3rd edition, October 2005.
http://www.cen.eu/cen/Products/EN/Pages/default.aspx (September 2012)
http://www.iss.rs/tc/?national_committee_id=399 (September 2012)
Z. Popovic: Interoperability and standardization of railway infrastructure of Serbian railways,
Railway Technical Review, Hamburg, ISSUE 4/2007, Volume 47, pp. 6-9
Zajednica Jugoslovenskih železnica: Uputstvo (339) o jedinstvenim kriterijumima za kontrolu
stanja pruga na mreži JŽ (Instruction 339 on unique criteria for track condition control), Belgrade,
2002
Belgrade, 2012
60
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
FINANCIAL ANALYSIS OF RAIL INFRASTRUCTURE PROJECTS
Luka Lazarević, University of Belgrade, Faculty of Civil Engineering, Belgrade, Republic of Serbia
Zdenka Popović, University of Belgrade, Faculty of Civil Engineering, Belgrade, Republic of Serbia
Cesar Queiroz University of Belgrade, Faculty of Civil Engineering, Belgrade, Republic of Serbia
Goran Mladenović, Consultant, Roads and Transport Infrastructure, Former World Bank Highways
Adviser, Washington, DC USA
Abstract:
There are two European rail corridors that pass through Serbia: the Danube Corridor VII and the
Corridor X. If it is considered that almost 50% of rail freight traffic in Serbia is transit, according to the
World Bank study, one can conclude that Serbian railways have very favorable position in European
rail network. This is necessary, but not sufficient precondition for successful economic functioning of
rail transport. There are a lot of challenges that Serbian railways must address in order to achieve
good financial performance and operational efficiency. This paper presents the key indicators that
should be considered in financial analysis, and also their application. Also, this paper presents
financial models for infrastructure projects developed by the World Bank.
Key words: railways, financial analysis, financial models, World Bank
1. INTRODUCTION
The European Union (EU) defined a common transportation policy in its document entitled White
Paper "Roadmap to a Single European Transport Area – Towards a competitive and resource efficient
transport system". This policy defines ten goals for reaching a competitive and resource efficient
transport system. Four of these ten goals are directed towards the use of rail transport:
- to shift 30% of road freight over 300 km to rail or waterborne transport by 2030, and more than 50%
by 2050,
- to complete European high-speed rail network by 2050, triple the length of the existing high-speed
rail network by 2030 and maintain a dense railway network in all European Member States,
- to complete a fully functional and EU-wide multimodal Trans-European Traffic Network (TEN-T) by
2030, with a high quality and capacity network by 2050 and a corresponding set of information
services,
- to connect by 2050 all network airports to the rail network, preferably high-speed, and to ensure that
all seaports are sufficiently connected to the rail freight and, where possible, inland waterway system
[1].
Therefore, European Comission recognize rail transport as a one of the priorities, and it defines
primary objective as development of an interoperable railway network and reinforcement of the role of
rail as an essential component in integrated European transport system. So, modern railways should
represent most important segment in future multimodal transportation chain [2].
Current problem with fulfilling the traffic policy from [1] is unequal development of the infrastructure in
the eastern and western part of Europe, which needs to be unified. In the Southeast Europe railways
have low performance, especially in the Western Balkan countries [3]. It implies Serbian railway
network.
2. CHALLENGES FOR SERBIAN RAILWAYS
As it was defined at the Helsinki conference in 1997, two out of ten traffic corridors in the European
territory pass through Serbia: The Danube waterway Corridor VII and the road-railway Corridor X
(Figure 1).
Belgrade, 2012
61
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 1. European railway corridors in the Western Balkan [4]
Due to favorable position in European railway network, Serbian Railway Company was restructured in
2004. in order to comply with acquis communautaire of the EU. Rail infrastructure was separated from
rail operations, and open access regimes for the rail infrastructure took place. The most important task
for infrastructure owner is to improve infrastructure productivity and pricing and to invest selectively [3].
For the last couple of years, rail provided about 10% of public passenger transport in Serbia. This
value was 8.2% in 2011 [5]. Although rail rates in Serbia are about 30% lower than bus fares, bus is
generally preferred because of its reliability and frequency of service. Also, ticket price was not
recognized as a decision criterion for the choice of travel mode in the survey [6]. On the other hand,
rail provided 49.8% [5] of goods transport in Serbia in 2011.
Regarding the previous, one could conclude that the only challenge for Serbian railways is stimulation
and increase of passenger transport. But real problem is that Serbian railways were designed to carry
much more of both, passenger and freight traffic. Figure 2 shows trend of carried p-km, t-km and their
sum (rail traffic units or rtu) from 1990 to 2011.
Figure 2. Trend of rail traffic units over the period 1990 to 2011
Belgrade, 2012
62
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 2 shows that in 1990 rail network used to carry almost three times higher traffic volume than
today. From 2000, t-km was increasing, with abrupt decrease in 2009 due to global recession. Current
freight traffic is about two times smaller than in 1990. Passenger traffic is in almost constant decrease
since 2000, so current p-km value is about eight times lower than in 1990.
The most important challenge for Serbian railways is to achieve higher productivity and therefore to
reduce operating subsidy from government i.e. to reduce the strain on the National budget. The overall
challenge is to produce a financially viable rail sector.
3. WORLD BANK TOOLKIT FOR FINANCIAL ANALYSIS OF THE RAIL SECTOR
In 2011, the World Bank (WB) published "Railway Reform: Toolkit for Improving Rail Sector
Performance" [7]. The financial model in the toolkit demonstrates some key assumptions in
development of financial modeling for railway operations. This toolkit is harmonized with the EU
“acquis communautaire”, so it provides separated financial analysis of freight, passenger and
infrastructure operations. Therefore, users of the toolkit can be public and private railway operators,
government agencies, international organizations or similar. As there are railway operators that cover
different tasks, the toolkit also provides integrated analysis. The financial model structure included in
the toolkit, which consists of six modules, is shown in Figure 3.
Figure 3. Financial model structure in the World Bank Toolkit [7]
The first module is actually input for the financial model. It includes all necessary assumptions
regarding economic context, rail network and all revenues and costs. The second module deals with
the calculations for each entity.
Next two modules present results of calculations numerically and graphically, respectively, in
separated and consolidated form. Financial statements and charts show key operational and financial
results. The fifth module provides summaries of assumptions and outputs and a list of key operating
and financial ratios. The sixth module provides scenario analysis for sensitivity testing of key variables
and model calibration [7]. It is possible to do a consolidated scenario analysis, or separated for freight,
passenger and infrastructure entities.
The Toolkit can be used for analysis of different scenarios, one of which may be the analysis of
operating subsidies. Key variables that can be changed in this analysis are: multiplier and growth rate
for either freight tariff, or passenger fare or track access charge (depending on entity), multiplier and
growth rate for traffic, staff multiplier and capital expenditure multiplier. Influence of changes in key
variables is traced through cash flow and operating profit. Figure 4 shows interface for scenario
analysis of freight.
Belgrade, 2012
63
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 4. Example of interface for scenario analysis in the World Bank Toolkit
Important note is that the Toolkit is much more suitable for financial analysis in the field of
management of infrastructure, freight and passenger transport. The model can be used for a new rail
project only if estimated future parameters are available.
4. FINANCIAL ANALYSIS OF RAIL INFRASTRUCTURE PROJECTS
Every rail infrastructure project must be subjected to financial analysis in order to examine its cost
effectiveness. Project ratios that are usually considered for project financial feasibility include: financial
internal rate of return (IRR), return on equity (ROE) and annual debt service cover ratio (ADSCR).
IRR shows the yield of the project regardless of the financing structure. The minimum required IRR
depends on country and project characteristics and is usually expected to be 8% or more (commonly
above 12% in developing or transition economies). Calculation of IRR is itterative and is given with
Equation (1):
end of period
i
(OCFBF )i
PROJECT .IRR) i
first year of construction (1
0
(1)
where OCFBF is operating cash flow before financing.
ROE shows yield of the project for the shareholders through the remuneration of their investment with
dividends. The minimum expected ROE rate is usually 10% or more. ROE can be calculated
according to Equation (2).
ROE
Net income
Shareholder equity
(2)
ADSCR shows the ability of the investment company to repay the debt. Project estimated viable for
the lenders when the ADSCR is greater than 1 for every year of the project life. Generally, the
minimum ADSCR should be greater than 1.2. ADSCR can be calculated according to Equation (3).
ADSCRn
( CAFDS )n
(3)
n
Debt servicei
i 1
Debt servicei
Belgrade, 2012
Principali
(4)
Interesti
64
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
For the purpose of the highway Public Private Partnership (PPP) projects, World Bank developed
toolkit for financial simulation. This toolkit includes two financial models: graphical and numerical. The
graphical model is simplified model that allows users to visualize real time impact of changes in key
project assumptions. The numerical model is far more detailed and it could be used by the public
authority for an initial project analysis of possible PPP options at pre-feasibility level, to assess
possible toll rates and subsidy levels [8].
Although developed for the road sector, a review of the above financial models indicated that they can
also be adapted for other sectors, including railways. In this study several modifications were made to
the graphical financial model in order to accommodate rail projects. The changes included primarily
parameters that are used to calculate revenues. The graphical model was chosen because it is
simpler to use and considers fewer parameters than the numerical model.
Graphical model discerns five types of project assumptions: source of funds, construction costs,
operation costs, traffic and tariff, and economic context (as shown in Figure 5). The sources of funds
include: government’s construction subsidy, investor’s equity and credit. The user inputs the
percentage of subsidy and equity in the total construction cost, and debt percentage is calculated
accordingly. The model provides two debt repayment options, one with constant annuity value and
other with constant principal value.
Figure 5. Example of main assumptions for financial analysis of rail projects
using the adapted graphical model
While unit costs of railway and road construction show a wide variation, the former are usually higher
than the latter. For example, railway construction costs between 5 million €/km and 20 million €/km,
and 4-lane road construction costs between 6 million €/km and 8 million €/km, have been reported [9].
Railway operation costs are characterized by high fixed costs and relatively low variable costs [3].
Maintenance costs for a high speed rail line in many European countries range from 30,000 €/km per
year (17) to 44,300 €/km and 56,500 €/km which was reported for France and Netherlands,
respectively [10].
The graphical model for highways calculates revenue according to the average number of vehicles per
day and toll rate, which were replaced with the following demand indicators for railways: rail traffic
units per year and price per traffic unit, both of which are used for rail revenue calculations. It should
be noted that traffic growth rate for railways can vary a lot depending on country. For the entire EU,
rail traffic growth rate was about 1.1% in 2010.
Belgrade, 2012
65
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
The adapted model outputs (similarly to the original model) are cash flow graph, debt repayment
graph and dividend graph. The user can test the sensitivity of the model by changing 14 key project
assumptions that are shown in Figure 7. For each set of assumptions, the model displays key project
financial indicators.
Figure 6. Example of key project assumptions that can be used for sensitivity testing
The adapted financial model was tested for a rail project with length of 100 km, total construction cost
of $600 million ($6 million per km), annual operation cost of $6 million, initial traffic of 300 million rtu
per year, and traffic growth of 2% per year. The initial traffic was estimated according to the typical
productivity of EU rail traffic. Other assumptions are as shown in Figure 6. The values adopted for
inflation rate, corporate tax rate, and value added tax (VAT) rate represent the economic context in
Serbia.
Since rail system is, in general, loss making and dependent from government operating subsidy, the
goal in the model testing was to find minimum tariff, so that the project is still considered feasible. It
was performed analysis by changing initial traffic and tariff in order to keep IRR the same. Results of
the analyses are shown in Figure 7. The impact of the operation costs was found to be relatively small
compared to the construction cost and therefore they were kept constant at $6 million per year.
As shown in Figure 7, the financial feasibility of rail projects is highly dependent on the expected initial
traffic and construction cost. The acceptable tariff depends on the economic context of the country.
Table 1 shows, passenger fare and freight tariff, as well as tariff per rtu for different countries.
Figure 7. Example of minimum required tariffs for a railway project to yield IRR of 8% and 12%
using the adapted financial model
Belgrade, 2012
66
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Country
Passenger fare
Freight tariff
Tariff per rtu
[€ cent]
China
0.043
0.023
0.033
Russia
0.046
0.022
0.035
Czech
0.063
0.071
0.067
Poland
0.065
0.061
0.063
Germany
0.107
0.033
0.070
France
0.121
0.036
0.079
Canada
0.128
0.018
0.073
USA
0.336
0.015
0.176
Table 1. Passenger fare, freight tariff and tariff per rtu for different countries
The horizontal line in Figure 7 was drawn assuming an acceptable tariff of 10 US$ cents per rail traffic
unit, which can be considered high regarding values in Table 1. This being the case, any project falling
above the line would require government subsidies. As an example, for the assumptions made, if the
construction cost is $6 million/km and the required IRR is 8%, only projects with an initial traffic above
650 million rtu per year would not require government subsidies. Such threshold increases if an IRR of
8% is considered satisfactory. In any case, such traffic levels are well above what can be expected on
the Serbian railways. Consequently, for the success of rail projects, relatively high construction (and/or
operation) subsidies by governments would be required.
The analysis described above, using the graphical financial model adapted for railways, was carried
out using assumptions for a hypothetical rail project. However, the results do illustrate the main
problems with railway projects.
5. DISCUSSION AND CONCLUSIONS
Although rail systems are generally considered as a loss making, the transfer of traffic from road to rail
is a declared goal of both the European Union and many individual governments. This transfer is
mainly motivated by increased ecological awareness, so the race for sustainable transport became a
global phenomenon. Modern European railways operate under the conditions of regulated competition
and connection with other modes of transportation via development of Trans-European Traffic
Network.
Since Serbian railways are part of this network, it is necessary to prepare strategic development plan
and to prepare implementation of the projects within the network. But, Serbian Railway Company is
also facing other problems, such as need to increase rail productivity and financial viability.
This paper presented recently developed World Bank toolkit for financial improvements in rail sector. It
can be used for detailed analysis of all financial aspects that can face all, infrastructure, freight and
passenger entity. Also, this toolkit allows prediction of future scenarios.
This paper examined financial model for new rail projects. The financial analysis is performed on
modified toolkit for Public Private Partnership in highways, also developed by the World Bank. The
modified model was then used to run an example of sensitivity analysis of tariffs to factors such as the
required project internal rate of return, level of government subsidies, construction costs, and initial
traffic. Results confirm high dependency of rail system from government subsidy and that it should
only be pursued rail investments on which is expected high traffic density.
Belgrade, 2012
67
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ACKNOWLEDGEMENT
This work was supported by the Ministry of Science and Technological Development of the Republic
of Serbia through the research projects “Research of technical-technological, staff and organisational
capacity of Serbian Railways, from the viewpoint of current and future European Union requirements”
(No. 36012) and “Reconstruction and revitalization of railway infrastructure in accordance with regional
development” (No. 680-00-140/2012-09/10).
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
European Commission. White Paper - Roadmap to a single European transport area –
Towards a competitive and resource efficient transport system. Brussels, 2011.
Popovic Z., Puzavac L. and Lazarevic L. Improving the accessibility of passenger railways in
the Republic of Serbia. Rail Technology Review, Vol. 65, Issue 02/2012, Hamburg, Germany,
2012.
World Bank, Transport Unit, Infrastructure Department, Europe and Central Asia Region.
Railway reform in the Western Balkans. 2005.
Center for Strategic & International studies and Hellenic Centre for European Studies. Relinking the Western Balkans - The transportation dimension. Athens, 2010.
Statistical Office of the Republic of Serbia. Review of transport of passengers and goods in
2010 and 2011. Belgrade, 2012.
Popovic Z., L. Lazarevic, and L. Puzavac. The Potential of Passenger Rail Transportation in
the Republic of Serbia. CD-ROM. "The First International Conference on Railway Technology:
Research, Development and Maintenance", Civil-Comp Press, Stirlingshire, UK, Paper 168,
2012.
Annex 1: Financial Model - Guidance for Users. World Bank. 2011.
Financial models. World Bank.
http://www.ppiaf.org/sites/ppiaf.org/files/documents/toolkits/highwaystoolkit/6/financial_models
/index.html
International Navigation Association. Economic aspects of inland waterways. Brussels, 2005.
Quiroga L.M. Ganzheitliche Optimierung des Instandhaltungsprozesses der Gleisgeometrie.
PhD thesis, Fakultat für Maschinenbau der Technischen Universitat Carolo-Wilhelmina.
Braunschweig, 2011.
Belgrade, 2012
68
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
RAILWAY TRAFFIC AND THE MODERN TRANSPORT
TECHNOLOGIES-BASIS FOR DEVELOPMENT OF TRANSPORT
SYSTEM OF CORRIDOR X
Ile Cvetanovski, Faculty of technical sciences- Bitola-traffic department, Bitola, Macedonia
Vaska Atanasova, Faculty of technical sciences- Bitola-traffic department, Bitola, Macedonia
Abstract
Multimodal transport systems have not been developed sufficiently in the Republic of Macedonia. The
introduction RO-LA of combined transport into the traffic system of the Republic of Macedonia would
redirect a considerable portion of freight transport from the road to the railway,considering the
advantages that the railway transportation mode has, when compared with other modes. The roads
would be free of lorries and trailer – trucks, which would make travelling by passenger cars safer. This
paper presents RO-LA transport technologies, expected to be achieved in Macedonia.
Key words: combined transport, RO-LA and MODALOHR transport technologies,
1. INTRODUCTION
Traffic from theoretical and practical point of view, is an important factor in the social development of
one country.Continuous improvement and modernization of the traffic, including adequate education
and training of all participants, should always be the first place in all countries that seek improvement
in their social and economic development.
Multimodal transport using modern transport technologies aims to enable the connection of two or
more traffic branches in continuous logistic transport chain. With this logistic transport chain the
comparative advantages of each car one branch to another are highlighted, thereby each car gets it’s
right place in thecountry transport system. Multimodal transport allows diversion of commodity flows
from road transport to railway transport. The railway thus becomes an important factor in the
development of the overall traffic system.
In accordance with previous findings, using low-floor RO-LA wagons (ROLLENDE LANDSTRASSEN moving time) is the essential need for modernization of the railways. When purchased , these wagons
and vehicles must be taken into consideration the EU regulations, UIC, TE and RIV directives.
With the construction of transport corridors and affirmation of modern transport technologies, social
development and competitiveness of the country in the area of transit traffic is increased. By learning
about the advantages and disadvantages of modern transport technologies, the selection of the
optimal combination of vehicles during the implementation of the transport task is provided.
2. MODERN TRANSPORT TECHNOLOGY- ROLLENDE LANDSTRASSEN
Transport trucks by rail provides an array of advantages. New RO-LA systems commonly travel in
night conditions, which enables the use of transport capacity even under conditions of road traffic ban
for driving at night. One of the significant advantages that transportation is provided by this system is
the rational use of driver rest period, which enables integration into the legal norms for the rest of the
drivers, yet the vehicle is in motion. Besides this RO-LA systems reduce travel expenses, such as:
cost of oil, fuel, tires, etc. Furthermore, users of these systems have the right to return the tax on
Belgrade, 2012
69
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
motor vehicles. The advantages provided by this advanced transport technology are important for
people and for the environment, because using this technology environmental pollution from vehicle
exhaust is significantly reduced.
Figure 1. Semi-trailer truck on RO-LA low-wagon http://www.t-e.nu.- 08.08.2011
3. RO – LA WAGONS IN RAILWAY TRAFFIC
Eight spindle low wagon is a vehicle that is equipped with two four-axle moving seats and it serves to
transport trucks, trucks with trailers and semi-trailers, only trailers or semi-trailers and trucks. These
wagons are designed for transporting EU trucks weighing 45 tons. Wagons are loaded with vehicles
by a horizontal path at the end of the coupling composition, during the opening of the front bumper of
the car. Through the set input pad can be loaded trucks with a total width of 2.6 m. and a total height
of 4.0 m. Wagon insurance is done by setting the V-saucer under the wheels. Due to the asymmetry of
the load, each of these cars are equipped with automatic brakes, or perform automatic regulation of
the braking force depending on load.
Figure 2. Low RO-LA wagon with set input pаd http://www.t-e.nu.- 08.08.2011
Belgrade, 2012
70
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
The most important advantages for optimal RO-LA technology are:
- In Ro - La technology, the risk of obsolescence low-floor cars is avoided, mainly as a result of
resizing the road trucks, because rail low-floor wagons accept all types of trailers and semi-trailers
without any difficulty,
- Ro - La composition can be incorporated into any rail tracks without difficulty,
- Optimal operation of the integrated information system in multimodal transportation
- Application of a single peak in the multimodal transport
- Reducing the cost of fuel, tires, maintenance, etc. in road motor vehicles,
- Rational allocation of driving time and rest periods for drivers, without affecting the transport
process,
- Avoiding toll costs
- No waiting for standstill - traffic jam
- Avoid night driving ban.
4. MODERN TRANSPORT TECHNOLOGY – MODALOHR
In Europe Modalohr transport technology organized and carried by specialized national companies or
companies for transport of road vehicles by rail. Modalohr transport technology, is also called mobile
technology highway. Vehicle drivers during the vehicle transport rest or sleep in appropriate wagons
for this purpose that are an integral part of the railway track. Key assumptions for the optimal
functioning of this modern transport technology:
- Modalohr rail composition has 40% less dead weight, in terms of classical composition wagon –
trailer
- Optimal operation of the integrated information system in multimodal transportation
- Modalohr composition can without difficulty be incorporated into any rail tracks,
Application
of
a
single
peak
in
the
multimodal
transport
- In Modalohr technology the risk of obsolescence is avoided in the low-floor cars , mainly as a result
of resizing in the road trucks, because rail low-floor wagons accept all types of trailers and semitrailers without difficulty.
Figure 3. Modalohr railway wagon - www.bombardier.com.- 06.08.2011
Belgrade, 2012
71
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
5. MOST IMPORTANT GOALS IN MODALOHR-TRANSPORT TECHNOLOGY
Modalohr transport terminals have to be built on intersection points of the pan-European corridors. In
these terminals would be united the functions of road and rail traffic. The basic goals in Modalohr
transport technology are:
- Linking road and rail traffic on fast, reliable and rational way, no transshipment of goods from road to
railway transport capacity and vice versa,
- Optimization of the effects of the rail and road infrastructure
- Accelerate the manipulation and transport of goods in the combined road-rail traffic
- Qualitative and quantitative maximization of technical, technological, organizational and economic
effects in the production and transport of goods,
- Maximizing the effects of the work of creative and functional managers.
These terminals should be managed by the state or the public sector. Prerequisite for the construction
of such terminals is the location where this terminal is provided,must dispose with access roads, as
well as anything else that covers the public sector. Construction of such terminals can attract private
investors.
Encouragement measures for RO-LA and MODALOHR transport technology Development
Measures that the state can undertake for the development of these types of modern transport
technologies, according to the experiences of Western European countries, comprise the following:
- Reduction of tax when purchasing means of transport for this type of transport technologies
- Application of appropriate policy in the allocation of truck transport permits
- Ensuring favorable loans for the purchase of transport vehicles within these modern transport
technologies,
- Funding for the construction of the necessary infrastructure and appropriate terminals for this type of
combined transport.
6. CONCLUSION
Taking into account the flexibility of the modern railway transport technologies mentioned above,are
supposed to perceive the advantages of the introduction of these technologies. RO-LA technology has
particular advantages in the areas where are no major distribution containers. In the Balkan countries
shipping container of goods is not on a high level, compared to the countries of the European Union,
and existing container terminals could be used as terminals for RO-LA and MODALOHR transport
technologies. Combined transport is a significant factor in reducing traffic jams and saturated traffic
routes in the countries of the European Union. If you are seeking to join the European Union, then you
have to accept its norms in all segments, even in the area of traffic transport and transport of goods,
which has great importance for the overall social and economic development of every country.
LITERATURE
[1] Marković, I,: Integral transport and traffic flows, Faculty of technical sciences, Zagreb, 1990.
[2] Hauger G., Hörl B., „Verkehrsträger im alpinen Raum - Technische Lösungen zur Bewältigung
der Verkehrsströme“, Wien, 2004.
[3] http://www.bombardier.com.- 06.08.2011
[4] http://www.t-e.nu.- 08.08.2011
Belgrade, 2012
72
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
MARSHALLING YARDS ALONG THE PANEUROPEAN RAILWAY
CORRIDORS
Peter Marton, Faculty of Management Science & Informatics, University of Žilina, Žilina, Slovakia
Ivan Belošević, Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade,
Serbia
Abstract
Long-term effort of the European Commission is to enable rail to compete effectively and take a
significantly greater proportion of medium and long distance freight. European Union needs especially
the freight corridors that enable to rail freight to optimize energy consumption that are attractive for
their reliability, limited congestion and low operating and administrative costs. Marshalling yards are
integral part of pan European corridors for rail freight.
Key words: railway, marshalling yards, technical specifications and recommendation
1. INTRODUCTION
European railway operators offer a wide range of products in frame of freight railway transportation.
Single wagonload (SWL) belongs to one of basic products offered freight railway transportation. Other
traditional products are intermodal transport and block (full) trains. SWL accounts for approximately
50% of Europe’s total rail market [9]. We focus on marshalling yards in this paper. Existence of
marshalling yards and their services are very important for quality of SWL.
2. ROLE OF THE MARSHALLING YARDS IN THE RAILWAY NETWORK
Movement of the railway vehicles can be realized by two ways on the railway infrastructure – as
a shunting movement or as a train movement. Shunting movements could be understood as
subsidiary to the train movements. Shunting movements are in passenger transportation used to bring
wagons to the platform or pick up them from platform. It is similarly by intermodal transport and block
trains in freight transportation. Shunting movements are used only to relocate wagons from one track
to another one. Completely different is it by SWL. SWL system is comparable with a „hub and spoke
system“. It is a network system which consists of customers’ sidings, stations and marshalling yards.
Single wagons or wagon groups are transported by several trains. First, wagons are added to local
freight trains (feeder service) in customer sidings or stations to transport it to marshalling yards. Then,
generally, wagons are transported from one marshalling yard to another one by direct long-distance
trains. Finally, wagons are distributed by local freight trains from marshalling yards to customer sidings
or stations in catchment area of marshalling yard. It means that several wagon „transfers“ from one
train to another one are necessary. Wagon „transfers“ are called as train formation and are realized in
marshalling yards. Wagons’ sorting is important part of train formation. Marshalling yards are the
biggest workplaces of railway transportation. They occupy large areas, mostly on edge of large railway
junctions. Shunting movements prevail train movements in marshalling yards.
3. MARSHALLING YARDS IN DOCUMENTS OF EUROPEAN UNION AND UNITED NATIONS
Marshalling yards are used not only for domestic SWL. Some marshalling yards in Europe are
connected by direct long-distance trains several times per week. Alliance Xrail is the most know
initiative in international SWL in last years [10]. Importance of marshalling yards for international
Belgrade, 2012
73
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
railway transportation is proven by several references in documents of European Union and United
Nations.
3.1. Technical Specifications for Interoperability (TSI)
The TSI are specifications drafted by the European Railway Agency and adopted in a Decision by the
European Commission, to ensure the interoperability of the trans-European rail system. The first set of
TSI was adopted in 2002 for the trans-European high speed rail system. TSIs related to freight
wagons, telematics applications for freight, control-command and signaling, noise emitted by rolling
stock and traffic operation and management were adopted in late 2004 and mid-2005. The revision of
the TSI related to freight wagons was started with the aim of finalizing it by early 2011. As an
intermediate step, amendments of the conventional freight wagon and operation TSIs, facilitating the
traffic across borders under the so-called „cross-authorization“ of the freight wagons, were adopted in
2009 [5].
Marshalling yards are explicitly mentioned in TSI TAF, TSI WAG and TSI CCS. For example, under
TSI TAF, for the reporting of the movement of a wagon, specific data must be stored and electronically
accessible – Wagon Yard Arrival, Wagon Yard Departure [3]. These messages are mentioned in same
document as relevant for measurement of quality. TSI WAG defines conditions for wagon construction
concerning passing over vertical transition curves in marshalling yard humps and over braking,
shunting or stopping devices [2]. The aim of ERMTS European Deployment Plan mentioned in TSI
CCS is to ensure that locomotive, wagons and other railway vehicles equipped with ERMTS can
gradually have access to an increasing number of lines, ports, terminals and marshalling yards without
needing national equipment in addition to ERTMS. List of main European ports, marshalling yards,
freight terminals and freight transport area is defined by TSI CCS. The ports, marshalling yards, freight
terminals and freight transport areas listed in this list shall be linked to at least one of the six corridors
specified in TSI CCS. The date and the conditions of it are specified in this document too [1].
3.2. European Agreement of Main International Railway Lines (AGC)
AGC provides the legal and technical framework for the development of a coherent international rail
network in Europe. The AGC identifies the rail lines of major international importance, the E-rail
network and defines the infrastructure parameters to which they should conform. It defines
infrastructure parameters for two categories of lines: those are already existing and those to be newly
constructed. The latter are again divided into lines for freight and passenger traffic and others for
passenger traffic only [11]. This document has undergone several revisions in frame of sessions of
Inland Transport Committee of United Nations Economic Commission for Europe. Working Party of
Rail Transport issued Recommendation concerning the system of marshalling yards of major
European importance by its resolution No. 66 on July 31st 2000 [6]. Concentration of international
traffic in a limited number of marshalling yards is recommended in this document. Marshalling yards
should under this recommendation:
make up freight trains for foreign destinations or receive freight trains from other countries
be situated on lines within the European railway network or near and with good connections to
the domestic network,
correspond to these parameters:
o yard has two or three subyards (reception and classification/departure or reception,
classification and departure yard),
o working length of track in yards is no less than 750 meters,
o wagon sorting is realized using mechanization and automation equipment in the
hump,
o operation is managed using automated control system.
Belgrade, 2012
74
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3.3. Rail Net Europe (RNE)
RNE was created in January 2004 on the initiative of a number of European railway Infrastructure
Managers and Allocation Bodies, who wished to establish a common, Europe-wide organization.
Together, the current 37 members of RNE are promoting a business approach and harmonizing the
use of rail infrastructure for the benefit of the entire rail industry across Europe [4]. RNE strives to
simplify, harmonize and optimize international rail processes [8] such as:
Europe-wide timetabling,
common marketing & sales approaches,
co-operation between Infrastructure Managers in field of operations,
train information exchange in real time across borders,
after-sales services.
Eleven Pan-European Corridors are defined in frame of RNE. List of these corridors is in Table 1.
C01
C02
C03
C04
C05
C06
C07
C08
C09
C10
C11
Table 1. RNE Corridors
Oslo/Turku – Malmö – Padborg/Rostock – Hamburg
Antwerpen/Rotterdam – Köln – Mannheim – Basel – Genova
Rotterdam/Antwerpen – Ruhr Area – Warszawa/Katowice
Hamburg/Bremerhaven – Würzburg – München/Passau – Wien/Salzburg – Verona
Rotterdam/Antwerpen – Luxembourg/Paris – Lyon/Basel
Mannheim/Gremberg – Nîmes – Perpignan – Barcelona – Valencia/Paris – Madrid – Lisboa
Gdynia – Ponętów/Warszawa – Katowice – Wien/Bratislava – Trieste/Koper
Lyon/Dijon – Torino – Ljubljana/Koper – Budapest
Wien – Budapest – Bucureşti – Constanţa/Kulata/Svilengrad/Varna/Burgas
Hamburg – Dresden – Praha – Bratislava – Budapest
München – Salzburg – Ljubljana – Zagreb – Beograd – Sofia - Istanbul
Data source: www.rne.eu
Information flyer is available for each corridor. Flyers include information about distances among
important terminals (sections), limits of train length, weight and speed on corridor sections and other
detailed information. Characteristic of terminals are available too. Pictograms show nature of
terminals, e.g. Bi Modal Terminal, Tri Modal Terminal, and Shunting Yard.
4. OVERVIEW OF IMPORTANT MARSHALLING YARDS ON RNE CORRIDORS
We have prepared a table based on information flyers about RNE Corridors (see Table 2). This table
contains list of important marshalling yards on RNE Corridors. We used characteristic „Shunting Yard“
to identify marshalling yard on these corridors. Further we asked Infrastructure Managers for
cooperation to complete list of shunting yards that are in operation and where hump is used for
wagons sorting. Some interesting information was founded during compilation of this table:
most shunting yards due to country area are in Czech Republic – all are equipped by hump,
most shunting yards overall are in Germany,
some large states have few shunting yards equipped by hump – e.g. France, Italy.
Country
Table 2. List of important marshalling yard on RNE corridors
Total
With hump
Yard location
number
Austria
8
8
Belgium
Croatia
9
2
1
1
Belgrade, 2012
Bruck a.d. Mur, Graz, Hall in Tirol, Linz,
Salzburg, Villach, Wels, Wien
Antwerpen
Zagreb
75
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Czech
Republic
13
13
Denmark
France
4
15
0
3
Germany
28
15
Hungary
Italy
Luxemburg
Netherlands
Norway
4
16
1
1
1
1
2
1
1
1
Poland
6
6
Romania
Serbia
5
3
5
1
Slovakia
10
5
Slovenia
Sweden
Switzerland
6
3
1
1
3
1
Bohumin, Breclav, Brno, Ceska Trebova,
Decin, Havlickuv Brod, Kolin, Kralupy n/V,
Nymburk, Ostrava, Pardubice, Praha, Prerov
Le Bourget, Sibelin, Woippy
Berlin, Bremen, Bremerhaven, Hamburg,
Hannover, Kassel, Köln, Leipzig, Mainz,
Mannheim,
München,
Nürnberg,
Oberhausen, Osnabrück, Rostock
Budapest
Bologna, Cervignano
Bettembourg
Rotterdam
Oslo
Gdansk,
Gdynia,
Poznan, Warszawa,
Wroclaw, Zabrzeg Czarnolesie
Brasov, Bucuresti, Craiova, Ploiesti, Simeria
Beograd
Bratislava, Cierna nad Tisou, Kosice,
Sturovo, Zilina
Ljubljana
Götteborg, Hallsberg, Malmö
Zürich
Data Sources: RNE, IM, authors
5. MARSHALLING YARDS ON PAN-EUROPEAN CORRIDOR X
The Corridor X has been adopted during the third Pan-European Transport Conference held in
Helsinki in 1997. The strategic objective of the Corridor was to connect Greece with other member
states (especially Austria) as well as to provide quality transport route from Germany to South-East
Europe and the Middle East. Also this Corridor provided an opportunity to modernize the
transportation network and even the revival of the overall investment activities in the countries through
which it passes. The importance and significance of this transport route was confirmed by including
mainly part of Corridor X in the RNE network as Corridor 11.
Total length of the railway corridor is 2 528 km and passes through Salzburg – Villach –
Rosenbach/Jesenice – Ljubljana – Zidani Most – Dobova/Savski Marof – Zagreb – Tovarnik/Šid –
Beograd – Niš – Preševo/Tabanovce – Skopje – Gevgelija/Idomeni – Thessaloniki. The main axis has
four branches:
Branch A: Graz – Spielfeld/Šentilj – Maribor – Zidani Most,
Branch B: Budapest – Kelebia – Subotica – Novi Sad –Beograd,
Branch C: Niš – Dimitrovgrad/Kalotina – Sofia,
Branch D: Veles – Kremenica/Mesonision– Florina.
Eight hump yards and seven flat yards execute almost all freight train formation on the Corridor.
Average catchment area of each marshalling yard is around 170 km. These marshalling yards can be
divided in groups: bound yards, main yards and satellite yards.
Bound yards' task is to sort wagon flows for further railway routes that are linked with Corridor X.
Bound yards on this Corridor are: Salzburg Gnigl and Thessaloniki Dialogi (main axis), Graz (branch
A), Budapest Ferencváros (branch B), Sofia Poduene (branch C). Main marshalling yards are situated
Belgrade, 2012
76
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
on the Corridor's axis and they create direct single or multigroup trains to other main marshalling yards
on the Corridor. Villach Süd (Austria) and core marshalling yards of former Yugoslav Railway
(Ljubljana Zalog, Zagreb RK, Beograd Ranžirna, Skopje Trubarevo) present main marshalling yards
on Corridor X. All these main marshalling yards are designed as hump yards with high capacity for
wagon classification. Each yard has a hump equipped with two tracks for wagons rolling in a
classification bowl. It should be emphasized that on the corridor main axis is located and marshalling
yard Vinkovci. Vinkovci yard is a multiple yard with two separate yards for up and down direction.
Vinkovci was the busiest marshalling yard of the former Yugoslavia and one of the largest in Central
and Southeastern Europe. In last decades number of trains for formation in this yard has been
decreased drastically. For that reason Vinkovci lost it’s place in the region marshalling network and is
currently out of service.
Satellite yard works additional distribution and arrangement of wagons for main yard's catchment area.
On this Corridor five flat yards have the role of satellite yards.
Figure 12. Marshalling yards on Pan European Corridor X
Salzburg Gnigl presents a strategic node for Corridor X because it is situated on TEN-T Priority Axis
17 [7] . This priority railway axis will provide a continuous rail axis for both passengers and freight from
Paris to Bratislava. Benefit of this connection is in the fact that today over half of the rail-freight traffic,
on several sections of the Axis, is between Member States, and volumes will grow further following
enlargement. Also Salzburg is situated on RNE Corridor 4. This node will improve access to and from
the many conurbations along TEN-T Axis and RNE Corridor to Corridor X. Villach Süd, Graz and
Ljubljana Zalog, are proposed for terminals on RNE Corridor 7. Villach Süd marshalling yard has the
highest potential in view of position within the intersection of important railway axes. This yard could
evolve in a huge hub and a link to international transport systems. Also and other bound yards are
promoted for nodes on RNE Network. Ferencváros, Poduene and Dialogi are backbone marshalling
yards on RNE Corridor 9. This Corridor allows connections between the Baltic Sea, the Aegean Sea
and the Black Sea.
Belgrade, 2012
77
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Table 3. List of Marshalling Yards on Pan European Corridor X
Position
on Role of yard
Name
Type of yard
Corridor
on Corridor
Salzburg Gnigl
Main axis
Bound yard
Hump yard
Villach Süd
Main axis
Main yard
Hump yard
Ljubljana Zalog
Main axis
Main yard
Hump yard
Graz
Branch A
Bound yard
Flat yard
Maribor
Branch A
Satellite yard
Flat yard
Zagreb RK
Main axis
Main yard
Hump yard
Beograd Ranžirna
Main axis
Main yard
Hump yard
Budapest Ferencváros
Branch B
Bound yard
Hump yard
Subotica
Branch B
Satellite yard
Flat yard
Novi Sad
Branch B
Satellite yard
Flat yard
Lapovo
Main axis
Satellite yard
Flat yard
Niš
Main axis
Satellite yard
Flat yard
Sofia Poduene
Branch C
Bound yard
Hump yard
Skopje Trubarevo
Main axis
Main yard
Hump yard
Tessaloniki Dialogi
Main axis
Bound yard
Flat yard
6. CONCLUSIONS
High costs of shunting and too long wagon circulation in the railway network are clear disadvantages
of the single wagonload transport. Concerning these disadvantages volume of the wagonload
transport decreases every year. Nevertheless, customers are still interested in using this kind of the
freight railway transport. European Commission declared interest of re-design of this service. It is
necessary to make the train formation more efficient because it has an impact on a possibility to
perform the single wagonload transport in the future.
ACKNOWLEDGMENTS
This paper is realized and supported in a frame of Serbian-Slovak science and technology cooperation within the research project “Reconstruction and revitalization of railway infrastructure in
accordance with regional development” (No. 680-00-140/2012-09/10 in Serbia and No. SK-SRB-005011 in Slovakia).
Belgrade, 2012
78
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
REFERENCES
[1]
Commission Decision concerning the technical specification of interoperability relating to the
control-command and signalling subsystems of the trans-European rail system, Official
Journal of the European Union – L 51/1, 23. 2. 2012.
[2]
Commission Decision concerning the technical specification of interoperability relating to the
subsystem ‚rolling stock – freight wagons‘ of the trans-European convential rail system,
Official Journal of the European Union – L 344/1, 8. 12. 2006.
[3]
Commission Regulation (EC) No 62/2006 concerning the technical specification for
interoperability relating to the telematic applications for freight subsystem of the transEuropean conventional rail system, Official Journal of the European Union – L 13/1, 18. 1.
2006.
[4]
Corridor Rotterdam – Genoa. Corridor A. Online in Internet.
<http://www.corridora.eu/european/railneteurope> [Cited 2012-07-29]
[5]
Drafting and revising TSIs. European Railway Agency. Online in
<http://www.era.europa.eu/CoreActivities/Interoperability/Pages/DraftingandrevisingTSIs.aspx> [Cited 2012-08-23]
[6]
Recommendation concerning the system of marshalling yards of major European
importance, TRANS/SC.2/165/Rev.2. Working Party on Rail Transport. Inland Transport
Committee. Economic and Social Council. Economic Commission for Europe. United
Nations. Online in Internet
<http://www.unece.org/fileadmin/DAM/trans/doc/2005/sc2/TRANS-SC2-165r2e.pdf>
[Cited
2012-07-15]
[7]
Priority Projects 2010 A Detailed Analysis, DG MOVE and TEN-T EA, European
Commission, Brussels, December 2010.
[8]
RailNetEurope. RNE. Online in Internet. <http://www.rne.eu/corporate.html> [Cited 2012-0812]
[9]
Single wagon load [online]. International Union of Railways UIC. Online in Internet
<http://www.uic.org/spip.php?article2133> [Cited 2012-08-22]
Internet
[10] The transparent quality network – Xrail. Xrail. Online in Internet <http://www.xrail.eu/> [Cited
2012-08-22]
[11] Transport Infrastructure Development. United Nations Economic Commission for Europe
UNECE. Online in Internet
<http://www.unece.org/trans/theme_infrastructure.html> [Cited 2012-08-23]
Belgrade, 2012
79
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
THE CURRENT STATUS OF PREPARATION AND REALIZATION OF
TRANS-EUROPEAN RAILWAY LINES PASSING THROUGH THE
TERRITORY OF THE SLOVAK REPUBLIC
Prof. Eng. Libor Ižvolt, Ph.D. Department of Railway Engineering and Track Management, Faculty of
Civil Engineering, University of Žilina Univerzitná, Žilina, Slovakia
Abstract
This paper presents the current status and overview of ongoing and planned modernization of railway
infrastructure in Slovakia in relation to the trans-European corridors passing through the territory of the
Slovak Republic. Following the technical requirements resulting from the international agreements
AGC and AGTC and the interoperability requirements; the current and future trends in design of
-1
modernization of the main rail corridors for the operation of train sets at the speed of 160 km.h and
-1
for the train sets with tilting units up to 200 km.h are characterized there.
1. INTRODUCTION
The political goal of the common transport policy of the European Union is to ensure the territorial and
economical cohesion of European regions. The unsatisfactory accessibility to any area in the
European territory is a serious obstacle that limits the development of regions, the influx of foreign
and domestic capital and the workforce mobility. Due to this the transport policy of the E.U, presented
by the White Paper, and the subsequent legislative activities focus on the support of railway transport
and the increase of its competitiveness against other means of transport. This is understandable as
railway transport is one of the safest and most environment-friendly transport systems. Reinforcing the
safety of railway transport alongside with the railway interoperability are the pillars of the forming
European integrated railway area.
The modernisation of railway infrastructure in the area of SR aligns with and relates to the E.U.
transport policy, attempting to benefit from its relatively favourable geographical position and includes
its main rail tracks into the defined European railway corridors. The European project of TransEuropean transport corridors was started in 1991 in a Prague conference. In the 2. Pan-European
transportation conference in March 1994 in Crete 9 corridors were defined. They represent the main
transport axes among the E.U and the states of Central and Eastern Europe. The proceedings of this
conference were revised and sup-plemented in the 3. Conference in Helsinki in 1997. That is why
these corridors are sometimes referred to as „Crete corridors“ or „Helsinki corridors“ regardless of their
real location. Thanks to ceasing the conflict among the states of the former Yugoslavia the tenth and
subsequently the eleventh corridors were designed. The eleventh corridor stretches from Romania
through Serbia and Montenegro to Italy. This network of corridors connects Europe from the Atlantic to
the Urals and from Scandinavia to the Mediterranean, while the main reason for its existence is
improving the transport infrastructure internationally. In 2004, due to the decision of EP and EC
884/2004/ES, the number of corridors increased to 30, while their realization is assumed by 2020.
These corridors are different from the Trans-European transport network. The Trans-European
transport network was the E.U. project that stated all the main routes in the European union but at
present there are some proposal of connecting these two systems. This is also supported by the fact
that the majority of participating countries are the E.U. members now.
The TEN-T network comprises:
75200 km of roads
78000 km of railway tracks
330 airports
270 sea ports
210 river ports
and is shown in Fig. 1.
The Slovak railway network is a part of several important European corridors (corridors AGC, AGTC,
TEN-T), and these are (Fig.2):
Belgrade, 2012
80
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Corridor No. IV – Dresden - Praha - Bratislava/Wien - Budapest - Arad (+ branches) (including the
track Komárno - Nové Zámky, as a part of the freight corridor E),
Corridor No. V – Venezia - Trieste/Koper - Ljublana - Budapest - Čop - Ľvov; with the branch Va,
passing through the Slovak territory with the section Bratislava - Žilina - Košice - Čierna nad Tisou –
Čop as a corridor Va,
Corridor No.VI – Gdańsk - Warszawa - Katowice - Zwardoń/Čadca - Žilina (branches Bielsko Biała Ostrava - Břeclav),
TEN-T No. 17 – Paris - Strassbourg - Stuttgart - Wien - Bratislava, (ŽSR part ÖBB
Kittsee/Bratislava-Petržalka - node Bratislava, ÖBB Marcheg/ŽSR Devínska Nová Ves),
TEN-T No. 23 – Gdańsk - Warszawa - Brno/Bratislava (Zwardoń PKP/ŽSR Skalité - Čadca - Žilina Nové Mesto nad Váhom), Corridor E - Dresden - Prague - Wien/Bratislava - Budapest.
Fig. 1 Trans-European corridors TEN-T [4]
Fig. 2 Corridors passing through the area of the Slovak republic [7]
Belgrade, 2012
81
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
2. REQUIREMENTS FOR MODERNISATION OF RAILWAY LINES IN SR
In the area of the Slovak republic, that has been the E.U. member since 1.5.2004, the preparation of
its outdated railway network modernisation started in the beginning of 1990s (practically immediatelly
after the establishment of the Slovak republic in 1993). The priority of the Slovak republic is to meet
the obligations concerning the TEN-T network development and the defined E.U. priority projects.
From the point of view of railway infrastructure it is the interest of the Slovak republic to modernise the
tracks included in the pan-European corridors no. IV, Va and VI that are the parts of the transEuropean network TEN-T as fast as possible and with the highest investment priority. Due to this
reason, it is a priority to realize the so called priority projects of European importance – priority project
No. 17, railway axis Paris - Strassbourg - Stuttgart - Wien - Bratislava and the priority project No. 23,
railway axis Gdańsk - Warszawa - Brno/Bratislava (Zwardoń PKP/ŽSR Skalité - Čadca - Žilina - Nové
Mesto nad Váhom).
The aim of the modernisation of railway lines in the Slovak territory is not only to reach their required
technical level, characteristic for the European railways of the 21.century but also to enable a better
accessibility to the trans-European transport network and the transport networks of the neighbouring
states. However, the comfort, stricter requirements for the geometric position of rails, planned
reconstructions of station buildings, construction of platforms of sufficient length with a barrier-free
access, employment of modern train sets, etc. and operational safety (removal of level crossings,
modernisation of safety equipment) have to be enhanced as well. Moreover, it is expected that the
modernisation of railway infrastructure will bring a reduction of operating costs for ŽSR (Railway of
Slovak republic) safety equipment that manages the traffic does not require so many staff to operate it
and the modern technology significantly decreases the maintenance costs. The proposal of railway
line modernisation has to respect the technical requirements in accordance with the international
agreements AGC and AGTC and after realisation of this modernisation these lines have to meet the
requirements for ensuring the interoperability of the European Rail Traffic Management System in
order to provide the mobility of train sets and efficient use of the single European space.
The modernisation of ŽSR railway lines is realized according to [2] and includes:
complex reconstruction of railway substructure and superstructure including all the bridges and
culverts,
incorporation of platforms on all the railway stations and stops on the modernised line sections; the
platforms of the railway stations are always placed in a way that the platform edge is at the first
passing rail, so the platform edge is located at the height of 550 mm above the rail surface. They
are in the stations where the express trains of the length of 400 m may stop and at stops where the
passenger trains of the length 250 m may stop. The construction of level access to platforms is also
planned.
increase of the turnout layout penetrability by installing the slim turnouts; at the turnout layouts of
a modernised station there is always at least one „fast“ rail crossover located between the main
rails, while the turnouts in the rail crossovers and the connected turnouts for the branch rails in the
-1
common turnout layout are designed for the same speed in the diverging branch, at least 80 km.h ,
completely new safety equipment and communication equipment, reconstruction of power supply
stations, switching stations and TV,
in order to increase the safety of railway operation the rail crossings are being replaced with grade
separated crossings,
in the places where the noise levels do not meet the given limits, the noise walls are being built.
-1
-1
As a result of increasing the speeds to 160 km.h (200 km.h ), high standards are set to the
geometric position of rails (direction and height ratios, track layout) of the modernised lines. The
present rail lines do not often meet these requirements and the routes are often led on new track beds
and only in partial sections they follow the original track axis. The crossings with roads are solved
almost exclusively by grade separated crossings (some exceptions can be found in the sections
-1
designed for speeds lower than 160 km.h ). In many cases it is necessary to relocate the existing
roads or watercourses. Considering the geographical conditions of Slovakia, tunnel routing and the
construction of new tunnels is not unusual. The latest tunnel of ŽSR lines was built in 1966.
The modernisation of corridor tracks also involves complex reconstruction of catenaries – the change
of power supply system from DC (3 kV) to AC (25 kV). The concerned heavy current distributions and
Belgrade, 2012
82
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
electric lighting are also being reconstructed, electric turnout heating is being installed. Naturally, the
modernised lines are also equipped with modern telecommunication technology – new telecommunication systems for data transmission and digitization of all the railway communication network.
An important feature of modernised ŽSR lines are noise related measures. To eliminate the negative
effects of noise on people and the line surrounding, the noise maps are already constructed in the
stage of project preparation. In case of unsatisfactory noise levels of equivalent noise level ΔLAe antinoise measures are proposed, most frequently noise walls (PHS).
3. OVERVIEW OF COMPLETED STRUCTURES OF ŽSR RAILWAY INFRASTRUCTURE
MODERNISATION
The modernisation of ŽSR corridors is not a short-time project and requires a very good project
preparation and particularly, considerable amount of funding. Despite the fact that the modernisation
plan of railway infrastructure was based on the documents approved by several Slovak governments,
especially due to constantly changing priorities in the area of Slovak transport policy, long-term lack of
funds for railway infrastructure as well current global economic crisis; it is difficult to estimate the
relevancy of individual deadlines and the exact time horizon of modernisation completion in the Slovak
territory. When we assess the present state of the ŽSR railway modernisation, it is necessary to point
out that that the progress of railway infrastructure modernisation shows a considerable time lag. This
can be demonstrated by the fact that the initial plan of works at the ŽSR corridor line modernisation
stated the work completion in 2010. Meanwhile, the modernisation plan has had to be updated and
adapted several times due to various, primarily financial reasons.
Until the end of 2011 in the Slovak territory, 92 km of railway lines on the corridor Va (Bratislava-Rača
– Nové Mesto nad Váhom), 18,9 km on the corridor no.VI (Žilina - Krásno nad Kysucou) were
modernised, including all the stations and stops on these lines. The platformization in the railway
stations Poprad and Prešov and the revitalization of the marshalling yard Žilina-Teplička were also
completed.
The first structure of the railway infrastructure modernisation in the ŽSR network was the
modernisation of the double rail line Bratislava-Rača – Trnava, located on the corridor Va, that was
realized from 2006 to 2007. The preparation and project works started in 1994. The beginnings were
relatively difficult as it was the first structure and the designers and the investor needed to gain a lot of
-1
experience. The most discussed issues were the line speed, (the change from 140 km.h to
160
-1
km.h ), the number of variants, axial distances not only in stations but also e.g. on bridges, the
employment of electronic safety equipment (ESE), as well as the way of commissioning of the
structure. The structure consisted of 3 interstational sections, namely:
Bratislava-Rača – Šenkvice (19.460 km), completed in 2006,
Šenkvice – Cífer (11.280 km),completed in 2007 and
Cífer – Trnava ( 9.910 km), completed in 2007.
Five railway stations (here on after referred to as RS) - Svätý Jur, Pezinok, Šenkvice, Cífer, Trnava
and 2 railway stops (Báhoň, Pezinok) were modernised. Furthermore, 3 new railway bridges, 1 road
bridge were built, 2 railway bridge objects and 1 road bridge were reconstructed on this section. There
was also built a passenger underpass. Ten crossings with different safety levels were rebuilt to grade
separated crossings.
The most important structure was so called railway flyover Šenkvice – Fig. 3. The Šenkvice relocation
that included this flyover is located on the line section RS Pezinok – RS Šenkvice. The concerned line
section is led on the track relocation that is largely formed by rail embankment, up to 8 m high, and the
Belgrade, 2012
83
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
substantial part of relocation is formed by railway flyover that is, 753 m long. The bridge structure from
pre-stressed concrete, 753 m long, is a unique structure on Slovak railway lines.
To summarize the time interval of this construction – the beginning of project preparation was in 1994,
the completion in 2007. From the present point of view 14 years is a too long period to be considered
acceptable for an investor, especially in case of 50 km- long section. But these were the beginnings of
modernisation…. .
Fig. 3 Relocation Šenkvice
The modernisation of the line Trnava – Nové Mesto nad Váhom in the section RS Trnava – RS
Piešťany started in 2004 and was completed in 2008. It was divided into track sections:
Trnava – Piešťany (32.950 km) and
Piešťany – Nové Mesto nad Váhom (19.980 km).
The modernisation of the track section Trnava – Piešťany consisted of the reconstruction of RS
Leopoldov and RS Veľké Kostoľany, 3 railway stops (Brestovany, Madunice, Drahovce) and 4 interstational sections. The modernisation works also included construction of 5 new railway bridges,
reconstruction of 7 existing railway bridges, construction of 5 road bridge objects, 8 underpasses,
1 luggage tunnel and a railway footbridge. The most complicated part of the construction was the
reconstruction of RS Leopoldov, that is an important railway node in the region (Fig. 4).
Fig. 4 Modernised RS Leopoldov [5]
The modernisation of the track section Piešťany – Nové Mesto nad Váhom was divided into 5 parts,
two of them were RS Piešťany and RS Nové Mesto nad Váhom (Fig. 5) and the other 2 were
interstational sections. The modernisation comprised the construction and renovation of the railway
Belgrade, 2012
84
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
stops Horná Streda, Brunovce and Považany, realization of 2 new railway bridges over roads,
reconstruction of 2 existing railway bridges and 6 road flyovers including the bridge over river Dubová,
creation of 6 new railway underpasses for passengers and public in the railway stops and stations as
well as 2 underpasses as luggage tunnels.
Fig. 5 Modernised RS Nové Mesto nad Váhom in the direction from Bratislava [5]
In 2007 the construction of platforms at RS Prešov and RS Poprad-Tatry was completed and from
2008 to 2011 a part of the corridor no. VI in the section Žilina – Krásno nad Kysucou (11.326 km) was
modernised. This line was divided into 4 sections, 2 of them were the railway stations Kysucké Nové
Mesto and Krásno nad Kysucou and 2 interstational sections on the line, railway stops Brodno,
Rudina, Ochodnica and Dunajov. The rebuilding and reconstruction included 9 bridge objects, 2 road
objects and 1 new railway bridge, underpasses for passengers in the railway stations and 2 footbridges. Within the modernisation 12 crossings altogether were reconstructed (in the sections where
-1
the designed speed is < 160 km.h ).
A present, in relation to the Program of Modernisation and Development of Railway Infrastructure for
2011 to 2014, that was approved by the Slovak government in 10/2010, the preparation or realization
of several structures within the modernisation of Slovak railway infrastructure is in progress. On the
basis of this plan, in 2011 - 2014 another 56.800 km of lines will be built and in 2015 another 30.200
km. The steps of the modernisation of the corridor no. Va, no. VI and TEN-T 17, including the financial
costs for their realization are given by Fig. 6.
Fig. 6 Plan of modernisation of the corridors no. Va and no.VI [1]
The track section of the corridor no. Va between RS Nové Mesto nad Váhom and RS Púchov is
supposed to be completed by 2014. The construction is divided into 6 stages:
Nové Mesto nad Váhom - Zlatovce – 1.and 2. stage,
Zlatovce - Trenčianska Teplá – 3. stage,
Trenčianska Teplá - Beluša – 4 and 5. stage,
Beluša - Púchov – 6.stage.
The section Nové Mesto nad Váhom - Zlatovce will undergo the modernisation of 17.475 km of railway
line. The construction works started on 29.9.2009 and the work completion is planned for May 2013.
Belgrade, 2012
85
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
The works are divided into 2 stages. The first stage is formed by the section Nové Mesto nad Váhom Trenčianske Bohuslavice, that consists of the modernisation of the RS Trenčianske Bohuslavice,
where on the turnout layout of Žilina direction the first crossover from turnouts of 1:26,5-2500 on ŽSR
lines is fitted, and there is also a dual rail tunnel under Turecký vrch mountain and the construction of
first ever section with the solid track on ŽSR lines- in the tunnel and on its glacis. Within the
modernisation, 1 new railway bridge, 1 new road bridge, and 1 281m of noise walls will be built.
4 existing railway bridge objects will be reconstructed.
The plans for construction of the tunnel Turecký vrch, which overall length in the axis is 1775 m,
started 45 years ago. The excavated part of the tunnel is 1 740 m long, the remaining 35 m (25 m on
the southern and 10 m on the northern pillar) are realized in the open building pit and later on
imbanked in a way that the terrain over the tunnel would return to its original level as much
-1
as possible. The direction ratios of the track in the tunnel are designed for the speed 200 km.h and
are formed by 2 opposing arches of the radius 2 000 m with a straight interline that is 573 m long.
The designed track gradient in the tunnel is roof-shaped with the gradients +4.887 ‰ and -3.500 ‰,
with regard to the tunnel drainage. In all the length (including the portal sections) there is a uniform
cross-section of the dual rail tunnel with the light radius of the tunnel tube 6.10 and with the axial
distance of the rails 4.20 m. In the overall tunnel length on both sides the rescue niches are located in
the mutual distances of 20 m. Due to the decrease of the mining works area and also due to durability
and fixed position of the rail or its minimal maintenance in operation, the solid track of type RHEDA
2000 was chosen as a railway superstructure. It is also placed in the parts of the track in front of the
both portals (Fig 7). Out of the overall length 2 280.145 m, besides the tunnel (1 775 m), 34.770 m of
the solid track on is placed on bridges, 425.000 m on earthwork and 45.175 m is formed by the
transition area. The indisputable advantage of this structure is the permanent geometric rail position
and the durability, that is stated by the producers as minimally 60 years. Especially in the tunnels,
where every track closure activity is rather problematic, these properties are invaluable.
Fig. 7 The tunnel Turecký vrch (the northern porta)l under construction with the view
of the solid railroad RHEDA 2000 being built
The second stage consists of the modernisation of the railway stations Trenčianske Bohuslavice and
Melčice, of 2 interstational sections Trenčianske Bohuslavice – Melčice and Melčice – Zlatovce and
railway stop Kostolná-Záriečie (Fig. 8). Within the modernisation 1 new railway bridge, 5 new road
bridges, 3 underpasses in the railway stations for the passengers and 3 underpasses for public as well
as 1 281 m of noise walls will be built. 6 existing railway bridge objects will be reconstructed.
.
Fig. 8 Railway stop Kostolná-Záriečie
The section Zlatovce – Trenčianska Teplá (3. stage) involves modernisation of 11.952 km of railway
track. In the respective section 2 railway stations are located, namely Zlatovce and Trenčín. After
modernisation they will merge into RS Trenčín with the districts Trenčín and Zlatovce. The
interstational section between Zlatovce and Trenčin is formed by the new ferroconcrete railway bridge
-1
over the river Váh, 360 m long, that was designed to reach the required speed 140 km.h . Within this
Belgrade, 2012
86
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
modernisation of railway stop Opatová nad Váhom, 9 new underpasses for passengers, 1 new
luggage tunnel, 4 new road bridges, 8 new railway bridges and 7 452 m of noise walls will be built.
2 railway bridges will be reconstructed. The representation of the track routing in the vicinity of RS
Trenčín and the visualization of the most important structures realized in this track section, are
demonstrated by Fig. 9.
Fig. 9 Roting of the modernised section in the vicinity of the future railway station Trenčín,
visualisation of the bridge object over the river Váh and the future railway station Trenčín
The section Trenčianska Teplá – Beluša (4. and 5. stage) involves the modernisation of 20.409 km of
railway line, including the railway stations Trenčianska Teplá, Dubnica, Ilava and Ladce. Within the
modernisation 6 new road bridges will be built and the same number of them will be reconstructed.
4 new railway bridges will be built as well as 7 underpasses in the railway stations for the passengers
and public and there are designed 6 349 m of noise walls. 10 existing railway bridge objects will be
reconstructed.
The section Beluša – Púchov (6. stage) involves the modernisation of 7.000 km of railway line,
including RS Beluša, RS Púchov and the railway stop Dolné Kočkovce. Within the modernisation
4 new railway bridges, 6 new road bridges, 4 underpasses in the railway stations for the passengers
and public will be built and 7 existing railway bridge objects reconstructed. There are also proposed
3 857 m of noise walls along the modernised track.
The modernisation of the railway line in the section Púchov – Žilina is divided into 2 stages. The
section Púchov – Považská Teplá (1. stage) involves the modernisation of 15.800 km of railway line,
including RS Považská Bystrica, reconstruction of the railway stop Nosice and the conversion of RS
Považská Teplá to the railway stop. The section Považská Teplá – Žilina (2. stage) involves the
modernisation of 22.700 km of railway line, including RS Bytča and RS Dolný Hričov and the railway
stops Plevník-Drieňové, Predmier and Horný Hričov. With regard to rather demanding direction ratios
in the stretch Púchov – Považská Bystrica, the change of track routing is necessary – Fig. 10. In this
track section it will be necessary to span the Nosice canal and the bed of river Váh, to construct a
traverse behind spa Nimnica through the tunnel as well as a subsequent overpass of the rail track
over Nosice dam to the original route. In this section the construction of two tunnels of the overall
length 2,360 km is supposed. The completion of construction works is assumed for 06.2015.
Belgrade, 2012
87
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Fig. 10 Modernisation design of the section Púchov – Považská Teplá
The modernisation of the VI.corridor in the section Čadca state border – Čadca – Krásno nad Kysucou
(the station itself does not fall into the modernisation plan) is at present in the stage of project
preparation and with its length 17.100 km it connects to the already modernised section Žilina –
Krásno nad Kysucou, that was completed in 2011. The project preparation includes the preparation of
implementation of ETCS L2 system in the section Žilina – Čadca state border and GSM-R system in
the section Bratislava – Žilina – Čadca state border.
Other sections of the Va.corridor are also being prepared as well as some other modernisation
investments into railway infrastructure in the area of Slovakia. The issue of many expert discussions is
the section of the corridor no. Va Žilina – Košice, that is basically led through a very demanding
geomorphology and with regard to the present track parameters it only enables the maximum track
-1
speed of 80 – 100 km.h . The experts have different opinions on the designed track speed to which
this important track section is going to be modernised. After the TEN-T corridor revision, this section is
-1
not the E.U. priority. The increase of the track speed to 160 km.h causes that the track designed in
this way largely gets off its original earthwork, it requires construction of extensive bridge and tunnel
structures, that significantly increases the investment costs for its modernisation. Concerning the
section of the corridor line Va Žilina – Košice, at present only the project documentation
„Modernisation of the line Liptovský Mikuláš – Košice“ is being prepared. The works were divided
into 4 following sections:
Liptovský Mikuláš – Poprad (59.100 km, while approx. 67 % off its original axis),
Poprad – Krompachy (54.363 km, while approx. 62 % of the route off its original axis),
Krompachy – Kysak (45.441 km, or 28,961 km, while 62 % off its original axis) and
Kysak – Košice (15.262 km, while 36 % off its original axis).
Concerning the corridor no. IV, that is a common project with the Czech republic, we can state that
due to the lack of finances this project named „Modernisation of the line of IV. corridor State border
SR/CR – Kúty“, including the new border bridge over the river Moravia, 6.900 km long, is at present
not even in the stage of project documentation preparation.
„Electrification of the line Marchegg – Devínska Nová Ves“, which is the priority project of TEN-T no.
17, is another important investment that should contribute to the modernisation of the railway
infrastructure in the Slovak territory. It is supposed to electrify 3.600 km of railway line until the state
border with Austria. This project is related to the project „Interconnection of the TEN-T railway
corridors and inclusion of M. R. Štefánik Airport to the railway network in Bratislava“. The realization
of this project could complete the existing transport network of the transport infrastructure of the
Slovak capital city in the near future. It is also supposed to integrate the Slovak capital into European
railway network after the construction of high speed arterial railway Paris-Strassbourg-WienBratislava/Budapest.
4. CONCLUSION
Regarding its geographical position, the Slovak republic plays an important role in ensuring the
mobility of the E.U. citizens. Providing efficient and reliable services of railway infrastructure by ŽSR
depends on the existence of a powerful and interoperable railway network. However, it is possible to
Belgrade, 2012
88
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
use this network only if its main parts that are the corridor Trans-European lines will be modernised at
the same time.
The primary and the most important effect of modernisation of the corridor lines passing through the
area of the Slovak republic will be the improvement of the transport accessiblity of Slovak regions and
the improvement of the connection of the Slovak railway infrastructure to the European railway
network. In this way the developmental perspectives from the point of view of economy and tourism
will be boosted and the interest of foreign investors and free movement of labour and goods within the
European economic area will be enhanced. Thus the Slovak economic growth as well as overall E.U.
competitiveness will be strengthened. The modernisation of the railway corridors means reaching the
standards defined by the AGC and AGTC agreements, reaching the railway track speeds up to
-1
160 (200) km.h , achieving interoperability, improving the barrier-free access for travellers and
reaching the operational safety. This will result in increasing the competitiveness of railway transport
and its share of overall transport and transport performance not only in the Slovak territory but within
all the European community.
This contribution is the result of the project of Slovak-Serbian cooperation named „Reconstruction and
Revitalization of railway infrastructure in accordance with regional development“ (SK-SRB-0050-11)
supported by Slovak Research and Development Agency (APVV).
Literature
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Maruniak, D, Šišolák, P.: Stratégia ŽSR. Moderná infraštruktúra. Prezentácia na Sympózium pri
príležitosti 10. výročia vzniku Spoločnosti PSKD, Double Tree by Hilton Hotel Bratislava, 6.1.2011
Predpis Ž11 Všeobecné zásady a technické požiadavky na modernizované trate ŽSR rozchodu
1435 mm. GR ŽSR, 02/2001
Ižvolt, L., Gocálová, Z., Šestáková, J.: Súčasný stav a plány modernizácie železničnej
infraštruktúry na území Slovenskej republiky. Sborník přednášek Železniční dopravní cesta 2012.
Děčín 29.02.-01.03.2012, ISBN 978-80-260-1282-5
http://sk.wikipedia.org/wiki/Paneur%C3%B3pske_dopravn%C3%A9_koridory
http//www.doprastav.sk. Doprastav – Modernizácia železničných tratí 2010. Odbor mediálnej
komunikácie, 5/2010
http://www.vlaky.net/zeleznice/spravy/002329-Koncepcia-technickeho-riesenia-tunela-Tureckyvrch/. Nižňan, J., Podolec, O.: Koncepcia technického riešenia tunela Turecký vrch
http://www.zsr.sk
Belgrade, 2012
89
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
CHANGES OF FLOWS IN ECONOMY SUPPLY CHAINS OF BIH:
INFLUENCES ON INVESTMENT PRIORITIES ON CORRIDORS X AND
VII
dr Ratko Đuričić, Saobraćajni fakultet Doboj, Republika Srpska
dr Branislav Bošković, Direkcija za železnice, Beograd, Srbija
Abstract:
The construction of the corridor Vc itself is not enough to enable the integration of Bosnia and
Herzegovina in the European transport network and it will not give the expected results. The concept
of integration of transport flows of BiH in international supply chains, which are nowadays being
developed by freight forwarders and transport companies, brings changes to initial plans of flows
established while defining the corridors. The paper presents a discussion on those changes and their
consequences concerning the priorities for investment in infrastructure projects on corridors X and VII.
Moreover, it defines potential multimodal supply chains for the economy of BiH which rely on PanEuropean corridors Vc, X and VII.
Key words: corridors, supply chains, multimodal transport
PROMJENA TOKOVA U LANCIMA SNABDIJEVANJA PRIVREDE BiH: UTICAJI NA PRIORITETE
INVESTIRANJA NA KORIDORIMA X i VII
Rezime:
Razmišljanje da će se samo izgradnjom koridora Vc Bosna i Hercegovina integrisati u transportnu
mrežu Evrope nije dovoljno i neće dati očekivane efekte. Koncept integracije transportnih tokova BiH u
međunarodne lance snabdijevanja koje danas razvijaju špediteri i transportne kompanije donosi
promjene u odnosu na prvobitne planove tokova kada su definisani koridori. U radu se diskutuje o tim
promjenama i njihovim posledicama na prioritete u investiranju infrastrukturnih projekata koridora X i
VII. Takođe, definisani su potencijalni multimodalni lanci snabdijevanja za privredu BiH koji se
oslanjaju na Panevropske koridore Vc, X i VII.
Ključne riječi: koridori, lanci snabdijevanja, multimodalni transport
1. UVOD
Tradicionalne granske ponude na transportnom tržištu (samo željeznički transport, samo drumski
transport, samo riječni transport) više ne daju odgovore na savremene zahtjeve korisnika a naročito
na dužim relacijama. Osim toga, ne stimulišu se od strane EU jer nisu u skladu sa Evropskom
transportnom politikom pošto ne mogu u tom smislu povećati udio željezničkog i riječnog transporta
kao nosioce održivog razvoja i transporta na transportnoj mreži Evrope.
Tokovi robe na otvorenom tržištu i transportni zahtjevi korisnika i njihovih špeditera se mjenjaju tokom
vremena. Danas se više potenciraju karakteristike usluga kao što su garancija poštovanja rokova,
neprekidna raspoloživost transportnih sredstava, standardan kvalitet usluge, postojanje odgovarajuće
opreme za kontejnere, stalno raspoložive informacije o robi i njihovoj lokaciji u transportnom procesu,
itd. Usluga treba da obuhvati odgovornost za prevoz na cijelom putu a referentni kvalitet usluge treba
mjeriti u odnosu na kamionski transport, barem kada je Evropa u pitanju.
Belgrade, 2012
90
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Na osnovu podataka iz dosadašnjih transportnih studija i informacija o aktuelnim tokovima robe za
privredu Bosne i Hercegovine (BiH) u ovome radu je difinisano nekoliko (potencijalnih) multimodalnih
pravaca koji se oslanjaju na koridore VII, X i Vc. S obzirom da u industriji multimodalnog transporta
postoji tendencija koncentrisanja na transportne tokove (posebno kontejnerski transport) na glavnim
pravcima koji povezuju glavne centre, definisanje potencijalnih lanaca je obuhvatio veliki dio
postojećih i budućih transportnih tokova ITU-a u BiH. Na slici 1 su prikazani glavni intermodalni centri i
glavne riječne i morske luke u regiji, kao i riječne luke u BiH koje su dio jednog ili više definisanih
lanaca snabdijevanja.
U nastavku rada će se posmatrati nastale promjene u tokovima robe za i iz BiH i posledice koje iste
mogu imati na prioritete u investiranju na definisanim koridorima a posebno koridora X.
Bratisla
Wien va
W
Budimpešta
va
Konstanza
Vukovar
Zagreb
Šamac
Trst Koper Rijeka
Brčko
Beograd
Tuzla
Sarajevo
Banja Luka
Ploče
Bar
Slika1. Glavni intermodalni centri od značaja za BiH
2. DEFINISANJE MULTIMODALNIH KORIDORA ZA BiH I PROMJENE KOJE DONOSE
Uspostavljanjem transportnih koridora integrišu se transportne mreže država u jedinstvenu mrežu
Evropske transportne infrastrukture, poboljšavaju se veze između zemalja, regiona i kontinenata,
eliminišu uska grla i podiže nivo kvaliteta prevoza.
Multimodalni koridori se mogu posmatrati i kao skup suštinski paralelnih transportnih kapaciteta koji
8
nude alternative pri izboru mjesta. Drugim riječima, koridori međusobno postaju konkurentni na
jedinstvenoj mreži gdje se takmiče operatori sa svojim transportnim modelima. Transportni koridori se
ponekada upoređuju sa glavnim arterijama (npr. aorta) ljudskog kardiovaskularnog sistema preko kojih
se krv prenosi do znatno manjih arteriola (“sporedne i povezujuće” linije sistema) i do kapilara (“mjesta
pretovara” sistema), gdje se događaju sve važne promjene u sistemu cirkulacije.
Koncept transporta “od vrata do vrata” sve više prelazi u koncept nabavnih lanaca za koje je zadužen
jedan ponuđač usluge koji je svo vrijeme transporta od vrata do vrata pravno odgovoran. Transport
robe se povjerava preduzećima koja pružaju sve neophodne logističke usluge, takozvanim
multimodalnim transportnim operatorima (MTO).
8
DB International GmbH, Vienna Consult: Studija intermodalnog transporta u Bosni i Hercegovini,
Berlin-Viena, 2006
Belgrade, 2012
91
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Na slici 2 su prikazani koridori u regionu koji se koriste u lancima snabdijevanja privrede BiH tako da
su i koridori X i VII dio nabavnih lanaca. Postavlja se pitanje kakvi transportni lanci se na njima danas
uspostavljaju i da li to zahtijeva preispitivanje prioriteta u investiranju infrastrukturnih projekata na istim
koridorima.
Bratisla
Wien va
W
Budimpešta
va
Konstanza
Vukovar
Zagreb
Trst
Koper Rijeka
Šamac
Brčko
Beograd
Tuzla
Sarajevo
Banja Luka
Ploče
Bar
Slika 2. Multimodalni koridori robnih tokova za/iz BiH
2.1. Multimodalni lanac na relaciji Beč - BiH
Beč je dio veoma značajnog industrijskog trougla Beč-Bratislava-Györ sa modernom lukom na
Dunavu velikih kapaciteta. On je danas polazna tačka većine međunarodnih transportnih tokova za
BiH (slika 3). Kako ti tokovi dolaze do BiH? Tri su multimodalna lanca koja se danas uspostavljaju od
ovog grada prema BiH. Jedan se oslanja na koridor X a druga dva na Dunav odnosno koridor VII.
Bratisla
va
Wien
W
Zagreb
Šamac
Budimpešta
va
Vukovar
Brčko
Banja Luka
Beograd
Tuzla
Sarajevo
Ploče
Slika 3. Multimodalni lanci na relaciji Beč-BiH
Belgrade, 2012
92
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Prvi pravca se formira na pravcu Beč-Beograd-BiH. Nosilac transporta ovog lanca je Dunav
(koridor VII) na pravcu Beč-Beograd. Transport se dalje može odvijati koristeći 2 pravca ka
BiH: rijekom Savom ili železničkim/drumskim sredstvima. U prvom slučaju transport se odvija
sredstvima riječnog saobraćaja od Beča do Beograda, a zatim se nastavlja rijekom Savom do
luka u BiH. Veza sa koridorom Vc se ostvaruje preko luke Šamac. Iz ove luke ili luke Brčko se
drumskim i željezničkim sredstvima roba transportuje do odredišnih destinacija. U drugom
slučaju roba se transportuje Dunavom do luke Beograd a zatim koridorom X (željeznicom ili
drumom u zavisnosti od količine robe i konkurentnosti ova dva vida transporta u odnosu na
određenu robu) do transportne mreže BiH i krajnje destinacije.
Drugi pravac se formira na relaciji Beč-Vukovar-BiH. Ovaj lanac se takođe u početnoj fazi
9
oslanja na transport robe rijekom Dunav ali do Vukovara a zatim željezničkim ili drumskim
transportom do destinacija u BiH. Luka Vukovar je najbliža dunavska luka BiH. Danas je jedna
od najvećih dunavskih luka kada je u pitanju komercijalni obalni pretovar. Oko 80%
pretovarenog tereta u vukovarskoj luci ide u/iz BiH. Luka je sa BiH povezana željeznicom
preko Vinkovaca (15 km od Vukovara). Osposobljena i za kontejnerski saobraćaj. U ovom
momentu je još rano ali treba spomenuti planove izgradnje dunavsko-savskog kanala
(Vukovar-Šamac) i regulaciju rijeke Save kojim bi se konkurentnost ovog lanca višestruko
uvećala. Ukoliko se izgradnja kanala realizuje, sadašnji lokalitet luke bi bio napušten uz
izgradnju nove luke u zaleđu.
Treći pravac, Beč-Zagreb-BiH, se oslanja na koridor X i drumski odnosno železnički transport.
Nosilac transporta treba da bude željeznica. Veza sa transportnom mrežom BiH se može
realizovati preko Šamca (koridor Vc) ili preko Novog i željezničke pruge Novi-Doboj. Ovaj
pravac potencira željeznički saobraćaj dok drumski treba da ima ulogu distribucije od najbližeg
pretovarnog terminala do krajnjeg korisnika.
2.2. Multimodalni lanac na relaciji Konstanca-BiH
Alternativni transportni lanac snabdijevanja privrede BiH, Konstanca-Beograd-BiH, u ovom trenutku
nema realnu konkurentnost spomenutim multimodalnim lancima niti se trenutno na ovom pravcu
realizuju transporti za BiH. Međutim, ovaj pravac može dobiti na značaju sa razvojem Podunavskog
regiona kao jednog od najvećih projekata u Evropi. Nosilac lanca treba da bude riječni transport i
rijeka Dunav a zatim Sava do već spomenutih luka u Brčkom i Šamcu.
Konstanza
Vukovar
Šamac
Brčko
Beograd
Banja Luka
Tuzla
Sarajevo
9
Na Dunavu postoji još nekoliko luka na ovom potezu koje bi se mogle koristiti kao alternativne
Beogradu i Vukovaru kao što su luke Osijek i Novi Sad. No, u ovom momentu se ne vidi njihova
konkurentnost iz više razloga.
Belgrade, 2012
93
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 4. Multimodalni lanac Konstanca-BiH
Luka Konastanca je luka sa privatnim terminalskim operatorima. Glavna karakteristika luke je da je ne
samo evropski već i bliskoistočni (arapski) kapital ulagan u nju. Radi se o savremenoj luci sa velikim
kapacitetima i perspektivom. Nedavno je stavljen u funkciju i novi kontejnerski terminal u južnom dijelu
ove luke, koji je projektovan tako da može da primi Post-Panamax kontejnerske brodove, i da ima
godišnji kapacitet od 325.000 TEU u prvoj fazi, i do 1.000.000 TEU u finalnoj fazi. Luka Konstanca
povezana je sa željezničko/drumskim koridorom IV sa ostalim dijelovima Evrope.
3. KONKURENTNOST I PREDNOSTI DEFINISANIH LANACA
Definisani transportni lanci treba u budućnosti, uz podršku transportne politike EU zasnovane na
očuvanju životne sredine i održivog razvoja, da budu modeli transporta robe za/iz BiH. Realizacijom
ovih lanaca bi se, uz tokove drugih država i njihovih privreda, koncentrisali tokovi robe za BiH što u
krajnjem vodi povećanju kvaliteta i smanjenju troškova transporta. Glavni dijelovi lanaca, i nosioci
transporta, su riječni i željeznički transport odnosno infrastruktura. Koristili bi se, dakle, energetski
efikasniji a ekološki prihvatljiviji vidovi transporta za veći dio transportnog puta robe.
Ove prednosti transportnih lanaca, gdje su nosioci rijeka ili/i željeznica, mogu doći do izražaja samo
ako iste dominiraju u odnosu na mane multimodalnog transporta i lanaca kao što su povećanje
pretovarnih procesa i troškova, rizika usled toga, dužeg vremena transporta, povećanog broja
učesnika u transportnom lancu itd. Međutim, osnovna pretpostavka za uspješnost multimodalnih
lanaca je koncentracija tokova na uspostavljenoj mreži terminala, logističkih centara, centara za
konsolidaciju i drugih vrsta terminala koji mogu ponuditi usluge sakupljanja i isporuke robe u
kombinaciji sa uslugama popravke i održavanja sredstava koja učestvuju u transportu.
Rast međunarodne robne razmjene povratno ima efekat uvećanja privrednog rasta, ali i do porasta
logističkih troškova te je neophodno primjenjivati nove strategije transporta gdje ovako definisani lanci
snabdijevanja sa svim svojim alternativnim pravcima dolaze do izražaja. Koncept upravljanja lancima
snabdijevanja, modernih terminala, efikasnih transportnih sredstava, informacionih sistema za
planiranje, upravljanje prevozom i skladištenje mora da bude integrisan u zajednički cilj učesnika u
transportu: luka, riječne plovidbe, željeznice, logističkih provajdera i druma.
Danas, međutim, još uvijek ne postoje pretpostavke za efikasan multimodalni transport. Prije svega,
potrebno je lance snabdijevanja podržati odgovarajućim zakonodavstvom a zatim i deregulacijom
kojom će se ukinuti sve barijere vezane za multimodalnost i interoperabilnost.
Integracija mreže plovnih puteva moguća je ako se modernizuju nautičko-tehnički uslovi, pogotovo oni
koji se odnose na dubinu gaza i vrijeme plovnosti. Vodni transport je veliki, za sada neiskorišteni,
potencijal koji koristi prirodnu mrežu puteva. Poznato je da je Dunav kao značajna resurs Evropske
saobraćajne infrastrukture (trans-evropska transportna mreža (TEN-T)) iskorišćen sa 10%
sveukupnog svog kapaciteta.
Rijeka Sava predstavljala je veoma važan unutrašnji plovni put u regionu a plovidba je bila razvijena
do 1990. godine. Komercijalni plovni put se protezao na skoro 600 kilometara i povezivao je Beograd i
Sisak (na oko 50 km od Zagreba). Od ušća Save do Brčkog koje se nalazi na rkm 225, plovnost je po
AGN-u bila klase IV, a od Brčkog do Siska klase III. Generalno posmatrano, plovni putevi klase IV i
iznad se smatraju za puteve međunarodnog značaja. Danas je plovnost rijeke znatno smanjena i to do
mjere da praktično i ne postoji (izuzev na nekoliko lokalnih dionica). Neophodno je ponovo stvoriti
uslove povratka na staro stanje plovnosti u skladu sa standardima plovidbe i zaštite okoline.
Belgrade, 2012
94
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Potrebno je rekonstruisati luke Brčko i Šamac u smislu čišćenja korita, ugradnje sistema signalizacije i
obavještavanja itd. Pristup luci Šamac je nedovoljan i iznosi oko 180 dana godišnje pri gazu od 180
cm i opterećenju od 1000 tona. Luka je dobro povezana sa mrežom lokalnih i glavnih puteva i
željeznicom, a u luci se nalaze i interni kolosijeci. Sve to je čini podesnom za potencijalno pružanje
visoko kvalitetnih trimodalnih usluga budućim korisnicima, ali opšte stanje postrojenja zahtijeva
značajna ulaganja. Luka takođe nudi mogućnost za carinjenje robe pristigle rijekom ili kopnom.
Oprema za pretovar je na veoma niskom nivou i znatno ograničava kapacitete i kvalitet pretovarnih
procesa. Potrebna su znatna ulaganja.
Luka Brčko je udaljena 220 km od Dunava. Pristup luci Brčko je dostupan 266 dana godišnje za
potisnice gaza 180 cm i opterećenja oko 1000 tona. Glavni kvalitet ove luke je u njenim trimodalnim
potencijalima, carinskom terminalu i skoro idealnom položaju u slivnom području teške industrije u
BiH. Luka raspolaže solidnim željezničkim vezama a putevima je dobro povezana sa koridorima X i
Vc. Opremljenost luke je na niskom nivou i potrebna su značajnija ulaganja.
4. UMJESTO ZAKLJUČKA: ŠTA DALJE?
Sa trendom liberalizacije tržišta u svijetu transportni operatori ili kompanije koje pružaju logističke
usluge treba da prošire svoje aktivnosti van okvira običnog fizičkog transporta roba, tako da
konkurencija nije između postojećih vidova transporta već između lanaca snabdijevanja. Klasični
standardi saradnje između transportnih operatora preko međunarodnih tarifa, redovnih konferencija i
slično ne može više osigurati operatorima opstanak na transportnom tržištu. Upravo ovako definisani
multimodalni koridori treba da budu investiciono podržani kako bi se poboljšao željeznički i riječni
transport na glavnim koridorima. U tome je prioritet formiranje logističkih centara koji bi bili dostupni
svim vrstama transportnih sredstava (drumski, željeznički, riječni).
U eri globalizacije i povećanja propusne moći državnih granica za robu, ljude i kapital gotovo do nivoa
njihovog brisanja promjene tokova istih su neprekidne. Od vremena formiranja koridora transportni
tokovi su značajno promijenili pa je potrebno izvršiti sagledavanje nivoa promjena sa trendovima. U
radu su apostrofirane promjene strukture privrede BiH i posledice u smislu promjene tokova robe i
njenih zahtjeva kao i mogući multimodalni lanci snabdijevanja sa aspekta koridora X i VII ukazujući na
njihov mogući uticaj na planove prioriteta u finansiranju infrastrukture na ovim koridorima.
LITERATURA
[1] Alling P., Wolfe E., Brow S.: Supply-Chain Tehnology,
www.xterprise.com/releases/2004/bstearns_tech_rfid_0104.pdf, 2004.
[2] DB International GmbH, Vienna Consult: Studija intermodalnog transporta u Bosni i Hercegovini,
Berlin-Viena, 2006.
[3] DB International GmbH, Vienna Consult; Studija TER-kompatibilnosti željezničkog Koridora Vc u
Bosni i Hercego, Berlin-Viena, 2006.
[4] DB International GmbH, Vienna Consult; Studija potražnje i tržišta za transport riječnom
plovidbom, Berlin-Viena, 2006.
[5] Lieb R., Lieb K,; Execuitive Summary And Regional Comparerisons 2010 3PL CEO Surveys,
Penske Logistics, 2010.
[6] http://www.panalpina.com/www/global/en/home.html, posjećeno 20.08.2012. u 18:09h.
[7] http://www.metrogrup.de. posjećeno 24.08.2012. u 15:23h.
[8] http://www.eyefortransport.com/europe3pl, posjećeno 24.08.2012. u 22:00.
Belgrade, 2012
95
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
OPPORTUNITIES OF THE REPUBLIC OF SLOVENIA AND THE
REGION IN THE FRAMEWORK OF THE EUROPEAN RAILWAY
NETWORK
mag. Franc Zemljič, Prometni institut Ljubljana d.o.o, Ljubljana, Slovenia
Damijan Žagavec, Slovenske železnice d.o.o., Ljubljana, Slovenia
Klemen Ponikvar, Prometni institut Ljubljana d.o.o, Ljubljana, Slovenia
Abstract:
The geostrategic geographical position of Slovenia, the integration in the European land transport
network and the exit to the open sea with a well-developed port, present advantages for the
opportunities of railways, in the frame of the European network, that need to be exploited.
The article describes some of the most important railway connections through the Republic of
Slovenia: »E« railway lines, Paneuropean corridors, priority projects, ETCS corridor project, RNE
corridors, TEN-T network. Introduced is a common display of different railway connections (lines,
corridors, priority projects) in Europe.
According to the awaited entrance of the Republic of Croatia to the European Union and expected
th
expansion of the EU to the Balkans, there are some foundations for the incorporation of the whole X
Corridor into the TEN-T network.
th
The opportunities of the X Corridor, that originate from the unification and harmonization of the
transport system activities and from the possibilities to use European funds, were also analyzed.
Key words: transport, railway traffic, corridors, advantages, priority projects, corridor X.
PRILOŽNOSTI REPUBLIKE SLOVENIJE IN NJENE ŠIRŠE REGIJE V OKVIRU EVROPSKE
ŽELEZNIŠKE MREŽE
Povzetek:
Geostrateška-geografska lega Slovenije, vpetost v evropsko kopensko transportno mrežo in izhod na
odprto morje z razvitim pristaniščem, predstavljajo le prednosti za priložnosti železnic v okviru
evropske mreže, ki jih je potrebno izkoristiti.
V članku so opisane pomembnejše železniške povezave, ki potekajo skozi Republiko Slovenijo: „E“
proge, panevropski koridorji, prednostni projekti, ETCS koridor-projekt, RNE koridorji, TEN-T omrežje.
Podan je skupen prikaz različnih železniških povezav (proge, koridorji, prednosti projekti) v Evropi.
Glede na predviden vstop Republike Hrvaške v Evropsko unijo in pričakovano širjenje le-te na
področje Balkana obstajajo osnove za vključitev koridorja X v celoti v TEN–T omrežje.
Analizirane so priložnosti koridorja X, ki izhajajo iz poenotenja in harmonizacije delovanja prometnih
sistemov in možnosti črpanja evropskih sredstev.
Ključne besede: promet, železniški promet, koridorji, prednosti projekti, koridor X
Belgrade, 2012
96
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. INTRODUCTION
For a successful performance of transport services, in the frame of rail transport, are together with the
geostrategic position of the country, its integration in the European land transport network and its exit
to the open sea, also important other factors, that are described in this article..
Europe is intertwined with many corridors or rail links, which compete for the major share of
transported goods and also passengers. Each of the corridors has its own potential that can be utilized
only with the relevant infrastructure, commercial and “legal” measures. Activities for the revival of the
corridor must be carefully planned and must have the support of majority of the countries, through
which the corridor runs.
2. THE SITUATION IN SLOVENIA
The geostrategic geographical position of Slovenia, the integration in the European land transport
network and the exit to the open sea with a well-developed port, present advantages for the
opportunities of railways, in the frame of the European network, that should be exploit. The Republic of
th
th
Slovenia is situated on the crossroad of the X and V Paneuropean Corridor. In accordance with this
fact there are many important rail lines running through Slovenia, that are described later in this article.
The following figure shows the important railway network, including the »E lines« and the course of the
th
th
V and the X Paneuropean Corridor, through the Republic of Slovenia.
th
th
Figure 1: The course of the V and the X Paneuropean Corridor through the Republic of Slovenia.
From the figure above it is evident, that the majority of “E lines” in the Republic of Slovenia run through
th
th
the V and X Paneuropean Corridor.
The Republic of Slovenia is situated on the crossroad of regions, in particular, the regions of Central
Europe and the Balkan region, which is shown on the figure below.
Belgrade, 2012
97
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 2: Gravitation areas of Slovenian Railways
Area A – Region of Central Europe
No regulatory or technical barriers for
operations
The business area of one of the biggest
competitors of SŽ (RCA)
Area B- Balkan region
Local carriers are protected, because
countries are not yet a part of the EU and
the liberalised market
In the history very important Xth corridor,
that looses the quantity of transport after
the breakup of former Yugoslavia and after
the formation of new borders
Because of the common history SŽ have
good ties and knowledge about the
infrastructure of the former common state.
SŽ actively develop new services of transport of cargo with added value. Therefore SŽ introduced the
logistical service Yana, in 2010, which is intended for the transport of goods from France and Slovenia
to Bulgaria, and the logistical service Zahony, intended for the transport of goods from France, Italy
and Slovenia to Ukraine and Russia.
Figure 3: The transport route of the logistics service Yana
YANA: with the logistic platform Rail Port in Sofia, Bulgaria, connects Lyon (FRA) – Bologna (ITA) –
Milano (ITA) – Verona (ITA) – Padova (ITA) – Sežana (SLO). The product offers a complete logistics
in classic and combined mode of transport: additional services at the terminal (e. g. handling, storage,
customs) and the distribution of packages to Bulgaria, to transit countries across the Black Sea
(Georgia, Azerbaijan), to Turkey and Greece.
2.1 Advantages and oportunities of the Republic of Slovenia considering the performance of
railway transport
Advantages of the Republic of Slovenia are:
-
geographical position
the integration in the European land transport network
the exit to the open sea with a well-developed port,
Belgrade, 2012
98
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
-
a high share of revenues of freight transport operators on the European market
transportation tradition
Opportunities of the Republic of Slovenia to improve railway transportation that should be exploit:
-
unification and harmonization of transport systems operations,
development of new transport technologies
a further specialization of the industrial production (to increase freight transport)
moving the production of less complex products into East Asia; Northern Adriatic gains on
influence
unification of existing infrastructure operations; Slovenian service providers would provide
comprehensive services and not partial logistics services
further stabilization of the Balkans and the integration of Turkey in the European union will
enable the expansion of transport flows, especially transit on railways
the development of modern, rapid rail lines on corridors, running through Slovenia
- increasing of the use of capacity at international airports in Slovenia, capacities of individual
objects within the infrastructure units and intermodal systems (airport-railway-road)
the use of European funds.
2.2 Financing
The European Commission proposes 31,7 billion Euros, of which 10 billion Euros of the cohesion
funds, which are available only to those countries that are eligible to the cohesion funds. Among them
is also Slovenia. Regardless to the fact, on how much European money and from which headings, the
member states will agree upon; their governments will have to provide their own share from the
national budget, for each project using European money.
The Republic of Slovenia would need:
-
approximately 3 billion EUR between the years 2014 and 2020
approximately 9 billion EUR by 2030.
3. THE EUROPEAN RAILWAY NETWORK
This section of the article describes the following important railway connections/corridors, running
across Europe:
-
Transeuropean and Paneuropean network of lines – PANEUROPEAN CORRIDORS
Priority Projects
ERMTS Corridors
International railway corridors for competitive freight transport
RNE Corridors
TEN-T Network
3.1 Transeuropean and Paneuropean network of lines
The Transeuropean network of lines was defined at the Paneuropean conferences (Prague 1991,
Crete 1994, Helsinki 1997), with the aim to improve and modernize transport links of the existing EU
member states and member states that joined the EU in 2004.
Belgrade, 2012
99
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
The Transeuropean and Paneuropean network consist of 10 major routes, which are shown in the
figure below.
Figure 4: Traneuropean and Paneuropean network of lines
The main purpose of Transeuropean corridors is connecting geographical regions of Europe.
3.2 Prednostni projekti (Priority Projects)
Under the term priority projects we understand a set of projects for the development of railway
infrastructure that are defined in the following documents:
-
Decision No 1692/96 of 23 July 1996, (including 14 priority projects, excluding Slovenia)
Decision No 1692/96/EC of the European Parliament and of the Council of 23 July 1996 on
Community guidelines for the development of the trans-European transport network
Decision No 884/2004/EC of the European Parliament and of the Council of 29 April 2004 (the
scope of priority projects extends from 14 to 30 and also includes Slovenia)
Decision No 661/2010/EU of the European Parliament and of the Council of 7 July 2010,
Predicted, all together, are 30 priority projects.
For the progress of Slovenia the sixth priority project titled Railway line: Lyon – Trieste – Divača/Koper
– Divača – Ljubljana – Budapest – Ukrainian border is of highest importance. Parts of this rail line
th
coincide with the V Paneuropean corridor.
3.3 ERTMS koridorji (ERTMS Corridors)
ERTMS Corridors are regulated through:
Belgrade, 2012
100
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
-
-
Commission Decision of 28 March 2006 concerning the technical specification for
interoperability relating to the control-command and signalling subsystem of the transEuropean conventional rail system (notified under document number C(2006) 964)
Commission decision of 25.1.2012 on the technical specification for interoperability relating to
the control-command and signalling subsystems of the trans-European rail system C(2012)
172)
The ERTMS Network is shown on the figure below.
Figure 5: European Deployment Plan for ERTMS
The main aim of ERTMS Corridors is to assure interoperability of the European railway network.
th
The ERTMS Corridor, running through Slovenia coincides with the V Paneuropean corridor.
3.4 International railway corridors for competitive freight transport
International railway corridors for competitive freight transport are defined in the Regulation (EU) No
913/2010 of the European Parliament and of the Council of 22 September 2010.
In the named documentation, 9 corridors for competitive freight transport in Europe, are predicted.
2 corridors run through the Republic of Slovenia:
-
th
The 5 corridor: Gdynia-Katowice-Ostrava/Žilina-Bratislava/Wien/Klagenfurt-UdineVenezia/Trieste/Bologna/Ravena Graz-Maribor-Ljubljana-Koper/Trieste (the deadline to
establish the corridor is 10. November 2015),
Belgrade, 2012
101
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
-
th
The 6 corridor: Almeria-Valencia/Madrid-Zaragoza/Barcelona-Marseille-Lyon-Torino-MilanoVerona-Padova/Venezia-Trieste/Koper-Ljubljana-Hodoš-Budapest-Zahony
(HungaryUkrainian border) (The deadline to establish the corridor is 10. November 2013).
th
Both corridors, listed above, correspond the course of the V Paneuropean corridor.
The main aim of the corridors, for a competitive railway transport, is the expansion, renovation or
progress in railway infrastructure and equipment and introducing interoperability systems to the
European railway network.
3.5 RNE Corridors
European railway Infrastructure Managers and Allocation Bodies established RailNetEurope (RNE) in
June 2004. RNE defined 11 Corridors. The legal basis for defining RNE Corridors:
-
-
Council Directive 91/440/EEC of July 1991 on the development of the Community’s railways.
Directive 2001/14/EC of the European Parliament and of the Council of 26 February 2001 on
the allocation of railway infrastructure capacity and the levying of charges for the use of
railway infrastructure and safety certification
Resolutions of Infrastructure manager
Figure 6: The RNE Corridor network
Belgrade, 2012
102
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
For the Republic of Slovenia there are three RNE Corridors that are of highest importance, namely:
-
07: Gdynia - Ponetów/Warszawa - Katowice - Wien/Bratislava - Trieste/Koper
08: Lyon/Dijon - Torino - Ljubljana/Koper – Budapest
11: München - Salzburg - Ljubljana - Zagreb - Beograd - Sofia – Istanbul
The objectives of RNE Corridors are:
-
the harmonization of the procedure for the creation of timetables and allocation of railways
to ensure the liberalization of the market
the use of information technology tools
manufacture of joint coordinated programmes of networks
-organization of the legal proceedings, CER, UIC, UNIFE
3.6 The TEN-T network
The TEN-T network is composed of 2 timely separate projects. The first project is aimed at the central
or core network, which will be completed by 2030. The construction of this network will facilitate the
use of an approach that is based on ten existing corridors, which will provide the basis for a
coordinated development of infrastructure within the TEN-T network. The second project is an
extensive power network, which will be completed by 2050 and will provide complete coverage of the
European Union and access to all regions.
The new network will assure safer transport, the elimination of bottlenecks and smoother and faster
traveling. Therefore, the European Union will help with financing the central network in the next
financial perspective 2014-2020, since the original costs were approximately 250 billion Euros. The
European union will support the performance of the network with several financial instruments, inter
alia, with funds from the Cohesion Fund, the European Regional Development Fund and loans from
the European Investment Bank and credit guarantees.
Slovenia is, in the proposal for a regulation of guidelines for the development of the TEN-T network,
included in the so-called Mediterranean corridor, which route runs from Algeciras through Madrid,
Barcelona, Lyon, and Turin to Milan. The corridor crosses the Slovenian border in Koper and
continues through Ljubljana and Maribor to Budapest and to the Ukrainian border. The Mediterranean
th
corridor almost completely corresponds the route of the current V Paneuropean corridor and for now,
Slovenia is included in this corridor, but since there are plans for infrastructure modernization, is the
actual inclusion of Slovenia questionable. Hereby I have in mind the rail line between Trieste and
Divača, second track Koper – Divača and the rail line between Ljubljana and Ljubljana Jože Pučnik
Airport.
4. THE X
TH
PANEUROPEAN CORRIDOR AND ALTERNATIVE ROUTES
th
The X Paneuropean Corridor runs through Salzburg – Jesenice – Ljubljana – Dobova – Zagreb –
Beograd – Skopje – Thessaloniki/Solun. Its route was placed in the network of transport corridor as in
1997, as a result of wars in the southeastern Balkan.
Belgrade, 2012
103
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
th
Figure 7: The X Paneuropean Corridor
th
The X Paneuropean corridor includes the following routes:
a)
b)
c)
d)
Graz – Maribor – Zidani Most
Budapest – Novi Sad – Beograd
Niš – Sofija
Veles – Bitola – Florina through Egnatie
th
4.1 Alternative routes of the X Paneuropean Corridor
th
For each corridor, also for the X corridor, there exist alternative routes, to which the transport flows,
which were originally intended for the main corridor, can be redirected.
After gaining its independence the Republic of Slovenia noticed a significant decrease in the amount
of transport, for more than 80%; especially on the route Ljubljana – Jesenice. Some cargo was
th
th
redirected from the X Corridor to the V Paneuropean Corridor.
th
The alternatives to the route of the X Corridor are shown on the following figure.
Belgrade, 2012
104
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
th
Figure 8: Balkan X corridor and its potential alternatives
th
From the figure above it is clear that the X Corridor has 2 competitive routes. In the conclusion of this
th
article the main findings of the X Paneuroepan Corridor and competitive routes are listed.
5. CONCLUSION
th
The X Paneuropean Corridor, which is running through Salzburg-Jesenice-Ljubljana-Dobova-ZagrebTovarnik-Beograd-Skopje-Thessaloniki/Solun:
-
is for approximately 100km shorter than the competitive corridor
has shorten the traveling time for approximately 12%
attracts approximately 12% more goods transport, in case of modernization even 50% more
goods
uses approximately 12% less energy and reduces the CO2 emissions for approximately 12%.
Through the stabilization of the political situation in the Balkans and by entering of the eastern part of
the Balkans into the European Community the railway market will be liberalized also in this part of
Europe. This will enable easier performance of interoperability, which is a precondition for ensuring
th
competitiveness of the X Corridor.
6. LITERATURE
[1] Analiza možnosti in potreb razvoja javne železniške infrastrukture v Republiki Sloveniji; končno
poročilo; Prometni institut Ljubljana d.o.o., APPIA d.o.o., Univerza v Ljubljani - Fakulteta za
pomorstvo in promet in Univerza v Mariboru - Fakulteta za logistiko; Ljubljana, marec 2011
Belgrade, 2012
105
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
A COMPARATIVE ANALYSIS OF CORRIDOR 10 WITH CORRIDOR 4
Suzana Graovac, Kirilo Savic Institute, Belgrade, Serbia
dr Miroljub Jevtić, Kirilo Savic Institute, Belgrade, Serbia
Milan Živanović, Kirilo Savic Institute, Belgrade, Serbia
Abstract:
In this study addresses two pan-European corridors, Corridor X and IV. Their importance is reflected in
the quality and attractiveness of the roads that connect people and markets in Central Europe to
Southeast Europe and Asia. Corridor IV, which passes through Bulgaria and Romania, but has the
advantage of Europe gave him the status of the trans-European road and the degree is more
important than the Corridor X, which is a transnational corridor. The entry of Bulgaria and Romania
into the European Union, the main road traffic flows have started to bypass our country, although the
Corridor X quickest and best route that connects the Middle East and Western Europe. Drivers have
moved on Corridor IV, which connects Hungary with Romania and Bulgaria. Stopped at the border
because of customs procedures has made it unattractive Corridor X, but is way better and shorter,
with well-equipped gas stations and stops.
Keywords: pan-european transport corridors, corridor X, corridor IV
KOMPARATIVNA ANALIZA KORIDORA X SA KORIDOROM IV
Rezime:
U okviru ovog rada analiziraju se dva pan-evropska koridora, Koridor X i IV. Njihova značajnost se
ogleda u poboljšanju atraktivnosti i kvalitetu saobraćajnica koje povezuju ljude i tržišta iz Centralne
Evrope sa jugoistočnom Evropom i Azijskim kontinentom. Koridor IV, koji prolazi kroz Bugarsku i
Rumuniju, već je u prednosti jer mu je Evropa dala status transevropskog puta i za stepen je važniji od
Koridora X, koji je transnacionalni koridor. Ulaskom Bugarske i Rumunije u Evropsku uniju, glavni
drumski saobraćajni tokovi su počeli da zaobilaze našu zemlju, iako je Koridor X najbrži i najbolji
pravac koji povezuje Bliski istok i Zapadnu Evropu. Vozači su se preselili na Koridor IV, koji povezuje
Mađarsku sa Rumunijom i Bugarskom. Zadržavanje na graničnim prelazima zbog carinske procedure
učinilo je neprivlačnim Koridor X, iako je put bolji i kraći, sa dobro opremljenim benzinskim pumpama i
stajalištima.
Ključne reči: panevropski transportni koridori, koridor X, koridor IV
1. UVOD
Panevropski saobraćajni koridori su saobraćajni koridori koji povezuju zemlje Centralne Evrope, sa
zemljama Istočne i Jugoistočne Evrope. Pošto je Turska primarni izvor i odredište tranzitno
međunarodnih intermodalnih usluga, jasno je da se ogroman procenat trenutnog obima transporta vrši
na koridoru IV i X, vezama sa zapadnom Evropom. Sa Sofijom kao primarnim poreklom i destinacijom
dalji značajni obim izvodi se na koridoru IV, veza sa Solunom.
Evropski projekat Panevropskih saobraćajnih koridora otpočet je 1991. na konferenciji u Pragu, usled
potrebe za integrisanjem postojeće Transevropske transportne mreže (TEN-T) sa transportnim
mrežama zemalja van tadašnje Evropske Unije. Na drugoj Panevropskoj konferenciji o saobraćaju
održanoj u martu 1994. godine na Kritu, definisano je tada devet koridora, kao glavne saobraćajne
trase između ondašnje Evropske Unije i država u njenom okruženju - u centralnoj, istočnoj i
jugoistočnoj Evropi, sa idejom njihovog prioritetnog finansiranja tokom sledećih 10-15 godina.
Belgrade, 2012
106
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Zaključci ove konferencije precizirani su i dopunjeni na trećoj konferenciju u Helsinkiju, u mrežu
Panevropskih koridora dodat i deseti koridor (Panevropski Koridor X), koji prolazi kroz većinu bivših
jugoslovenskih republika.
Devet koridora su železnički i drumski, a deseti (Koridor VII - "Dunavski koridor") je vodeni koridor –
tok Dunava.
Njihova značajnost se ogleda u poboljšanju atraktivnosti i kvalitetu saobraćajnica koje povezuju ljude i
tržišta iz Centralne Evrope sa jugoistočnom Evropom i Azijskim kontinentom.
2. OPŠTE KARAKTERISTIKE KORIDORA X
Koridor X je jedan od pan-evropskih saobraćajnih koridora. Ova multimodalna transportna veza ide od
severozapada ka jugoistoku i obuhvata:
2300 km puta,
2528 km pruge,
12 aerodroma i
4 rečne i morske luke
Sastoji se od glavnog kraka koji se prostire od Salzburga do Soluna: Salzburg (Austrija) - Ljubljana
(Slovenija) - Zagreb (Hrvatska) - Beograd (Srbija) - Niš (Srbija) - Skoplje (Makedonija) - Veles
(Makedonija) - Solun (Grčka), a pored njega postoje još i 4 kraka:
Krak A: Grac (Austrija) - Maribor (Slovenija) - Zagreb (Hrvatska)
Krak B: Budimpešta (Mađarska) - Novi Sad (Srbija) - Beograd (Srbija)
Krak C: Niš (Srbija) - Dimitrovgrad (Srbija) - Sofija (Bugarska) - Istanbul (Turska) - preko
Koridora IV
Krak D: Veles (Makedonija) - Prilep (Makedonija) - Bitolj (Makedonija) - Florina (Grčka) Igumenica (Grčka)
Koridor X je značajan i za Evropu strateški važan putni, železnički i vodni pravac zbog veoma velikih
ušteda u troškovima transportna.
2.1 Tehničke karakteristike Koridora X
Zemlje kroz koje prolazi
Vidovi prevoza
Približna dužina Koridora
Glavni krak
Austrija, Slovenija, Hrvatska ,Srbija, Makedonija, Grčka
železnički, drumski, vazdušni, vodni
železnička pruga
2,528 km
put
2,300 km
broj aerodroma
12
broj morskih i rečnih luka
4
Salzburg - Ljubljana - Zagreb - Beograd - Niš (Srbija) - Skoplje Veles - Solun
Salzburg - Filah - Rozenbah / Jesenice - Ljubljana Zidani Most - Dobova / Savski Marof - Zagreb železnica
Tovarnik - Beograd - Niš - Preševo / Tabanovce Skoplje - Veles - Gevgelija / Idomeni - Solun
Salzburg - Filah - Karavanke - Ljubljana - Višnja Gora /
Obrežje - Zagreb - Lipovac / Tovarnik - Beograd - Niš drum
Sopot / Tabanovce - Skoplje - Gradsko - Bogorodica /
Idomeni - Solun
Belgrade, 2012
107
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Krak iz Graca (Krak A)
Krak iz Budimpešte (Krak B)
Krak za Sofiju (Krak C)
Krak za Florinu (Krak D)
železnica
drum
železnica
drum
železnica
drum
železnica
drum
Grac - Spielfeld / Šentilj - Maribor - Zidani Most
Grac - Spielfeld / Šentilj - Gruškovje - Zagreb
Budimpešta - Kelebija - Subotica - Novi Sad - Beograd
Budimpešta - Kečkemet - Segedin - Reske - Subotica Novi Sad - Beograd
Niš - Dimitrovgrad / Kalotina - Sofija
Niš - Dimitrovgrad / Kalotina - Sofija
Veles - Kremenica / Mesonision - Florina
Gradsko - Medžitlija / Mesonision - Florina
Na Grafikonu 1. i 2. dati su troškovi za infrastrukturne investicije duž železničkog i drumskog Koridora
X. Troškovi su procenjeni korišćenjem rezultata TINA završnog izveštaja, rezultata Izveštaja o
"Statusu Pan-evropskih saobraćajnih koridora i transportnih oblasti" i informacije iz Evropske komisije
(ISPA - predlozi projekata prihvaćenih od strane Upravnog odbora, TACIS - projekat iz nacionalnog
programa i iz CBC-programa).
Grafikon 1. Troškovi za infrastrukturne investicije duž železničkog Koridora X
Grafikon 2. Troškovi za infrastrukturne investicije duž drumskog Koridora X
Belgrade, 2012
108
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
U sledećoj tabeli su date procene investicija potrebne za rehabilitaciju problematičnih drumskih
deonica.
Tabela 1. Procene investicija za rehabilitaciju problematičnih drumskih deonica [4]
Zemlja
Dužina (km)
Troškovi (milion €)
Bugarska
Hrvatska
Mađarska
Makedonija (bez Kraka D)
Slovenija
Srbija
Ukupno
49
48,8
60
51,5
114,3
445,6
769,2
160
150
180
135,5
370
1295
2290,5
Delovi železničkog Koridora X kroz Srbiju se razlikuju u delovima glavne ose, delova Krakova B i C.
Ukupnu dužina koridora je 867 km. Postojeća pruga je 88% elektrificirana i dvokolosečna u dužini od
251 km.
Deo glavnog Koridora X je Tovarnik (hrvatsko-srpska granica) - Šid - Beograd - Niš - Preševo (srpskomakedonska granica), od 613 km dužine, sa 100% elektrificirane i 40,3% dvokolosečne pruge od
njene ukupne dužine.
Deo Kraka B je Subotica (mađarsko/srpska granica) - Novi Sad - Beograd, od 150 km dužine, sa
100% elektrificirane i 97,6% jednokolosečne pruge od njene ukupne dužine.
Deo Kraka C je Niš - Dimitrovgrad (bugarsko/srpska granica), 104 km dužine, sa dizel vučom na
jedokolosečnoj pruzi po celoj dužini.
Bugarski delovi Koridora X su delovi kraka C sa ukupnom dužinom 57 km. Postojeća pruga je 74,1%
elektrificirana i 86% jednokolosečna od ukupne dužine. Gradovi koje povezuje železnički koridor su:
Kalotina (bugarsko/srpska granica) - Dragoman - Sofija. Generalno, stanje železničke infrastrukture u
Bugarskoj se smatra siromašnom sa srednjim nivoom održavanja. Dužina drumskog Kraka C je 83
km. Postojeća infrastruktura se sastoji od autoputeva (39,6%) i glavnih puteva (60,4%). Sledeće
gradovi su povezani: Kalotina (bugarsko/srpska granica) - Dragoman - Sofija.
3. OPŠTE KARAKTERISTIKE KORIDORA IV
Multi-modalni Pan-evropski transportni Koridor IV povezuje Nemačku, Češku, Austriju, Slovačku,
Mađarsku, Rumuniju, Bugarsku, Grčku i Tursku, sa više od:
4.340 km železničke pruge,
3.640 km puta,
10 aerodroma i
8 rečnih i morskih luka.
Koridor IV je multi-modalna severozapadno - jugoistočna transportna veza koja ide od Drezdena /
Nirnberg (Nemačka), preko Praga (Češka), Beča (Austrija) / Bratislave (Slovačka), Budimpešte
(Mađarska) za Rumuniju. U Rumuniji koridor se deli na dve grane. Severni krak ide od Arada preko
Bukurešta do Konstance na Crnom moru, a južni krak od Arada, preko Krajove do Sofije (Bugarska) i
opet se deli, sa jednom granom prema Solunu (Grčka) i drugom prema Istanbulu (Turska).
Belgrade, 2012
109
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Delove koridora kroz Bugarsku:
Sofija – Granica Pumunije
Sofija – Plovdiv – Dimitrovgrad – Svilengrad – Granica Turske
Sofija – Radomir – Dupnica – Granica Grčke
Železnički koridor od Bugarsko/Rumunske granice (Vidin) do Mezdra - Sofija ima dužinu od 264 km.
Brzina kojom se vozovi kreću po ovom delu iznosi 60-80 km/h. U Sofiji linija se deli na dve grane,
jedna ide u Istanbul a druga za Solun.
Veza sa Turskom preko Plovdiva, Dimitrovgrada i Svilengrada do granice na Kaptain Andreevo ima
dužinu od 320 km. Po projektu ovaj deo pruge treba da se poboljšana i elektrifikacije 142 kilometara
jednokolosečne pruge Plovdiva - Krumovo - Dimitrovgrad - Svilengrad - Grčko/Turska granica od 160
km/h i 22,5 tona osovinskog opterećenja.
Veza sa Grčkom iz Sofije preko Radomira, Dupnitza do granice na Kulati ima dužinu od 210 km. Linija
će biti rekonstruisana i elektrificirana.
3.1 Tehničke karakteristike Koridora IV
Zemlje kroz koje prolazi
Vidovi prevoza
Približna
Koridora
dužina
Austrija, Bugarska, Češka, Nemačka, Grčka, Mađarska, Rumunija,
Slovačka, Turska
železnički, drumski, vazdušni, vodni
železnička pruga
4.340 km
put
3.640 km
broj aerodroma
10
broj morskih i rečnih luka
8
Drezden - Prag - Bratislava / Beč - Budimpešta – Arad
železnica
Drezden - Bad Schandau / Decin - Prag - Ceska
Trebova - Brno - Breclav / Kuti - Bratislava Rajka / Hegieshalom – Đer
Breclav / Hohenau - Beč
Bratislava – Beč
Beč - Nickelsdorf / Hegieshalom - Đer Budimpešta (druga trasa: Bratislava - Sturovo /
Szob - Budimpešta) - Solnok - Lokoshaza /
Curtici – Arad
drum
Drezden - Zinnvald / Cinovec - Prag - Brno Lanžhot / Brodske - Bratislava - Čunovo / Rajka Hegieshalom - Đer
Brno - Mikulov / Drasenhofen - Beč
Bratislava - Beč
Beč - Nickelsdorf / Hegieshalom - Đer Budimpešta - Kečkemet - Segedin - Nagilak /
Nadlac - Temišvar
Glavni krak
Krak iz Nirnberga
Železnice
Nirnberg - Schirnding / Heb - Plzen - Prag
Drum
Nirnberg - Vaidhaus / Rozvadov - Plzen - Prag
Belgrade, 2012
110
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Krak za Konstancu
Železničke
Drum
Železnica
Krak za Istanbul
Drum
Krak za Solun
Arad - Alba Iulia - Brašov - Ploiesti - Bukurešt Konstanca
Temišvar - Sibiu - Pitešti - Bukurešt - Konstanca
Arad - Temišvar - Krajova - Kalafat / Vidin - Sofija Plovdiv - Svilengrad / Kap. Andreevo - Jedrene Istanbul
Temišvar - Krajova - Kalafat / Vidin - Sofija - Plovdiv
- Svilengrad / Kap. Andreevo - Jedrene - Istanbul
Železnica
Sofija - Kulata / Promahonas - Solun
Drum
Sofija - Kulata / Promahonas – Solun
Značaj Koridora IV je jasno vidljiv i u investicionom smislu. To je najskuplji koridor sa predviđenim
iznosom investicija oko 16,8 milijardi evra.
Za Bugarsku ove cifre su sledeće:
801 km železničke linije,
714 km puta,
2 aerodroma i
2 kombinovana transportna terminala
sa predviđenim iznosom investicija od oko 2056,4 miliona evra.
Troškovi za infrastrukturne investicije duž železničkog i drumskog Koridora IV su procenjeni
korišćenjem rezultata TINA završnog izveštaja, rezultata Izveštaja o "Statusu Pan-evropskih
saobraćajnih koridora i transportnih oblasti" i informacije iz Evropske komisije (ISPA - predlozi
projekata prihvaćenih od strane Upravnog odbora, TACIS - projekat iz nacionalnog programa i iz
CBC-programa).
Na Grafikonu 3. su dati troškovi za infrastrukturne investicije duž železničkog Koridora IV.
Grafikon 3. Troškovi za infrastrukturne investicije duž železničkog Koridora IV
Belgrade, 2012
111
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Projekat za izgradnju drugog mosta preko Dunava između Bugarske i Rumunije duž trase
Panevropskog transportnog Koridora IV u Vidin-Kalafat je značajan planirani transportni događaj.
Dužina putnog koridora od Bugarsko / Rumunska granice (Vidin) do Sofije je 235 km. To je put sa dve
trake, čija je rehabilitacija završena 2005. godine. Dužina deonice od Sofije do Bugarsko / Rumunske
granice (Kapitan Andreevo) je 278 km. Krak do bugarske / grčki granice se deli u Sofiji i ima dužinu od
201 km.
Na Grafikonu 2. su dati troškovi za infrastrukturne investicije duž drumskog Koridora IV.
Grafikon 4. Troškovi za infrastrukturne investicije duž drumskog Koridora IV
4. KORIDOR X U ODNOSU NA KORIDOR IV
Značajnost Pan-evropskih Koridora IV i X se ogleda u poboljšanju atraktivnosti i kvalitetu
saobraćajnica koje povezuju ljude i tržišta iz Centralne Evrope sa jugoistočnom Evropom i Azijskim
kontinentom.
Nacionalnim auto-putem od Ruse preko Velikog Trnova i Svilengrada ka Istanbulu, Bugarska znatno
popravlja sliku svoje putne mreže. Tako da čak dva putna pravca kroz ovu susednu zemlju navode
vozače ka najvećem gradu u Turskoj. Jedan od njih je već ozbiljna konkurencija našem Koridoru X. To
je Koridor IV, koji Nemačku preko Mađarske, Rumunije i Bugarske jednim krakom povezuje sa
Istanbulom drugim sa Solunom. Kada se uz još jedan auto-put doda i činjenica da su ovi pravci
"oslobođeni" carinskih i graničnih procedura, Srbija bi mogla da ima ozbiljan problem.
Iako je Koridor X najbrži i najbolji pravac koji povezuje Bliski istok i Zapadnu Evropu, prevoznici nas
zaobilaze. Ulaskom Bugarske i Rumunije u Evropsku uniju, vozači koji iz Turske kreću na zapad
prolaze samo jednu graničnu proveru, dok na Koridoru 10 ima čak šest graničnih kontrola, koje su
komplikovane i dugo traju. Troškovi tranzita, koji su znatno veći nego na Koridoru X, za prevoznike su
dodatan problem.
Belgrade, 2012
112
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Koridor IV, koji prolazi kroz Bugarsku i Rumuniju, već je u prednosti jer mu je Evropa dala status
transevropskog puta i za stepen je važniji od Koridora X, koji je transnacionalni koridor.
Ulaskom Bugarske i Rumunije u Evropsku uniju, glavni drumski saobraćajni tokovi su počeli da
zaobilaze našu zemlju. Vozači su se preselili na Koridor IV, koji povezuje Mađarsku sa Rumunijom i
Bugarskom. Zadržavanje na graničnim prelazima zbog carinske procedure učinilo je neprivlačnim
Koridor X, iako je put bolji i kraći, sa dobro opremljenim benzinskim pumpama i stajalištima.
Granični prelazi su „vrata“ za Koridor X. Kapaciteti i procedure moraju maksimalno da se prilagode što
većoj prohodnosti, jer u protivnom planirano investiranje u Koridor X gubi svaki smisao. Mora da se
urade za svaki granični prelaz projekti povećanja prohodnosti vozila, roba i putnika. Svi granični
prelazi koji se nalaze na Koridoru X podležu pravilima Evropske unije. Oni spadaju u tzv. grupu “A”,
koja podrazumeva posebna pravila koja se odnose na policiju, carinu i inspekciju. Osim što se
podrazumeva da su vlasništvo države, ovi prelazi treba da ispune i određene visoke normative u
pogledu ulazno-izlaznih saobraćajnih traka, putanja za putnička i teretna vozila, kamionski terminal,
parkinge i prilazne rampe, sanitarne čvorove i restorane, lokaciju i objekte za policiju i carinu, prostor
za špeditere, itd. Kada se analiziraju granični prelazi, neophodno je analizirati vizni režim koji
Republika Srbija ima prema susednim i ostalim državama u okruženju, kao i politiku koje te države
imaju prema Republici Srbiji (skoro da smo jedina zemlja u Evropi za koju je potrebna viza). Jedan od
osnovnih uzroka što danas na Koridoru X imamo četiri puta manji saobraćaj od realno mogućeg je
vizni režim.
Koridor X, međunarodni autoput koji povezuje Zapadnu Evropu sa Bliskim istokom i koji u dužini od
800 kilometara prolazi kroz Srbiju u opasnosti je da padne u saobraćajni zapećak. Naime, iako
predstavlja najkraću drumsku vezu od Austrije do Turske, otkada su Bugarska i Rumunija ušle u
Evropsku uniju, na Koridoru X je zabeležen pad prometa od čak 20%. Glavni razlog je to što sada
vozači koji iz Turske kreću na zapad, imaju samo jednu graničnu proveru na prelazu u Bugarsku, u
kojoj su već u EU i odakle Koridorom IV, preko Rumunije, imaju slobodan prolaz do krajnje destinacije.
S druge strane, ako odaberu Koridor X, iz Bugarske će na granici sa Srbijom imati drugu proveru, pa
na granici sa Hrvatskom treću i tek tada ponovo ulaze u EU u Sloveniji (Tabela 2.)
Tabela 2. Broj graničnih prelaza na koridorima [7]
Ruta
Preko
Broj graničnih prelaza
Koridor
EU-ne EU +
ne EU-
ne EU-EU
ne EU
EU-EU
Austrija –
Turska
Austrija –
Grčka
Ukupno
HU-RO-BG
IV
3
1
0
3+1=4
HU-SRB-BG
Xb
1
3
0
1+3=4
SLO-HR-SRB-BG
X
1
3
1
1+4=5
HU-RO-BG
IV
4
0
0
4
HU-SRB-BG
Xb
2
2
0
2+2=4
SLO-HR-SRB-BG
X
2
2
1
2+3=5
SLO-HR-SRB-MK
X
1
2
2
1+4=5
Belgrade, 2012
113
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Glavna prepreka za Koridor IV do sada je bio nedostatak mosta na Dunavu na granici Bugarske i
Rumunije, kod mesta Vidin. Međutim, ta prepreka je eliminisana krajem septembra 2012. godine.
Prevozniku koji putuje za Grčku isplati se da zaobiđe kvalitetniju infrastrukturu i kraći pravac preko
Srbije i Makedonije, pa da preko Bugarske stigne na odredište. Skraćenjem vremena provedenog na
granici, on pokriva trošak nešto dužeg puta.
Koridor 10 gubi trku i zbog skupe putarine. Uprkos povoljnom geografskom položaju Srbije i prilično
razvijenoj mreži saobraćajnica, ona nije dovoljno iskorišćena. Železnica, recimo, zauzima samo 7%
ukupnog udela u transportu. Tek obnovom pruga i ostale infrastrukture ona može da privuče više
robe. Plovni put, naš veliki resurs, zbog nedostatka informacionih tehnologija i starih plovila, takođe je
zanemaren, a njegov udeo u transportu je zanemarljiv – samo 1%.
Statistika je već zabeležila minus na našim drumovima. Broj teretnih vozila u tranzitu kroz Srbiju prošle
godine je u odnosu na prethodnu smanjen za 22%, a prevezeno je i za 21,3 % manje robe. Zbog
ekonomske krize tokom prošle godine preko graničnih prelaza Srbije izašlo je 21% manje teretnih
vozila, kojima je izvezeno za 25,3% manje tona robe. Iz zemlje je ukupno izašlo 325.791 drumskih
teretnih vozila, kojima je izvezeno 4,25 miliona tona robe. Broj teretnih vozila kojima je roba uvezena
na područje Srbije manji je za 20,5 odsto. Statistika kaže i da vozila sa bugarskom i turskom
registracijom čine 59,7 odsto svih šlepera u tranzitu kroz Srbiju.
Na Slici 1. su prikazani teretni vozovi duž Koridora X od Austrije, preko Slovenije i duž Koridora IV iz
Austrije preko Mađarske [7].
Slika 1. Teretni vozovi duž Koridora X od (→) A → SLO (→) i duž Koridora IV iz (→) A → HU (→)
Direktni teretni vozovi iz Nemačke do Turske trenutno saobraćaju samo duž Koridora IV i Xb.
5. MERE ZA POVEĆANJE ALTERNATIVE KORIDORA X U ODNOSU NA KORIDOR IV
Optimalne granične procedure zasnovane na najkraće mogućim zaustavljanjem su ključni uslov za
konkurentnost Koridora X.
Neke od mera za smanjenje zaustavlja na granicama su:
Belgrade, 2012
114
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Optimizacija graničnih procedura;
Intenzivirano korišćenje IT-softverska rešenja;
Tehnička i konstrukciona modernizacija;
Obezbeđivanje lokomotiva na vreme;
Potpisivanje sporazuma poverenja;
Poboljšan pristup kada je u pitanju nestali tovar;
Trans-nacionalno raspoređivanje lokomotiva;
Carine i granične kontrole u toku saobraćanja voza (prevoz putnika).
Granični prelazi su mesta gde se troši puno vremena na postojeće procedure. Ogromne uštede
vremena se mogu postići dobrom organizacijom i tehnologijom rada, a dodatno smanjenje vremena
ostvaruje se pararelnim radom službi dve države
Nedostaci Koridora IV u dužim putevima vožnje za 240 km prema Turskoj i 340 km prema Grčkoj,
mogu se otkloniti kvalitetom infrastrukture i skraćenjem vremena putovanja, na čemu Rumunija i
Bugarska vode aktivnosti (160 km/h).
6. ZAKLJUČAK
Dva železnička koridora, Koridor IV i Koridor X, bore se za primat i još nije izvesno koji će brže
napredovati. Ako se dovoljan broj vozila "prelije" na Koridor IV, Srbija će izgubiti ne samo zaradu od
teretnog transporta, već i novac iz fondova Evropske unije, koji će se usmeriti na važniji pravac.
Za obe su potrebne masivne investicije, kako bi teret sigurno i brzo dospeo sa severa Evrope na
jugoistok do Grčke i Turske, i obratno. Naša prednost u odnosu na koridore istočnih suseda je znatno
kraća trasa i ipak bolja saobraćajnica.
Koridor X će zadržati svoje prirodne tradicionalne prednosti u odnosu na Koridor IV samo ako
modernizacijom infrastrukture značajno skrati vreme putovanja i podigne nivo usluge.
ACKNOWLEDGEMENT
This work was supported by the Ministry of Science and Technological Development of the Republic
of Serbia through the research projects “Research of technical-technological, staff and organisational
capacity of Serbian Railways, from the viewpoint of current and future European Union requirements”
(No. 36012) and “Reconstruction and revitalization of railway infrastructure in accordance with regional
development” (No. 680-00-140/2012-09/10).
Literatura
[1] ETF Publication, DIOMIS - Bulgaria Evolution of intermodal rail/road traffic in Central and Eastern
European Countries by 2020, 2009., ISBN 978-2-7461-1797-6
[2] Project CODE-TEN, Corridor X, Februar 1999.
[3] Pan-European Corridor X: State of Play and Perspectives, Member of the Technical Secretariat
of the Steering Committee for Pan-European Corridor X, Thessaloniki, 2009.
[4] Tina Vienna Transport Strategie, “Status of the pan-european transport corridors and transport
areas”, Paris, 2003.
[5] www.mi.gov.rs
[6] www.mt.government.bg
[7] www.koridor10.rs
[8] www.kx-plus.com
Belgrade, 2012
115
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ANALYSIS STATE OF THE RAILWAY LINE ON CORRIDOR 10 ,
WHICH PASS THROUGH SERBIA, IN TERMS OF THE MAXIMUM
TECHNICAL SPEED
Milan Živanović, Kirilo Savic Institute, Belgrade, Serbia
dr Miroljub Jevtić, Kirilo Savic Institute, Belgrade, Serbia
Suzana Graovac, Kirilo Savic Institute, Belgrade, Serbia
Tomislav Jovanović, Kirilo Savic Institute, Belgrade, Serbia
Abstract:
Corridor 10 is one of the major routes for the region of South-East Europe, and as such it is necessary
to have an adequate infrastructure, so as to ensure a quality transportation. Technical review of the
velocity Corridor 10 in Serbia, it is possible to get an adequate picture of the state of infrastructure.
This paper shows the disparities that exist on the lines of Corridor 10, which pass through Serbia, and
is left for further analysis of the detailed analysis of the solving of the problem.
Key words: Corridor X, railways, technical speed
ANALZA STANJA PRUGE NA KORIDORU 10 KROZ SRBIJU SA ASPEKTA TEHNČKE BRZINE
Rezime:
Koridor 10 je jedan od značajnijih pravaca za region jugoistočne Evrope i kao takav je neophodan da
poseduje odgovarajuću infrastrukturu, kako bi se obezbedio uredan i kvalitetan prevoz. Pregledom
tehničkih brzina na Koridoru 10 kroz Srbiju moguće je dobiti adekvatnu sliku stanja železničke
infrastrukture. Ovim radom su prikazane neravnomernosti koje postoje na prugama Koridora 10, koje
prolaze kroz Srbiju, dok je za dalju analizu ostavljena detaljnija analiza o rešavanju datog problema.
Ključne reči: Koridor 10, železnica, tehnička brzina
1. UVOD
Železnički saobraćaj u Srbiji se sastoji od nekoliko magistralnih pravaca i manjih lokalnih pruga koje ih
povezuju. Najznačajniji deo železničke infrastructure u Srbiji predstavljaju deonice Koridora 10. Pored
njih tu je još nekoliko značajnih pravaca kao što je pruga ka Crnoj Gori, ka Rumuniji i regionalna
pruga, preko Kraljeva, koja povezuje Koridor 10 sa prugom ka Crnoj Gori.
Ovim radom je pokazana opšta analiza stanja pruge, tj. problem neravnomernih maksimalnih
dozvoljenih brzina koja ovde postoje. Ovaj rad je zamišljen kao osnova za dalje analize postojeće
železničke infrastrukture u Srbiji, na osnovu kojih bi se došlo do preporuka za dalji razvoj iste. Pojam
maksimalnih dozvoljenih brzina bi predstavljao tehničke brzine koje je moguće ostvariti na osnovu
stanja pruge, ali ovo predstavlja samo jedan od elemenata koji je moguće analizirati. Ostali aspekti
kvaliteta su namenjeni za dalja istraživanja.
Belgrade, 2012
116
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
2. KARAKTERISTIKE KORIDORA 10 KROZ SRBIJU
Koridor 10 je jedan od panevropskih saobraćajnih koridora. Prostire se od Austrije do Grčke.
Obuhvata kako železnički, dužine 2528 km, tako i drumski koridor, 2300 km.
Slika 1 – Panevropski koridori
Slika 2 – Koridor X (drumski i železnički)
Koridor 10 se sastoji od glavnog kraka koji se prostire od Salzburga do Soluna:
Salzburg (A) - Ljubljana (SLO) - Zagreb (HR) - Beograd (SRB) - Niš (SRB) - Skoplje (MK) - Veles
(MK) - Solun (GR)
a pored njega postoje još i 4 kraka:
* Krak A: Grac (A) - Maribor (SLO) - Zagreb (HR)
* Krak B: Budimpešta (SRB) - Novi Sad (SRB) - Beograd (SRB)
* Krak C: Niš (SRB) - Dimitrovgrad (SRB) - Sofija (BG) - Istambul (TR) - preko koridora 4
* Krak D: Veles (MK) - Prilep (MK) - Bitolj (MK) - Florina (GR) - Igumenica (GR)
Slika 3 – Šematski prikaz Koridora 10 kroz Srbiju
Ukupna planirana dužina železničke pruge na Koridoru 10, koja prolazi kroz Srbiju iznosi 871,3 km. To
je deonica pruge Šid – Beograd – Niš – Preševo. Pored ovog pravca tu su još delovi (kraci) koridora
10 i to su deonice (Budimpešta) Subotica – Beograd kao i krak Niš – Dimitrovgrad (Sofija) koji se dalje
nastavlja na Koridor 4.
Belgrade, 2012
117
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3. ANALIZA STANJA
Korišćenjem dijagrama put-brzina prikazano je postojeće stanje železničke infrastrukture na Koridoru
10 kroz Srbiju sa aspekta tehničke brzine. Kako bismo pojednostavili prikaz rezultata, Koridor 10 smo
podelili na deonice koje su posmatrane u oba pravca. Deonice su sledeće:
1.
2.
3.
4.
5.
Šid – Beograd
Beograd – Niš
Subotica –Beograd
Niš – Preševo
Dimitrovgrad – Niš
Deonica Šid – Beograd
140
120
100
80
60
40
20
0
140
120
100
80
60
40
20
0
Slika 4 –Dijagram brzine na deonici
Beograd - Šid
Slika 5 –Dijagram brzine na deonici
Šid - Beograd
Na Slici 4 se može se videti dijagram promene brzine na deonici od stanice N.Beograd do Šida.
Maksimalna dozvoljena brzina od N.Beograda do Zemuna iznosi 60 km/h, da bi zatim bila povećana
na 70 km/h na deonici od 4,0 km. Na sledeće dve deonice, čija je dužina ukupno 13,6 km maksimalna
dozvoljena brzina iznosi 100 km/h. Naredna deonica u dužini od 23,8 km ima maksimalnu dozvoljenu
brzinu od 120 km/h sve do službenog mesta Putinci, kada je usled stanja pruge neophodno brzinu
smanjiti na propisanih maksimalnih 30 km/h. Dužina deonice na kojoj je maksimalna brzina 30 km/h
iznosi 8,0 km. Nakon toga je brzinu moguće podići za 20 km/h, tako da je maksimalna dozvoljena
brzina 50 km/h, sa izuzetkom deonice od službenog mesta Voganj do Sremske Mitrovice čija je dužina
8,3 km, a na kojoj je maksimalna dozvoljena brzina 70 km/h. Ukupna džina deonice od 50 km/h iznosi
54,2 km, što predstavlja skoro polovinu deonice od Beograda do Šida. Na ovom dijagramu se mogu
primetiti nagle razlike u brzini, što može imati različite posledice prilikom eksploatacije pruge, a samim
tim i na efikasno i kvalitetno korišćenje ovog resursa.
Na Slici 5 možemo videti da najveći deo pruge od Šida do Beograda, tačnije deonica od Šida do
Batajnice dužine 87,6 km, ima maksimalnu dozvoljenu brzinu od 120 km/h. Nakon toga brzina opada
na 100 km/h na naredne dve deonice čija je ukupna dužina 13,6 km , da bi se nakon toga spustila na
70 km/h na dužini od 4,0 km i na kraju na 60 km/h do stanice N.Beograd. Za razliku od iste deonice u
suprotnom pravcu, ovde postoje neke nejednakosti u brzini, ali one neće značajno uticati na efikasno i
kvalitetno korišćenje ove deonice pruge.
Belgrade, 2012
118
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Deonica Beograd – Niš (preko Mladenovca)
120
100
80
60
40
20
0
Slika 6 –Dijagram brzine na deonici Beograd – Niš (preko Mladenovca)
Kao što se može videti na Slici 6 maksimalne dozvoljene brzine na deonici Beograd – Niš se kreću od
65 do 100 km/h. Prvih 36,4 km , do Ralje, brzina je konstantna i iznosi 70 km/h. Nakon toga
maksimalna dozvoljena brzina je podignuta na 100 km/h i to u dužini od 134,8 km sa izuzetkom
deonice pruge oko službenog mesta Ćuprija most gde je u dužini od 2 km brzina spuštena na 80
km/h. Narednih 10,2 km brzina je ograničena na 65 km/h. Deonicom od službenog mesta Braljina do
službenog mesta Đunis, čija je dužina 5,8 km, brzina je ograničena na maksimalnih 85 km/h. Kao što
se i na grafiku može videti nakon toga u narednih 40 km maksimalna brzina je ograničena na 100
km/h.
120
100
80
60
40
20
0
Slika 7 –Dijagram brzine na deonici Niš – Beograd (preko Mladenovca)
Ova deonica, kao što se može i videti na Slici 7 je poprilično ujednačena. Iako joj je maksimalna
brzina ograničena na 80 km/h na najvećem delu postoje izuzeci. Od Niša do Ralje, čija je ukupna
dužina oko 200 km brzina iznosi gore navedenih 80 km/h, sa izuzetkom dve spojene deonice od
Braljine do Stalaća, gde je brzina spuštena na 65 km/h.
Narednih 28,5 km brzina je ograničena na 70 km/h. U ovom trenutku ulazimo u beogradski čvor, što
značajno usporava saobraćaj, odnosno brzina biva spuštena na 60 km/h i niže.
Belgrade, 2012
119
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Deonica Beograd – Niš (preko Male Krsne)
120
100
80
60
40
20
0
Slika 8 –Dijagram brzine na deonici Beograd – Niš (preko Male Krsne)
Za razliku od prethodne deonice od Beograda do Niša, ova je značajno neravnomernija u pogledu
dozvoljenih maksimalnih brzina. Kao što se može i videti prvih 3,5 km brzina je ograničena na 60
km/h, zatim je u narednih 2 km skok na 80 km/h, da bi se narednih 7 km opet bila dozvoljena
maksimalna brzina od 60 km/h. Zatim od Jajinaca pa do Male Ivanče maksimalna dozvoljena brzina
iznosi 65 km/h. U narednih 3,4 km maksimalna dozvoljena brzina je podignuta na 80 km/h. Od
službenog mesta Mali Požarevac do Stalaća brzina se ograničava na 100 km/h, sa izuzecima
deonice od Male Krsne do Lozovika i deonice 2 km oko Ćuprije gde je brzina ograničena na 80 km/h.
Deonicom od službenog mesta Braljina do službenog mesta Đunis, čija je dužina 5,8 km, brzina je
ograničena na maksimalnih 85 km/h. Kao što se i na grafiku može videti nakon toga u narednih 40 km
maksimalna brzina je ograničena na 100 km/h.
120
100
80
60
40
20
0
Slika 9 –Dijagram brzine na deonici Niš – Beograd (preko Male Krsne)
Za razliku od suprotnog smera na istoj pruzi, ovde je maksimalna dozvoljena brzina ujednačenija, ali
je i niža i ona iznosi 80km/h i to na deonici od Niša do Male Ivanče, sa izuzetkomdeonice od 10,2 km
između Braljine i Stalaća gde je spuštena na 65 km/h. Nakon toga u dužini od 27,6 km brzina je
ograničena na 65 km/h, dok brzina u beogradskom čvoru varira između 60 i 70 km/h.
Belgrade, 2012
120
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Deonica Subotica – Beograd
140
120
100
80
60
40
20
0
140
120
100
80
60
40
20
0
Slika 10 –Dijagram brzine na deonici
Beograd - Subotica
Slika 11 –Dijagram brzine na deonici
Subotica - Beograd
Na slikama 10 i 11 može se videti da su simetrični. Stoga će biti analizirana samo Slika 10, a sve
primećeno na njoj važiće i za deonicu u suprotnom smeru. Kao što se može videti, neravnomernosi
maksimalne dozvoljene brzine su relativno velike. One se nalaze u opsegu od 40 km/h pa do 120
km/h. A sve to na deonici dugoj 171,5 km. Prva 4,0 km na deonici do Zemuna maksimalna brzina je
ograničena na 60 km/h. Od Zemuna do Nove Pazove na dužini od 17,6 km brzina je ograničena na
70 km/h. Svega 7,7 km maksimalna dozvoljena brzina iznosi 120 km/h, da bi nakon toga narednih 7,9
km bila ograničena na 100 km/h. Od Inđije do Beške maksimalna brzina iznosi 80 km/h, a u narednih
9,3 km je spuštena za još 10 km/h. Od Sremskih Karlovaca pa narednih 41,5 km maksimalna
dozvoljena brzina iznosi 85 km/h, da bi u službhenom mestu Zmajevo bila spuštena na 60 km/h i ta
brzina je maksimalna u dužini od 13,2 km. Nakon toga je 11,4 km maksimalna dozvoljena brzina 80
km/h, ali usled lošeg stanja pruge nakon toga brzina se ograničava na brzinu koja nije veća od 50
km/h u narednih 48,5 km.
Deonica Niš – Preševo
120
100
80
60
40
20
0
120
100
80
60
40
20
0
Slika 12 –Dijagram brzine na deonici
Niš - Preševo
Belgrade, 2012
Slika 13 –Dijagram brzine na deonici
Preševo - Niš
121
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Kao što je bio slučaj i na prethodnoj deonici i ovde su brzine iste za određene deonice pruge u oba
pravca. Pa smo iz tog razloga obradili samo smer Niš - Preševo, a shodnbo prethodno navedenom to
važi i za suprotan smer.
Prvi deo deonice u dužini od 32,5 km je ograničen maksimalnom brzinom od 100 km/h. Nakon toga je
na dužini od 13,9 km brzina ograničena na 50 km/h, da bi nakon toga, u dužini od 38,3 km, do
Vladičinog Hana brzina bila ograničena na 65 km/h. Zatim na odvojenim deonicama od 13,9 km, od
8,0 km i od 11,7 km brzina ograničena na 75 km/h, dok se između njih nalaze deonice ove pruge
dužine 17,7km i 8,0 km, čija je brzina ograničena na 50 km/h. Ove poslednje oscilacije značajno utiču
na smanjenje kvaliteta pruge i nivoa usluge.
Deonica Dimtrovgrad – Niš
120
100
80
60
40
20
0
120
100
80
60
40
20
0
Slika 14 –Dijagram brzine na deonici
Dimitrovgrad - Niš
Slika 15 –Dijagram brzine na deonici
Niš - Dimitrovgrad
U železničkom čvoru Niš možemo videti da je brzina niža nego na ostalim delovima pruge. Tu je
brzina 30 km/h u dužini od oko 1 km. Nakon toga maksimalna ograničena brzina je konstantna
narednih 71 km i iznosi 50 km/h. Od Pirota do državne granice brzina je značajno povećana i iznosi
100 km/h. Dužina deonice kojom vozovi mogu da idu ovom brzinom iznosi 24,5 km. Ovo je ujedno i
najsporija deonica pruge na Koridoru 10 kroz Srbiju.
4. SUMIRANJE REZULTATA
Na osnovu prethodno analiziranih podataka dobijeni
su određeni rezultati. Prosečna maksimalna
dozvoljena brzina na prugama Koridora 10 iznosi
78,9 km/h.
Međutim, veći je problem što ta brzina oscilira u
zavisnosi od smera i deonice.
100
94.66
90
Brzina
83.14
80
[km/h]
71.46
70
71.18
63.96
60
Slika 16 – Grafik prosečnih maksimalnih
brzina po deonicama na Koridoru 10
Belgrade, 2012
50
Deonica
Beograd Šid
Deonica
Beograd Niš
Deonica
Beograd Subotica
Deonica
Deonica
Međurovo - Dimitrovgrad
Preševo
- Niš
122
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Kako bismo što bolje prikazali rezultate dobijene u ovom radu, na Slici 17 se može videti grafička
raspodela prosečnih maksimalnih dozvoljenih brzina na prugama Koridora 10.
Slika
17
–
Graf raspodela
prosečnih maksimalnih
dozvoljenih brzina na
Koridoru 10 kroz Srbiju
izražen u km/h
U ovom radu se vidi da su jedino deonice od Šida do Beograda (smer od Šida ka Beogradu 115,7
km/h) i od Beograda do Niša (smer od Beograda ka Nišu – 91,1 km/h) iznad proseka (78.9 km/h), dok
su ostale deonice u svim pravcima za 10-20% ispod proseka. Deonica na kojoj je maksimalna
dozvoljena brzina najmanja je i ujedno jedina deonica pruge koja nije elektrificirana, odnosno to je
deonica od Niša do Dimitrovgrada u oba smera (prosečna maksimalna brzina je oko 64 km/h)
5. ZAKLJUČAK
U ovom radu je moguće videti da su oscilacije velike, ne samo na deonicama već i između njih. Ovo
za posledicu može imati veoma komplikovaniju izradu reda vožnje, što za posledicu ima neadekvatno
upravljanje vučnih i vučenih sredstava. Samim tim ni železnica ne može biti efikasna, a takođe ni
konkurentna na tržištu. Ovo predstavlja problem jer je neravnomernost velika, što dovodi do zaključka
da ni stanje pruge nije na odgovarajućem nivou, koji propisuje UIC, za panevropske koridore.
ACKNOWLEDGEMENT
This work was supported by the Ministry of Science and Technological Development of the Republic
of Serbia through the research projects “Research of technical-technological, staff and organisational
capacity of Serbian Railways, from the viewpoint of current and future European Union requirements”
(No. 36012) and “Reconstruction and revitalization of railway infrastructure in accordance with regional
development” (No. 680-00-140/2012-09/10).
REFERENCE
[1] M. Živanović, S. Vukmirović, S. Graovac , VREME PUTOVANJA I STRUKTURA VREMENA
PUTOVANJA TRANZITNIH VOZOVA KROZ SRBIJU NA TRASAMA KORIDORA 10, Naučnostručna konferencije »KORIDOR 10-održivi put integracija«, (57 – 74), Beograd 2010.
[2] dr Stevo Eror „Organizacija i tehnologija železničkog saobraćaja ” II izdanje, Beograd, 2003.
[3] M.Čičak, S.Vesković „Organizacija železničkog saobraćaja II ” , Beograd, 2003.
[4] JP Železnice Srbije - Red vožnje, Beograd, 2008
[5] http://www.zeleznicesrbije.com
[6] http://www.mi.gov.rs/zeleznica.htm
Belgrade, 2012
123
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
THE IMPORTANCE OF THE CORRIDOR 10 OF ECONOMIC
DEVELOPMENT OF SERBIAN
Marija Petrović, Kirilo Savic Institute, Belgrade, Serbia
dr Predrag Petrović, Kirilo Savic Institute, Belgrade, Serbia
Summary
Corridor 10 by linking eight countries, connecting the most developed and largest centers in Serbia,
with the arms of Budapest, Zagreb, Sofia, Istanbul and Thessaloniki, and is an important area for
economic development, tourism, transport and other activities that are very important for sustainable
the development. Therefore, in terms of importance, it is necessary to a speedy completion of all road
branches, and the rehabilitation and modernization of rail transport, the aim of developing multi-modal
transport connectivity with the river traffic on the Danube and Sava rivers. The establishment features
Corridor 10, made to approach, especially Turkey and other Middle Eastern countries, as well as
access to the Aegean and Black Sea, Corridor 7. An even greater importance of Corridor 10, will be
crossing with Corridor 4, through Romania and Bulgaria, Corridor 5, through Bosnia and Herzegovina
and future motorway Corridor-11, Belgrade southern Adriatic.
This paper presents a brief overview of the state construction of Corridor 10 construction plans and
other motorways in Serbia and display actual and planned investment in the economic zone of the
Corridor 10.
Keywords: Corridor 10, Economy, Investment, Transport, Infrastructure
ZNAČAJ KORIDORA 10 NA PRIVREDNI RAZVOJ SRBIJE
Rezime
Koridor 10 pored povezivanja osam država, povezuje i najrazvijenije i najveće centre u Srbiji, sa
kracima prema Budimpešti, Zagrebu, Sofiji, Instanbulu i Solunu i predstavlja značajnu zonu za razvoj
privrede, turizma, saobraćaja i drugih delatnosti koje su veoma značajne za održivi razvoj. Zbog toga,
sa aspekta značaja, neophodan je što brži završetak svih putnih krakova, kao i rehabilitacija i
modernizacija železničkog saobraćaja, sve u cilju razvoja multimodalnog transporta povezivanjem sa
rečnim saobraćajem na Dunavu i Savi. Uspostavljanjem funkcije koridora 10, ostvario bi se prilaz, pre
svega Turskoj, i drugim zemljama Bliskog istoka, kao i izlaz na Egejsko i Crno more, Koridorom 7. Još
veći značaj Koridora 10, biće ukrštanjem sa Koridorom 4, kroz Rumuniju i Bugarsku, Koridorom 5,
kroz Bosnu i Hercegovinu i budućim autoputem-Koridorom 11, Beograd južni Jadran.
U ovom radu je dat kraći prikaz stanja izgradnje Koridora 10 i planova izgradnje drugih autoputeva u
Srbiji i prikaz ostvarenih i planiranih privrednih investicija u zoni Koridora 10.
Ključne reči: Koridor 10, privreda, investicije, saobraćaj, infrastructura
Belgrade, 2012
124
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. UVOD
Kao što je pomenuto, Koridor 10 povezuje osam država i najrazvijenije i najveće centre u SrbijiSubotica, Novi Sad, Beograd, Niš, Pirot, Leskovac i Vranje. Geografski položaj Koridora 10, gravitira i
vodotokovima i obradivim površinama u centralnom i južnom delu Srbije, a posebno u Vojvodini,
pogodnim za poljoprivrednu proizvodnju. Vekovno naseljavanje stanovništva u tim zonama, stvorilo je
najgušću demografsku sliku u Srbiji, kao što se može videti na slici 1, kao i nekoliko karakterističnih
demografsko-geografskih podataka koji se odnose na Srbiju.[1,6]
Broj stanovnika Srbije (2002.)- 7.498.001.
Broj stanovnika Srbije (2011.)- 7.120.666
Broj umrlih/1000 stanovnika – 14,2
Broj rođenih/1000 na stanovnika - 9,0
Manje stanovnika/godišnje-37.030
2011/2002=0,949
(377.335
stanovnika
manje)
2
Površina Srbije- 88.361 km
2
Broj stanovnika na1000km - 80,58
2
Površina Kosova i Metohije-10.939 km
(12,4%)
Poljoprivredno zemljište- 5.051.000 ha
Obradivo
poljoprivredno
zemljište
–
4.216.000ha
Pod rekama (0,13%) - 11.486 ha
Pod autoputem (0,027%) – 2.410 ha
Dužina većih reka:Dunav-588 km; Drina-220
km; Timok -202 km; Sava -206 km; Ibar -272
km; Tisa-168 km, Zapadna, Južna, Velika
Morava:308+295+185=788km
Slika 1. Demografski razmeštaj stanovništva na teritoriji Srbije,
sa osvrtom na zonu Koridora 10.[6]
Nezaposlenost u Srbiji je u poslednje četiri godine rekordno porasla, kao nikada u vekovnoj, modernoj
istoriji. Objašnjenje, da je svetska ekonomska kriza uzrok za sve, samo su delimičan alibi, čak za
Srbiju nikakav,
jer je ona delovala i na druge zemlje, a Srbija je zbog decenijske loše
privredne,tranzicione, vlasničke transformacije, loše strategije i drugih mnogobrojnih faktora i loših
procena, dospela među prve tri zemlje u Evropi po stopi nezaposlenosti. Ako se ostvare predviđanja
međunarodnog monetarnog fonda, Srbija će u poređenju sa 102 zemlje do 2016., biti među pet
zemalja u svetu s najvećom stopom nezaposlenosti, posle Makedonije, Bosne i Hercegovine,
Južnoafričke Republike i Grčke.[1]
Vlast ukazuje da se mora reagovati buđžetskim sredstvima u regionu, gde je nezaposlenost izražena,
a u drugoj se ukazuje na potrebu potsticaja radi bržeg zapošljavanja u zanatskim radnjama i malim i
srednjim preduzećima.Ne postoji dilema da li je izvoz privrede Srbije najefikasniji, možda i jedini način
za borbu protiv ekonomsko-finansijske krize i težnje za stabilnošću valute. Tim ciljevima, treba da se
identifikuju komparativne delatnosti i realna tržišta i da sepodsticajnim merama Vlade usmereka
privrednom razvoju. Takav pristup bi znatno podigao nivo izvoza i smanjio spoljnotrgovinski deficit,
Belgrade, 2012
125
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
bez obzira što to nije univerzalni recept, jer svaka ekonomija ima svoje specifičnosti u pogledu
privredne strukture, nivoa spoljne i unutrašnje zaduženosti, opšte likvidnosti, nezaposlenosti, socijalne
sigurnosti, efikasnosti državne administracije i sudstva i dr.
Na žalost, danas je u Srbiji, svaka četvrta osoba bez posla, a zna se da nema uspešnog održivog
razvoja bez stabilne profitabilne privrede i otvaranja novih radnih mesta. Otklanjanje nezaposlenosti
novim investicijama i tehnološkim savremenim kapacitetima čiji će proizvodi naći kupce na inostranom
tržištu, je uslov, svih uslova, za stabilnost u svakom smislu: ekonomskom, političkom, socijalnom ...
Sociolozi tvrde da su ljudi bez posla, osobe bez budućnosti, ako je tako, šta je onda budućnost Srbije.
2. STANJE IZGRADNJE KORIDORA 10 I PLANOVI ZA KORIDOR11
I pоrеd brојnih teškoća, data je politička podrška završetku Koridora 10 i izgradnji Koridora 11, kao
veoma bitnim strateškim razvojnim kracima kојi pоvеzuјu Srbiјu sаЕvrоpоm i оkо kојih sеоdviја i
оdviјаćе sе u budućnosti,nајintеnzivniјi privredni i drugi rаzvој. Uоpštе gоvоrеći
infrаstrukturајеоcеnjеnа kаојеdаn оd оsnоvnih instrumеnаtа zаоstvаrivаnjејеdnоg оd pеt оsnоvnih
cilјеvа rаzvојаЕvrоpе, kојa sеоdnоsi nа prоstоrnu intеgrаciјu Srbiје sаеvrоpskim оkružеnjеm, аli i
drugоg kојi sеоdnоsi nајаčаnjе tеritоriјаlnе kоnkurеntnоsti i kоhеziје Rеpublikе. Pаnеvrоpski Kоridоr
10, kојi оbuhvаtа žеlеzničku i putnu mrеžu, duž kоgа sе plаnirа izgrаdnjа gаsоvоdnе infrаstrukturе,
mrеžеоptičkih kаblоvа, uz multifunkciоnаlnih ulоgа rеkа Save, Dunava (Koridor7),Tise, Drine, Vеlikе i
ЈužnеМоrаvе, Timoka i dr., prеstаvlјајеdnu оd rаzvојnih šаnsi zа privrеdu Srbiје.
Kоridоr 10, kојi pоvеzuјеоsаm, а sа krаcimајоš nеkоlikо, držаvа, krоz Srbiјu sе prоtеžе dužinоm оd
874 km (37% ukupne dužinekоridоrа). Uzimajući u obzir, po završetku kompltetnog autoputa na
koridoru 10 koji će se prostirati kroz Srbiju, sa uobičajnom širinom od 27,5m, autoput će okvirno (pod
asfaltom) zauzimati površinu oko 2.410 ha (0,027% ukupne površine Srbije), a uzimajući u obzir
zaštitnu zelenu zonu (u okviru zaštitne ograde) i rastojanje između traka autoputa, ukupna površina,
po proceni bi bila oko 5.000 ha. Treba imati u vidu da se ne radi o potpuno novoj površini zemljišta
(poljoprivredno zemljište, pašnjaci, šume i dr.), s obzirom da je na trasi Koridora 10, već postojala
mreža magistralnih puteva, na kojima su u većem obimu izgrađene pojedine trase autoputa.
Kоridоr pоrеd trаnspоrtnе, imа i еnеrgеtsku i privrеdnu funkciјu оd izuzеtnоg znаčаја zа Srbiјu,
privlаčеći stаnоvništvо i privrеdnеаktivnоsti. Ovа kоncеntrаciја trаnspоrtа, еnеrgiје (gаs), lјudi i
еkоnоmiје,оtvаrаоzbilјnо pitаnjе zаštitе i urеđenjа prоstоrа oko koridora, ali nikako ne podrazumeva
zapostavljanje razvoja i drugih regiona u Srbiji.
Šematski prikaz stanja, pojedinih faza izgradnje i planova budućih autoputeva u sklopu Koridora 10 i
11, prikazan je na slikama 2 i 3, a u tabeli 1, stanje na deonicama, koje su u toku izgradnje.
Međutim, Srbija ne može da se pohvali dinamikom izgradnje deonica na Koridoru 10, jer u periodu
2001.-2012., urađeno je samo 36,5km autoputa punog profila i 260km., poluautoputa, dok je u
Hrvatskoj u istom periodu izrađeno 581,4km autoputa punog profila, zašta je utrošeno oko 3 milijarde
evra. Inače u Srbiji je 498km autoputeva i 136km poluautoputeva pod naplatom putarine, dok je u
Hrvatskoj pod naplatom 1250,7 km, autoputeva i poluautoputeva.[3]
2
Gustinom mreže autoputeva od 4,8 km/1000 km , Srbija se može uporediti sa gustinommreže u
državama poput Bugarske, Češke, Slovačke ili Mađarske.Gustina železničke mreže u Srbiji od 49,2
2
km/1000 km , može seuporediti sa prosekom članica Evropske unije, kao i sa gustinom u Francuskoj.
Što je daleko povoljnije u odnosu na mrežu autoputeva.
Belgrade, 2012
126
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Na slici 3, prikazana je detaljnija karta „Koridora Srbije“, na kojoj se vidi presek stanja izvršenih i
planiranih aktivnosti na izgradnji punog i poluprofila autoputeva, kao i drugih objekata koji su
neminovni pri izgradnji ovako kapitalnih objekata (tuneli, mostovi, viadukti i sl.). Takođe, dati su rokovi
završetka pojedinih deonica i način finansiranja izgradnje: „Autoput E75: Sever“; „Autoput E-763Sektor 1:Beograd-Ljig;Sektor 2:Ljig –Požega;„Autoput E-70 i E-75: Obilaznica oko
Beograda;„AutoputE-75: Niš-granica sa Makedonijom; „Autoput E-80: Niš-Dimitrovgrad“.
Uzimajući u obzir činjenicu kašnjenja izgradnje Koridora 10 kroz Srbiju, razmatra se mogućnost
naplate penala za kašnjenje na deonicama koje su u toku: Pirot-Sukovo, Sukovo –Dimitrovgrad, kao i
na predviđenim mostovima. Radovi na obilaznici oko Dimitrovgrada su započeti 14. aprila 2010. i
trebalisu da se završe za 720dana. Deonica koja je započeta 24. novembra 2010., od Pirota do
Dimitrovgrada trebala je da se završi za 540 dana. U Srbiji se uvek nađu razlozi neispunjavanja
postavljenih i ugovorenih obaveza, pa u ovom slučaju navodi se jedan od razloga, eksproprijacija
zemljišta zbog problema sa lokalnim stanovništvom kojenije bilo zadovoljno ponuđenim rešenjem od
strane države, a drugi uzrok je arheološko otkriće rimskog puta Vija militaris.
U sklopu obilaznice oko Dimitrovgrada nalaze se dva tunela (PržojnaPadinai Progon), koji su
ugovoreni sa grčkom firmom „Ternom“
Slika 2.Stanje i planovi izgradnje Koridora 10 i 11 u Srbiji
Belgrade, 2012
127
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Tabela 1. Stanje deonica na Koridoru 10, čija je izgradnja u toku.
Dužina (km)
Deonice
Istočni krak K10, E80
Prosek-Crvena reka
Crvena reka-Čiflik
Pirot(istok)-Dimitrovgrad
Obilaznica oko Dimitrovgrada
Tuneli Progon i Pržojna padina
Severni krak K10-“ Y krak”
GP Kelebija-Subotica
Južni krak K10, E75
Grabovnica- Grdelica
Vladičin Han-D.Neradovac
D.Neradovac-Srpska kuća
Autoput E763 Beograd–Južni
Jadran
Ub-Lajkovac
Ljig-Preljina
Belgrade, 2012
Godina
22,5
12,7
14,3
7
1,7
2012.
2012.
2011/2012.
2010/2012.
22,3
2012.
5,6
26,3
8
2012.
2012.
2011/2012.
12,5
40,36
2010/2012.
2012.
128
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 3.Detaljniji presek stanja i planovi izgradnje pojedinih deonica na Koridorima 10 i 11
Republike Srbije.
2.1. Okvirni pregled troškova izgradnje autoputeva u Srbiji
Prema informacijama zvaničnih institucija Republike Srbije u tabeli 2, dat je pregled troškova izgradnje
autoputeva na Koridoru 10.
Belgrade, 2012
129
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Tabela 2. Troškovi izgranje pojedinih deonica autoputeva u Srbiji
Godina
2004.
2009
2009
2011
2011.
2012.
Deonica
Dužina(km)
Ukupni troškovi
(mil. evra)
Troškovi po km
(evra/km)
19,2
110
20,55
7,95
5,6
10
11,743
100
17,7
21,850
23,8
65
611.000
1.100.000
809.523
2.700.000
4.200.000
6.500.000
Beška-Novi Sad
Novi Sad-Horgoš
Levosoje-Makedonska granica
Donji Neradovac-Srpska kuća
Grabovica-Grdelica
Obilaznica oko Beograda
3. DOSADAŠNJI PRILIV INVESTICIJA U PRIVREDNI RAZVOJ SRBIJE
Prema nekim podacima, za investiranje u gradove koji gravitiraju Koridoru 10 ili su u njegovoj
neposrednoj blizini, je uloženo oko 2,2 milijarde evra, što je odprilike šestina ukupnih ulaganja u Srbiji.
Zahvaljujući ovim investicijama gradovi uz Koridor 10, postali su mesta u kojima je standard nešto veći
nego u mestima koja se nalaze zapadno i istočno od koridora, a u čijim pogonima je otvoreno više od
20.000 novih radnih mesta. Očigledno da investitori biraju mesta uz koridor jer im to smanjuje troškove
i vreme transporta, a to stanovništvu ovih gradovasvakako odgovara, jer je polako počeo da im raste
standard i u nekoj meri i lokalna uprava je počela da ulaže u druge vidove privrede i infrastrukturu.
Podaci koji su dostupni javnosti po pitanju investiranja u Srbiji, a time i u zonama Koridora 10, su
veoma različiti, a često i kontradiktorni. Jedan vid dostupnosti podataka investiranih u Srbiju, od strane
12 evropskih zemalja sa najvećim investicijama, za period 2005-2010., prikazan je u tabeli 3, a u tabeli
4, ukupan nivo investicija u Srbiji u periodu 2002.-2011. [1]
Tabela 3. Strane investicije (12 zemalja Evrope) u Srbiji u periodu 2005-2010. (000 €)
Zemlja
2005
2006
2007
2008
2009
2010
Ukupno
Austrija
Norveška
Grčka
Nemačka
Italija
Holandija
Slovenija
Rusija
Luksemburg
Švajcarska
Mađarska
Francuska
168.864
24
183.137
154.868
14.759
80.387
149.854
11.722
88.331
45.922
24.613
34.816
409.815
1.296.061
672.010
645.370
49.087
-176.560
154.529
12.713
4.839
4.223
179.260
79.087
848.627
2.326
237.108
50.516
111.504
-24.199
64.033
1.700
185.226
70.458
22.901
61.458
330.567
4.025
33.338
59.572
333.665
336.711
70.659
7.903
48.576
82.319
21.891
53.810
234.149
-526
46.724
40.101
167.386
172.267
34.290
419.751
6.002
62.883
17.787
7.150
145.850
1.567
24.450
32,921
42.296
200.100
80.859
6.993
6.739
50.643
15.488
17.089
2.137.872
1.303.477
1.196.766
983.348
718.697
588.707
554.224
460.782
339.713
308.001
281.941
253.410
Ukupno:
Belgrade, 2012
9.126.938 €
10.933.311 $
130
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Tabela 4.Ukupan nivo investicija u Srbiji (2002.-2011.)
God.
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011+
$(mil.)
326,4
1.071,4
796,4
1.440,7
4.286,3
2.004,2
2.362,5
1.771,3
1.510
1.746,2
4. INVESTICIJE U GRADOVIMA KOJI GRAVITIRAJU KORIDORU 10
4.1. Pogodnosti investiranja u Srbiji i zoni Koridora 10
Razvojem i izgradnjom sabraćajne infrastrukture, uključujući i obilaznicu oko Beograda, sa novim
budućim mostom na Dunavu, omogućiće se brži napredak privrede i formiranje nove industrijske
zone, u kojoj se očekuje veliki broj investicija. Opravdanost ulaganja u Srbiji i u zoni Koridora 10, može
se sagledati kroz geografsku povoljnost i podsticajne mere koje daje Vlada Srbije. Neke od tih mera
su:
Povoljan geo-strateški položaj i blizina, kako istočnih, tako i zapadnih zemalja jugoistočne
Evrope,
Dobra pogodnost formiranja industrijske zone za „greenfield” investicije,
Dostupnost kvalitetnih ljudskih resursa sa konkurentnom cenom rada,
Tradicija i bogato iskustvo u industrijskoj proizvodnji,
Razvijena poljoprivredno-prehrambena i prerađivačka delatnost,
Postojanje rečnih luka, javnih skladišta, carine i sl.,
Registrovane kvalitetne industrijske lokacije i objekti za “brownfield” investicije,
Pojednostavljeni propisi o spoljnoj trgovini i stranim ulaganjima,
Niska stopa poreza na dobit preduzeća,
Pojednostavljeni propisi o spoljnoj trgovini i stranim ulaganjima,
Skraćena procedura za osnivanje preduzeća - 15 dana,
Dodatne poreske olakšice u Srbiji,
Za investicije preko 7,5 miliona USD i na 100 dodatno zapošljenih radnika, preduzeća ne
plaćaju porez na dobit u periodu od 10 godina,
Omogćava poreski kredit od 40%, od investicione vrednosti, za investicije u osnovna
sredstva,
Oslobađanje od poreza na dobit,na prihode od koncesije u periodu od 5 godina.
Oslobađaju se od poreza na dobit oni investitori, koji ulažu u profesionalno osposobljavanje,
rehabilitaciju i zapošljavanje invalida. [1]
4.2. Investicije i planovi privrednog razvoja u zoni Koridora 10.
U Beogradu, Inđiji, Subotici Novom Sadu, Svilajncu, Jagodini, Nišu, Leskovcu i drugim gradovima u
zoni Koridora 10, standard stanovništva je viši, nego u mnogim drugim mestima u Srbiji. Od ukupno
nekih 17 milijardi dolara stranih investicija u ovim mestima je plasirana skoro šestina. Strani kapital, se
odlučuju na taj korak pre svega kako bi smanjili troškove transporta, a poslovima koje pokreću, uposlili
lokalno stanovništvo, povećali tražnju u tim mestima i podstakli ekonomski rast. Toj logici, znatno su
doprinele podsticajne mere države Srbije, u vidu sufinansiranja svakog radnog mesta, povlastica
davanja zemljišnig poseda, oslobađanja na određeno vreme za zaposlene plaćanja poreza i doprinosa
i mnoge druge. U izgradnji tih pogona, značajni doprinos su dala naša preduzeća, koja su svojom
mehanizacijom, opremom, korišćenjem domaćih građevinskih materijala i relativno jeftinom radnom
snagom, učestvovala u izgradnji infrastrukture industrijskih kompleksa.
Belgrade, 2012
131
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Opštine koje gravitiraju Koridoru 10, mogu da očekuju izvestan rast proizvodnje, u odnosu na druge, a
njih je oko 80%, kod kojih će bruto domaći proizvod prema očekivanjima da se smanjuje. U buđžetu
Srbije, odvojeno je 22 milijarde dinara za kapitalne investicije, a samo u buđžetu grada Beograda je
predviđeno preko 30 milijardi dinara za takve investicije, što u osnovi sagledava neravnomerni razvoj
celokupne teritorije Srbije, a potvrđuju se iskazi, baš tih lokalnih uprava da je na snazi tzv.
beogradizacija. Beograd, Novi Sad i koridorski deo Vojvodine su već odvojeni od ostatka Srbije, a
razlike se samo još više produbljuju. Beograd učestvuje sa 22% u ukupnom stanovništvu Srbije, a
80% sa ukupnim kapitalom Srbije, što je u 2011., iznosilo oko 100 milijardi dinara. Beograd je za
investicije, zaključno sa 2011., od strane Ministarstva ekonomije i SIEPA dobio u vidu subvencija 46
miliona evra, za 10 kompanija koje se nalaze na teritoriji grada.
Kako su tekle neke značajnije investicije, uz otvaranje novih radnih mesta u drugim gradovima koji
gravitiraju Koridoru 10, prikazane su na slici 4.
U Inđiji je do sada bilo prilično investicija, a u ovom trenutku ima sedam velikih, koje se pozitivno
odražavaju i na standard stanovništva. Ukupan nivo stranih investicija u ovom gradu od 2002. prelazi
pola miliona evra, u više od 40 grinfild investicija. Prema podacima zvaničnika za njih je 2011. bila
bolja od 2008. i 2009. Sam koridor, pored drugih povlastica koje daje, utiče na opredeljenje ulagača u
ovaj grad, čak i do 20%.Infrastruktura je veoma važna, ne manje je važna i ozbilja administracija koja
može da ponudi čitav uslužni paket, da smanji administraciju, korupciju, da brine o investitoru i
podsticajnim merama, povoljne cene zemljišta.
Najveća privredna investicija u zoni Koridora 10, je ulaganje i formiranje nove fabrike FIAT u
Kragujevcu. Planirano je ukupno ulaganje od 1.600 milionaevra sa otvaranjem 2.500 novih radnih
mesta. Ono što je zanimljivo (24.10.2012., Dnevni list Politika objavljuje članak pod nazivom „Srpski
proizvođači daleko od Fijata“ ). U takstu stoji da se u zemlji tranutno pravi 67% delova za novi model
„500L“, ali samo jedna domaća firma, kragujevačka„Promotor IRVA“, ispunjava sve uslove za
direktnu saradnju sa italijanskim proizvođačem automobila. Ta firma će proizvoditi za prvu ugradnju
dizalice i inbus ključ koji će biti u rezervnom alatu. Očekuje se dobijanje certifikata firme „Goma lajn“
za proizvodnju gumenih creva.
Prema FAS (Fabrika automobila Srbija) u ovom trenutku u Srbiji je registrovano 11 multi-nacionalnih
kompanija koje će proizvoditi delove za FIAT. To su: „Manjeti Mareli“, „Đžonson kontrol“, PCMA,
HTL,“ Siđit“, „Promo Manjeti“, „Mekaplast“, Drakselmajer“, „Bešiz“, A.D. Plastik, „Elmet“. U
tim fabrikama danas se izrađuju: izduvni sistemi, sistemioslanjanja, obloge za vrata, instrument table i
centralne konzole, kompletna sedišta, nosači motora, plastične posude, delovi od bitumena i gume,
elektronski sistemi, kablovski setovi i druga oprema.
Pred uslovza saradnju sa FAS-om, je posedovanje standarda ISO 9001 i ISO 2000 i dostignuti
međunarodni sistem kvaliteta ISO TS 16 949.
Belgrade, 2012
132
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 4. Investicije i broj novih radnih mesta u gradovima koji gravitiraju Koridoru 10.
Početkom ove godine u Inđiji je postavljen kamen temeljac za izgradnju fabrike cirkularnih pumpi
„Grundfos Srbija“, koja sa još 80 svojih fabrika, drži 50% svetskog tržišta industrijskih pumpi. Nova
fabrika gradiće se u severno-zapadnoj industrijskoj zoni na placu od 15ha koja može zaposliti
2
350+150 radnika. Prostiraće se na površini od oko 25.000 m ,a biće uloženo 50,6 miliona evra i
zapošljavaće u prvoj fazi koja se očekuje krajem ove godine oko 350 radnika, a kasnije uz mogućnost,
u zavisnosti od obima proizvodnje i potrebe tržišta još do 150 radnika. Cirkulacione pumpe koje bi se
proizvodile u ovom pogonu biće namenjene tržištu Rusije i Mađarske, kao i drugim zemljama.[7]
Indijska „Embasi grup“, započela je ove godine izgradnju IT-centra. U prvoj fazi ovog projekta posao
će dobiti oko 2.500 radnika i biće završena do kraja sledeće godine.
Belgijska kompanija „Elektrovinds“, je uložila 21 milion dolara za gradnju fabrike „Energo zelena“,
za preradu klaničnog otpada. Fabrika će godišnje prerađivati 150.000tona animalnog otpada, a
zapošljavaće oko 100 radnika.
Belgrade, 2012
133
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Drugi pogon koji bi trebalo da počne da se gradi je nemački „String metal“, koji će proizvoditi deo
komponenti za Simensove tramvaje, a po planu je zaposlenje oko 100 radnika.
Niš je jedan od gradova koji je 2011., možda i najviše profitirao zbog blizine Koridora 10, u njemu su
otvorene fabrike „JURA“, i JURA Šinvon“ u kojima radi 2.300 ljudi. Italijanski modni gigant
„Beneton“, kupio je „Nitex“i planira da zaposli 2.700 ljudi. Očekuje se realizacija i projekta sa
„Dajtekom“, Sažemom“,zatim izgradnja akvaparka vrednog 100 miliona evra i stambeno-poslovnog
prostora u kasarni „Bubanjski heroji“. Otvaranjem tih pogona, stvorena je potreba za uvođenjem
nove linije gradskog prevoza do radne zone Donje Međurovo, koju koristi veliki broj radnika. Deo
ostvarenih prihoda sliva se u gradski buđžet uz ispunjavanje zahteva po pitanju poreza i doprinosa.
U gradskoj stambenoj agenciji očekuje se dolazak novih investitora i značajnije uposli niška
građevinska operativa, pa se predviđa da će samo za izgradnju stambeno-poslovnog kompleksa u
kasarni „Bubanjski heroji“ biti uposleno oko 1000 građevinskih radnika.Dolazak novih investitora,
šansa je za preduzetnike iz drugih privrednih grana da prošire proizvodne delatnosti. Naprimer, u
niškoj pekari „Branković“ povećana je proizvodnja peciva nakon otvaranja novih fabrika za oko 15%.
Slovenačke kompanije za proizvodnju auto delova „Grah automotiv“, su u Batočini, otvorili novu
2
dodatnu proizvodnu halu sa opremom visoke tehnologije, površine 4.500m , uz posedovanje
2
postojeće od 2.500m . Do kraja godine zaposliće 400 radnika, a kao podsticaj zapošljavanju, ova
kompanija je od srpske Vlade dobila 1,6 miliona evra, kroz program podrške direktnim investicijama.
Inače, investicija slovenačke firme iznosi 11,2 miliona evra, a najveći deo proizvodnje, izvozi
uglavnom u države EU, za poznate proizvođače, među kojima su i “Audi”, “Mercedes” i “Ford”.
U Leskovcu je nemačka kompanija za proizvodnju čarapa „Falke“, započela izgradnju fabrike u
novembru 2010., ali se sa završetkom i zapošljavanjem novih radnika ozbiljno kasni.
U Subotici je samo u poslednje tri godine otvoreno 3.200 radnih mesta, a očekuje se do kraja godine
još najmanje 600.Na ovaj način broj nezaposlenih ljudi smanjen je za trećinu. U rekordnom roku
obezbeđene su velike površine građevinskog zemljišta, pre svega u industrijskoj zoni u malom
Bajmoku,a sva neophodna dokumentacija za gradnju pogona dobija se u najkraćem mogućem roku.
Ono što nadležni u Subotici navode kao veoma bitan faktor, pored činjenice da je za trećinu smanjen
broj nezaposlenih i da je kvalitet života na višem nivou nego ranije, jeste i to što svi investitori spadaju
u tzv. „Belu industriju„, gde nema bojazni od zagađenja.
Austrijska kompanija unikatnog nakita„Svarovski“ podići će novu fabriku u Subotici, ulažući 21 milion
evra i zaposliće oko 550 radnika.
Svilajnac je privukao četiri jaka investitora, među kojima su najpoznatiji austrijski „POOR“, japanski
„Panasonik“, nemački „Reum“.
Panasonik je, posle razmatranja više lokacija u Srbiji, odlučio da svoju prvu proizvodnju smesti u
Svilajnac, gde trenutno posluje u iznajmljenim halama, proizvodi elemente LED rasvete i zapošljava
oko 50 radnika, ali uskoro znatno proširuje proizvodnju.Za dva meseca ovde će biti instalirana
najnovija tehnološka linija, a do kraja godine posao će dobiti još 100 radnika. Svilajnac je uspeo da
privuče investitore, nakon obezbeđenja vrlo povoljnih beneficija, kao što je besplatno zemljište na 99
godina, oslobađanje od lokalne takse u roku od tri godine i maksimalno skraćen rok za izdavanje
dozvola za početak gradnje, koji je smanjen na samo mesec dana.
Zapošljeno je dosta mladih ljudi, a očekuje se dolazak novih investitora i novih kompanija iz Austrije,
što je šansa za nova radna mesta. Grad je izmenio svoj izgled, bolji su putevi, mostovi, ulice sređen je
gradski trg,obnavlja se centar za kulturu i dr.
Južnokorejska kompanija „MECEN IPC“, počeće u martu 2012., svoj prvi posao u Srbiji u okviru
preduzeća „Mecen Evropa tex“, koje će u Novoj Pazovi proizvoditi izolacione materijale visokog
Belgrade, 2012
134
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
kvaliteta za domaće i strano tržište. Fabrika izolacionog materijala pod nazivom „IZOMET“, je plod
zajedničkog ulaganja partnera iz Seula i domaće firme u Novim Banovcima, čime se i praktično
ostvaruje projekat vredan ukupno 4 milionaevra. Zahvaljujući Ministarstvu ekonomije i Agenciji za
strana ulaganja i promociju izvoza Srbije (SIEPA), koji su taj projekat subvencionirali sa 4.000 evra po
zaposlenom, a posao će u naredne dve godine u toj fabrici dobiti 60 radnika. [7]
Engleska kompanija „Albon“, gradiće u Rumi fabriku za proizvodnju rezervnih delova za vozila
2
„Ford motor“, kompanije na površini od 6.500 m , uz ulaganje od 7,5 milionaevra, a zapošljavaće
200 radnika. Prema planu investitora proizvodnja će početi u januaru 2013.
Takođe u Rumi, Hrvatska kompanija „Adrijana teks“, članica italijanske „Kalcedonije“podnela je na
2
odobrenje elaborat za izgradnju pogona na 5.000m za proizvodnju kupaćih kostima. Vrednost
ulaganja iznosi 7,2 miliona evra, sa zaposlenjem oko 71 radnika, a do kraja 2014.,još 193 radnika.
Prema urađenom elaboratu, ukupan godišnji prihod iznosiće oko 2.232 miliona evra.
Značajna investicija je i firme „Insert“ iz Beograda, proizvođač cipela i gornjih delova za modnu
obuću.Insert radi za renomirane kupce-Šanel, Kristian Dior, Valentino, Prada, Serđo Rosi i dr. Pored,
danas iznajmljenog poslovnog prostora, vlasnik ima nameru da izgradnjom novog objekta od
2
4.000m ,i investiciju od 1,5 milionaevra, pored sadašnjih 100 zaposlenih, do kraja ove godine zaposli
90 novih radnika.
U Pećincima je postavljen kamen temeljac za izgradnju nove fabrike Nemačke firme „Bosch“, za
2
proizvodnju sistema brisača za automobile, proizvodnih kapaciteta od oko 22.000m .U izgradnju će
biti uloženo oko 70 miliona evra u narednih sedam godina, a zaposliće 620 radnika.
Ruska federacija je kupila za 300 milionadolara „Beopetrol“, započela gradnja magistralnog
gasovoda Niš-Leskovac u vrednosti od 24 miliona dolara, i uložila u beogradsku turističku agenciju
„Putnik“, oko 65 miliona dolara.Rusi su kupili fabriku bakarnih cevi u Majdanpeku za oko 35 miliona
dolara, fabriku pumpi „Jastrebac“ u Nišu, u koju su uložili 3,2 miliona dolara.
U Srbiji je otvorena i Moskovska banka sa kapitalom od 17 milionadolara. Ruska osiguravajuća
kompanija„SOGAS“ je krajem prošle godine dobila od strane NBS dozvolu za rad, a plan je da u
narednih nekoliko godina uloži oko 8 miliona dolara.
Najveća ruska banka „Sberbanka“, koja je odnedavno vlasnik Folksbanke, van Austrije, uskoro bi
mogla u Srbiju da unese bankarski kapital, što bi doprinelo poboljšanju načina kreditiranja privrede i
građana. Na predstavljanju planova banke u Budimpešti, ove godine su planirana izdvajanje 200
miliona evra za kredite namenjene malim i srednjim preduzećima, poljoprivredi i projektima za
energetsku efikasnost. Plan je da deo tog novca bude na raspolaganju i u Srbiji, kojim bi se finansirao
izvoz robe na rusko tržište.
U najavi je ugovor o dodeli buđžetskih sredstava za podsticaj italijanskoj kompaniji za otvaranje
fabrike obuće „GEOKS“ u Vranju u koju će se uložiti 15,8 miliona evra uz zaposlenje 1.250 radnika.
Planirano je da fabrika proizvodi godišnje 1.250.000 pari obuće, a za svako radno mesto „Geoks“ će
dobiti stimulativnih 9.000 evra.
Takođe u najavi je i potpisivanje ugovora sa američkom korporacijom „Kuper standard“ o otvaranju
fabrike auto-kedera u Sremskoj Mitrovici, uz ulaganje od 20 miliona evra, u kojoj će posao dobiti 500
radnika, uz podsticaj Vlade Srbije sa 8.000 evra po zaposlenom radniku. U planu je zauzimanje 7ha
2
građevinskog zemljišta za planiranu izgradnju nove fabrike sa 10.000 m poslovnog prostora.
Međutim, u Srbiji postoje i drugi problemi, a to je manjak parcela za industrijska ulaganja, posebno u
Novom Sad i Aleksincu, pa iz tih raloga i ne mogu da se pohvale nekim značajnijim investicijama. Novi
Belgrade, 2012
135
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Sad raspolaže jednom jedinom parcelom uz sam Koridor 10, a i ona je pod sudskim sporom.
Započeta je investicija na Rimskim šančevima na 4ha, za novu industrijsku zonu i tu će sledeće
2
godine biti na raspolaganju 50.000 m poslovnih prostora.
U planu je aktiviranje dodatnih 60 ha zemljišta kraj pumpe „Minut“, koje bi se uz pomoć Republičke
direkcije moglo pripojiti gradu i ponuditi investitorima.Ipak, Novi Sad nije bez investicija, u poslednje tri
godine su iznosile preko 130 miliona evra.
5. ZAKLJUČAK
Posleg dužeg perioda, Srbija se suočava sa pitanjem budućnosti, kako sprovesti neminovni
ekonomski oporavak unapređenjem privredne strukture i zaposliti radno sposobne generacije i time
povećati socijalnu sigurnost. To je veoma teško ili praktično nemoguće sprovesti bez stvaranja novih
vrednosti u industriji, poljoprivredi i drugim privrednim granama. Jedan vid ka ostvarenju takvih ciljeva
je neophodna reindustrijalizacija koja mora biti u funkciji razvoja, ekonomskog rasta i otvaranjem novih
radnih mesta. Pri tome treba biti izuzetno stručan i racionalan u smislu koje grane su vitalne i koje se
mogu brzo pokrenuti, naprimer, saobraćaj i komunalne infrastrukture, građevinarstvo, elektroprivreda i
pre svega poljoprivreda. To su oblasti u kojima Srbija ima komparativne prednosti i predispozicije ka
izvozu. Danas su, polazne osnove poslovnog okruženja veoma kompleksne, jer srpska privreda ne
može da postigne značajniji rast, održi nisku inflaciju, smanji spoljnotrgovinski deficit na održivom
nivou, poveća izvoz roba, poveća broj novih radnih mesta i dr.
U kontekstu pokušaja rešavanja realnih problema, tadašnje Ministarstvo za infrastrukturu i energetiku
uložilo je veliki napor u realizaciji zakonske regulative i infrastrukturnih projekata, pre svega završetka
započetih i pokretanjem izgradnje novih autoputeva, što će predstavljati neophodan preduslov za
efikasno funkcionisanje kompletnog saobraćajno-transportnog sistema u Srbiji.U takvim uslovima
privrednog razvoja znatno bi se smanjili troškovi transporta, uposlilo bi se lokalno stanovništvo,
doprinelo razvoju lokalnih kapaciteta i same uprave, podsticajnim merama države Srbije u vidu
sufinansiranja svakog radnog mesta,izdavanja zemljišnog poseda pod beneficiranim uslovima,
oslobađanjem na određeno vreme plaćanje poreza i doprinosa i druge olakšice daće značajan
doprinos ka ostvarenju tih ciljeva. Svim tim značajnim koracima progresa privrednog razvoja Srbije,
imaće i konačni završetak Koridora 10, kao i intenzitet izgradnje novog Koridora 11, ali ništa manjeg
značaja i revitalizacija sadašnjih magistralnih i lokalnih puteva.
Privredni razvoj Srbije, ne može da se bazira samo na razvoju privrede u zoni Koridora 10, već mora
donošenjem kratkoročnih mera da unapredi ravnomerno poslovanje privrede na celoj njenoj teritoriji,
kroz stvaranje povoljnog ambijenta poslovanja, dobijanjem povoljnijihbankarskih kredita, iznalaženja
novih tržišta, većim ulaganjem u nauku i drugih relevantnih parametara, što bi doprinelo povećanju
produktivnosti, a time i likvidnosti preduzeća.
LITERATURA
[1] www.koridor10.rs/
[2] Petrović P., Petrović Marija:“Kvantifikacija interakcije čovek-vozilo u saobraćajnim nezgodama
i opštoj bezbednosti saobraćaja u Srbiji“,(Časopis „Put i saobraćaj“, br.2, 2011, Srpsko društvo
za puteve Via-Vita, str.11-18).
[3] Petrović P., Petrović Marija:„Predikcijaznaĉaja „Koridora 10“ u bezbednosti drumskog
saobraćaja u Srbiji”, (II-ga Konferencija „Koridor 10“–održivi put integracija”, Beograd, Institut
„Kirilo Savić“, PKB, 2011.,str.8-12, CD).
Belgrade, 2012
136
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
[4] Petrović P., Mirović R., Maravić B.: “Ekološki aspekt buke i vibracija u zoni izgradnje
rd
novogbeogradskog mosta preko reke Save”,(22 Nacionalna konferencija „Buka i vibracije“,
Niš, 2010., Fakultet zaštite na radu, str.29-34).
[5] Petrović P., Jovanović T., Petrović Marija, Mirović R., Tomić R.:„Predikcija buke saobraćaja,
sa osvrtom na novi savski most i mogućnosti zaštite naseljenih mesta postavljanjem
akustičkih panela”,(I-vaKonferencija„ Koridor 10“-održivi put integracija, 2010., Beograd, PKB,
Institut „Kirilo Savić“, str. 144-163 CD).
[6] Statistički godišnjak Republike Srbije, 2011.
Belgrade, 2012
137
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
FACILITATING SPECIFIC TRANSPORT SERVICES ALONG THE
CORRIDOR X IN ORDER TO ATTRACT TRAFFIC FLOWS
Dragan Kostić, Free zone Pirot, Serbia
Aleksandar Simonović, Free zone Pirot, Serbia
Vladan Stojanović, Free zone Pirot, Serbia
Abstract:
In the process of establishment of an integrated European transport system, Serbia joined by the
development of the Master Plan for Transport in Serbia. The first steps of the implementation of the
Master Plan are made, project of intermodal terminal in Belgrade and Pirot are in progress while
planned integration of the terminal will be achieved through a variety of projects and initiatives,
developing multimodal network in Southeast Europe and Serbia. In addition to primary objectives of
the Master Plan it is good to follow current changes in the transport market because the chances of a
further impetus for the development of intermodality in Serbia can be found in these changes.
OMOGUĆAVANJE SPECIFIČNIH TRANSPORTNIH USLUGA NA KORIDORU X U CILJU
PRIVLAČENJA TRANSPORTNIH TOKOVA
Apstrakt:
U procesu formiranja evropskog integralnog sistema transporta, Srbija se uključila izradom Master
Transport Plana Srbije. Prvi koraci realizacije Master plana su naprvaljeni, izrada projekata
inetrmodalnih terminala u Beogradu i Pirotu su u toku, dok će integracija predviđenih terminala biti
ostvarena kroz različite projekte i inicijative razvoja multimodalne mreže Jugoistočne Evrope i Srbije.
Pored osnovnog cilja Master plana potrebno je pratiti i trenutne promene na tržištu transporta jer se
šanse za dalji podstrek razvoja intermodalnosti u Srbiji mogu pronaći baš u tom delu.
1. UVOD:
Ovaj rad se oslanja, pre svega, na rezultate predstudije izvodljivosti „Izgradnje Intermodalnog
Logističkog Centra Pirot“ koja razmatra pored potreba samog logističkog centra Pirot i transportne
tokove koje prolaze kroz Srbiju i Balkan i to kako trenutne tako i buduće scenarije transportnih tokova.
Drugi dokument na koji se oslanja ovaj rad je projekat „Adriatic Danube Black sea multimodal
platform“ koji se bavi unapređenjem intermodalnog transporta u Jugoistočnoj Evropi iz kog je uzet
dinamčki plan razvoja intermodalnog transporta kao model i predlog za razvoj intermodalnog
transporta u Srbiji.
Centralnu deo u ovom dokumentu predstavlja činjenica da su cene RoRo transporta povećane i da se
Turski kamioneri sve više opredeljuju za drumski transport od Turske do Zapadne Evrope koji je u
ovom trenutku isplatljiviji nego li RoRo transport i gde naša zemlja može videti šansu u cilju privlačenja
transportnih tokova kroz našu zemlju.
2. KORIDOR XC – TRENUTNI PROTOK ROBE
U okviru pred-studije izvodljivosti izgradnje „Intermodalnog Logističkog Centra Pirot“, urađene u
Novembru 2010 godine, detaljno su istraženi zahtevi za transportom u odnosu na Balkan i Republiku
Belgrade, 2012
138
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Srbiju. Glavne karakteristike trgovinskih tokova preko Evrope i Balkana prikazani su vidu mreže
transportnih tokova prikazane u nastavku.
Detaljnije, trenutna situacija trgovinskih tokova je opisana PUTEM o-d matrica (Origine/Poreklo –
Destination/Odredište) kroz pregled baze podataka EUROSTAT COMTEXT i UNCTAD COMTRADE
10
koja je poslužila za dobijanje trenutne osnovne matrice za 2007 . Značajan napor je upotrebljen u
dobijanju osnovnih matrica koje se tiču količina (tona/godišnje). Kao rezultat, Tabela 2 i Tabela 3,
prikazuju nam godišnji protok količine robe od/prema odabranim Balkanskim zemaljama i zemljama
Evro-Mediteranskog basena. Sirova nafta, struja i prirodni gas nisu uzeti u proračun zato što se način
transportovanja obavlja u okviru specifičnih transportnih lanaca (putem cevi i kablova) koji ne
predstavljaju deo koji je razmatran u pred-studiji izvodljivosti.
Rezultati zadatka matrice trenutnog zahteva prema trenutnoj mreži snabdevanja, prikazani su ispod
(Tabela 1), pretpostavljajući uklanjanje svih barijera koje otežavaju tranzitnu trgovinu kroz Srbiju.
Koridor X je na glavnoj osi trgovine koja spaja Sever-Jug kroz Balkan, sa strateškim značajem u
prihvatanju i podršci trgovini prema/od Istočne Grčke i Turske.
Trenutni tokovi
Tona / godišnje
Tabela 1 – Godišnji tokovi (izraženi u tonama) u trenutnom scenariju zahteva za transportom pod
efektivnosti koridora X
Tabela 1 hipotezom
– Godišnji
tokovi (izraženi u tonama) u trenutnom scenariju zahteva za transportom pod
hipotezom efektivnosti koridora X
10
Matrice za 2008 i 2009 (zasnovane kasnije na privremenim vrednostima) takođe su trebale da uđu u proračun, ali nisu ušle
zbog efekta globalne ekonomske krize.
Belgrade, 2012
139
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
destination country
Albania
Algeria
Austria
Belarus
Belgium
Bosnia Hercegovina
Bulgaria
Croatia
Cyprus
Czech Republic
Denmark
Egypt
Estonia
Finland
France
Georgia
Germany
Greece
Hungary
Ireland
Israel
Italy
Jordan
Latvia
Lebanon
Libya
Lithuania
Luxembourg
Macedonia
Malta
Moldova
Montenegro
Morocco
Netherlands
Norway
Poland
Portugal
Romania
Russia
San Marino
Serbia
Slovakia
Slovenia
Spain
Sweden
Switzerland
Syria
Tunisia
Turkey
Ukraine
United Kingdom
Albania
4,652
3
906
9
1,187
8,683
14,188
1,283
149
548
197
2,058
10
12,468
0
8,119
257,911
62
12
2
456,879
23
44
4
3
17
510,580
0
23
30,156
12
155
27
253
0
2,825
15,428
141,927
83
623
20,823
85,337
336
0
335
43,690
18
25,145
Bosnia Herc
33,074
3,632
396,638
15
23,209
125,852
5,777,657
178
334,199
3,331
12,512
175
492
27,267
2
159,311
10,688
250,765
523
227
659,980
395
14
27
1,993
193
5,353
50,419
0
30
194,849
108
16,354
2,382
420,196
828
649,838
4,109
1,225,004
11,550
569,762
11,683
12,474
25,908
323
26
52,206
1,412
4,538
Bulgaria
129,566
131,252
160,160
4,555
181,139
81,887
66,160
89,557
64,217
16,900
58,839
738
21,416
174,661
14,109
528,171
1,943,081
98,825
5,885
91,935
741,820
7,600
4,128
18,491
520
9,355
341
538,794
60,455
18,701
4,471
50,168
113,750
7,205
175,663
29,714
1,551,084
182,092
18
360,635
62,560
147,785
423,688
30,263
30,400
29,891
118,193
3,066,961
107,484
170,947
Croatia
59,660
6,618
509,440
1,581
22,360
2,143,147
202,193
16,370
93,238
10,140
164,350
321
8,422
75,821
2,899
337,120
23,485
696,663
4,867
6,019
7,260,771
387
3,010
489
1,602
3,206
3,987
63,452
200
911
309,277
11,252
52,635
3,586
88,163
3,988
206,431
14,772
287
576,421
48,976
2,361,413
96,175
26,974
25,525
2,577
1,025
157,911
11,354
43,246
origin country
Greece
Macedonia
1,198,467
169,681
184,181
207
109,034
15,120
6,876
7,017
296,591
30,126
20,218
115,495
1,344,164
607,042
92,730
194,503
575,710
4,310
96,855
11,775
49,382
1,181
149,073
1,625
6,871
187
76,826
65
1,190,056
16,719
15,767
28
1,351,290
103,460
530,568
129,314
13,887
27,582
7
265,018
261
1,879,135
144,248
21,037
33
7,680
1,208
86,236
29
30,620
81
14,510
673
955
1
610,380
23,175
3,056
12,370
198
87,696
26,268
54,650
402
380,629
12,032
32,123
836
241,012
9,384
63,235
21,085
857,857
30,931
306,952
17,642
760
132,365
1,295,165
129,457
6,916
458,189
61,537
829,260
172,977
331,024
3,868
29,687
3,679
72,050
15
100,094
0
680,453
59,457
201,235
2,886
921,095
23,353
Montenegro
14,097
805
25
11,647
654
4,720
4,530
162
2
0
0
272
3,684
24,056
43,841
136
331,049
87
838
879
33
179
0
90
57
185,956
165
14,093
1,004
7
180
106
205
Romania
20,504
105,928
460,684
4,994
215,782
94,862
1,289,919
31,497
59,822
201,292
32,287
440,465
3,959
36,809
656,825
10,353
995,003
651,714
1,504,650
9,481
153,912
2,171,693
76,549
4,150
91,689
6,939
12,251
1,149
23,607
64,116
284,707
50,296
53,908
299,003
21,665
332,223
34,044
199,299
2,074
372,411
149,504
66,177
603,731
63,714
37,448
223,737
72,142
4,136,898
301,105
256,243
Serbia
352,924
19,442
288,470
6,803
105,797
1,284,693
489,494
457,582
108,540
109,770
5,479
21,698
1,209
4,914
205,411
1,175
728,295
192,349
377,196
15,450
12,034
803,591
4,088
3,186
3,597
245
2,130
1,818
616,078
9,995
3,789
1,088,941
28,367
70,822
2,041
113,830
57,206
1,282,018
173,273
20
103,625
309,002
94,492
18,890
66,197
1,361
3,013
63,474
75,188
92,272
Turkey
554,961
647,991
342,596
100,659
1,209,594
104,565
1,387,664
143,990
821,575
177,865
133,984
632,864
29,993
153,924
1,267,764
825,901
2,769,622
1,720,304
234,901
355,113
1,482,408
5,784,764
286,565
38,455
348,515
446,726
59,294
18,175
172,361
22,980
98,750
6,754
709,734
1,014,904
54,175
532,214
617,220
2,036,475
3,622,672
45
208,517
112,005
99,764
4,029,391
248,044
106,397
1,977,988
482,019
1,385,906
2,292,153
Tabela 2 – Trenutna o-d matrica (tona/godišnje): trgovinski tokovi do balkanskih zemalja (ne
računajući sirovu naftu, struju i prirodni gas)
origin country
Albania
Algeria
Austria
Belarus
Belgium
Bosnia Hercegovina
Bulgaria
Croatia
Cyprus
Czech Republic
Denmark
Egypt
Estonia
Finland
France
Georgia
Germany
Greece
Hungary
Ireland
Israel
Italy
Jordan
Latvia
Lebanon
Libya
Lithuania
Luxembourg
Macedonia
Malta
Moldova
Montenegro
Morocco
Netherlands
Norway
Poland
Portugal
Romania
Russia
San Marino
Serbia
Slovakia
Slovenia
Spain
Sweden
Switzerland
Syria
Tunisia
Turkey
Ukraine
United Kingdom
Albania
4,652
15,256
32,499
534
4,536
33,074
129,566
59,660
6,059
14,208
1,268
70,013
0
1,283
10,904
10,639
81,476
1,198,467
20,078
753
1,532
1,648,582
286
24
15,451
8
2,237
169,681
5
12,549
14,097
317
10,712
669
53,494
5,253
20,504
361,177
149
352,924
4,189
9,533
12,115
1,912
19,469
1,496
4,633
554,961
188,778
9,611
Bosnia Herc
8,683
2,344
190,198
755
26,604
81,887
2,143,147
465
265,273
5,947
29,744
2,050
2,847
34,264
4
240,399
20,218
437,657
2,102
957
341,480
90
64
61
525
290
2,174
115,495
1
580
11,647
425
38,292
766
49,975
2,744
94,862
139,352
1,284,693
67,438
282,981
23,557
11,151
256,716
2,260
427
104,565
102,100
5,772
Bulgaria
14,188
0
326,212
14,575
207,915
125,852
202,193
139,551
196,455
35,148
83,319
4,993
37,734
135,821
57,391
655,539
1,344,164
359,563
7,088
26,053
639,970
2,506
1,611
1,262
460
9,159
4,765
607,042
336
49,859
654
271,381
146,686
6,537
257,337
9,206
1,289,919
2,536,798
100
489,494
67,816
62,980
177,963
33,163
114,714
214,048
56,265
1,387,664
4,549,074
188,377
Croatia
1,283
9,316
882,150
167,404
65,757
5,777,657
66,160
3,235
351,019
39,320
32,166
1,716
22,193
107,620
26
664,770
92,730
758,134
3,182
7,097
1,824,719
29
975
237
2,119
9,176
3,892
194,503
257
825
4,720
328,342
133,837
10,020
243,894
9,686
31,497
504,733
34
457,582
163,479
908,237
148,848
40,652
39,814
951
53,363
143,990
150,492
32,413
destination country
Greece
Macedonia
257,911
510,580
2,958
364,427
38,990
3,427
110
827,951
6,677
10,688
50,419
1,943,081
538,794
23,485
63,452
611,493
452
161,753
22,772
173,693
4,430
706,356
22,594
10,082
106
320,015
1,601
1,815,213
9,155
26,381
5
2,166,005
66,121
610,380
741,955
48,287
27,472
1,038
134,548
1,957
3,883,416
56,372
4,763
240
14,751
21
116,784
45
136,276
357
25,051
227
228,246
278
530,568
847
0
55,182
94
24,056
838
68,477
143
1,078,807
18,553
115,332
2,346
398,546
262,534
68,566
465
651,714
23,607
1,499,475
35,104
1,405
192,349
616,078
114,189
16,371
45,019
56,810
829,445
9,075
209,905
3,375
29,004
12,478
254,579
41
64,827
104
1,720,304
172,361
474,132
174,474
652,584
4,397
Montenegro
30,156
17,318
0
739
194,849
4,471
309,277
2
14,753
144
36
11
6
1,771
12,604
87,696
9,415
30
100,308
1
36
4
26,268
0
6,711
8
10,747
4
50,296
76,807
1,088,941
596
30,484
3,112
926
2,698
6,754
1,756
Romania
2,825
2,599
869,250
38,706
276,227
649,838
1,551,084
206,431
123,473
652,197
68,803
113,863
6,457
48,382
735,593
487
1,734,992
857,857
3,926,534
17,744
45,331
1,821,002
4,714
4,677
2,463
34,446
31,174
42,492
30,931
23,271
314,570
90
191,606
445,666
29,594
2,299,777
26,649
4,405,884
2,341
1,282,018
728,730
121,519
257,264
86,473
76,935
72,322
26,016
2,036,475
2,577,696
221,339
Serbia
141,927
1
307,397
41,840
55,817
1,225,004
360,635
576,421
1,832
160,326
10,875
21,593
2,076
21,172
113,192
2,002
456,404
132,365
606,903
4,398
9,199
418,661
642
119
49
1,326
2,243
2,331
1,295,165
14
16,109
185,956
7,392
86,020
7,632
214,270
1,812
372,411
1,558,963
31
484,833
294,801
53,693
67,097
59,813
103,766
332
208,517
1,901,514
25,032
Turkey
43,690
1,588,009
585,115
119,397
2,244,026
52,206
3,066,961
157,911
239,551
140,860
415,897
1,917,531
468,034
537,508
1,509,076
715,258
3,134,367
680,453
413,861
51,799
768,598
1,972,098
19,120
9,073
362,463
592,825
373,496
95,318
59,457
21,907
96,247
106
512,849
1,969,628
415,144
321,264
145,246
4,136,898
25,587,299
15
63,474
358,584
74,095
1,230,909
2,262,415
145,031
883,222
495,622
11,258,710
3,118,275
Tabela 3 – Trenutna o-d matrica (tona/godišnje): trgovinski tokovi od balkanskih zemalja (ne
računajući sirovu naftu, struju i prirodni gas)
Belgrade, 2012
140
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3
MODEL PREDVIĐANJA TRGOVINSKIH TOKOVA U BUDUĆNOSTI
U cilju podrške pred studije izvodljivosti, analiza potražnje je izvršena u odgovarajućim budućim
scenarijima, koji se odnose na završetak koridora IV, VIII i X i proširenju trgovinskih sporazuma
šengenskog tipa u korist Turske i drugih Severnih afričkih zemalja: za ovaj cilj, primenjen je sistem
matematičkih modela u samoj analizi, a rezultati su dati u nastavku.
3.1 Završetak odgovarajućih Pan-Evropskih koridora
Prvo, na osnovu modela gravitacije prikazanog u pred-studiji izvodljivosti, prikazane su o/d matrice
budućih zahteva (Tabela 4 i Tabela 5) u odnosu na izvoznu i uvoznu trgovinu. Matrice su postavljene
pod pretpostavkom scenariju završetka Koridora IV, VIII i X. Zatim su vrednosti iz matrica uzeti za
simulaciju predstavljenu ispod (Tabela 6) u smislu željenih linija. Glavni dokaz je značajan porast
tokova tranzitne trgovine na Balkanu, na primer, kod Turske tranzitne trgovine u drumskom
saobraćaju očekuje se povećanje od 1,74 miliona tona godišnje prema Severu i 2,21 miliona tona
godišnje prema Jugu, što će rezultirati povećanjem tranzita Srpske trgovine.
Rezultati iz pred-studije izvodljivosti pokazuju da neophodan uslov smanjenja konkurentnosti koridora
IV a povćanje efektivnosti koridora X predstavljaju smanje kamionske vozarine koje se primenjuju u
Republici Srbiji ali i povećanje efektivnosti i ubrzanje carinskih procedura.
destination country
Albania
Algeria
Austria
Belarus
Belgium
Bosnia Hercegovina
Bulgaria
Croatia
Cyprus
Czech Republic
Denmark
Egypt
Estonia
Finland
France
Georgia
Germany
Greece
Hungary
Ireland
Israel
Italy
Jordan
Latvia
Lebanon
Libya
Lithuania
Luxembourg
Macedonia
Malta
Moldova
Montenegro
Morocco
Netherlands
Norway
Poland
Portugal
Romania
Russia
San Marino
Serbia
Slovakia
Slovenia
Spain
Sweden
Switzerland
Syria
Tunisia
Turkey
Ukraine
United Kingdom
Albania
5,671
3
982
11
1,291
9,011
22,042
1,497
149
714
226
2,058
11
12,786
0
8,919
293,123
81
12
2
473,521
23
47
5
3
18
897,876
0
37
31,262
12
174
30
298
0
4,123
18,334
167,348
113
642
21,062
96,228
344
0
337
50,960
24
26,597
Bosnia Herc
33,930
3,632
434,952
16
23,988
147,500
5,783,139
179
356,944
3,416
12,512
189
517
28,719
3
169,259
11,955
257,513
523
227
699,188
404
14
28
1,993
200
5,523
54,879
0
36
194,849
112
16,710
2,448
438,449
834
870,689
4,364
1,271,051
11,706
633,331
12,004
13,300
28,143
335
26
57,037
1,605
4,625
Bulgaria
218,393
132,173
295,995
4,950
276,713
118,814
100,805
90,450
104,400
22,326
59,764
1,076
28,151
226,503
14,339
896,981
2,516,205
148,755
6,909
93,108
1,229,808
7,660
4,962
18,664
528
10,704
567
852,537
64,959
19,677
6,655
54,772
172,270
10,985
231,173
32,863
2,218,705
187,419
30
490,068
123,028
247,779
493,024
45,241
54,766
30,347
119,270
3,388,356
110,332
239,686
Croatia
65,857
6,618
567,449
1,792
23,488
2,145,144
267,702
16,395
106,878
10,682
164,350
330
8,545
80,772
4,281
358,031
26,391
706,237
4,902
6,019
7,996,769
409
3,072
533
1,602
4,133
4,231
72,112
200
1,172
309,277
11,407
55,799
3,702
92,253
4,157
295,720
16,886
295
590,779
52,818
2,758,570
99,111
28,460
26,538
2,758
1,025
174,987
14,259
48,222
origin country
Greece
Macedonia
1,362,708
294,238
184,186
236
149,148
18,674
8,342
9,621
350,491
32,836
23,372
128,393
1,717,034
963,395
107,131
224,502
576,723
4,366
138,321
14,486
61,535
1,364
149,331
1,650
7,776
199
87,439
75
1,372,799
19,426
17,674
34
1,724,891
119,045
615,402
184,013
16,817
27,582
7
265,980
265
2,172,916
170,528
22,404
34
9,945
1,648
97,601
31
30,639
93
17,345
865
1,197
2
697,369
23,177
3,160
14,067
323
95,922
32,141
56,077
451
443,126
12,940
37,814
901
317,579
11,292
67,491
23,011
1,207,047
52,731
329,906
22,375
876
168,680
1,580,513
194,385
10,074
555,023
80,660
895,325
186,246
380,337
4,565
36,068
4,487
82,183
16
100,095
0
854,620
66,461
219,072
4,446
1,043,534
24,717
Montenegro
14,569
947
25
11,647
979
4,720
4,703
166
2
0
0
273
3,807
26,224
47,367
136
331,111
89
1,028
892
33
183
0
144
75
200,360
191
15,297
1,004
7
180
114
206
Romania
30,425
110,105
684,201
5,709
287,045
121,813
1,790,166
43,697
64,371
301,378
40,687
483,701
4,534
41,989
798,086
11,171
1,489,647
878,278
2,357,534
11,378
160,898
2,966,802
84,449
4,347
99,696
7,341
15,310
1,644
39,985
66,788
362,311
73,658
58,250
409,959
27,042
415,023
38,201
221,049
2,909
535,600
263,380
92,114
687,564
77,576
50,100
245,021
75,691
4,995,117
373,812
328,971
Serbia
433,321
19,858
331,266
7,883
109,445
1,352,529
666,880
469,998
117,890
128,969
6,258
23,148
1,255
5,105
220,248
1,365
814,483
246,297
468,607
15,657
12,947
926,021
4,473
3,367
4,044
256
2,343
1,901
753,188
10,538
4,740
1,175,078
29,623
77,149
2,191
131,264
60,328
1,872,315
193,706
24
142,487
352,783
101,934
20,457
72,779
1,510
3,111
76,968
92,766
98,532
Turkey
642,568
647,991
427,186
102,565
1,434,925
113,610
1,539,344
158,468
821,575
229,383
154,532
632,864
34,506
159,409
1,431,822
825,901
3,281,628
2,172,949
315,139
355,113
1,615,554
6,420,942
286,565
43,373
348,515
446,726
69,244
22,258
191,970
22,980
99,131
7,184
746,038
1,209,887
60,981
643,607
654,054
2,423,823
3,641,293
49
249,496
166,458
114,221
4,314,538
283,298
124,307
1,977,988
482,019
1,391,867
2,575,752
Tabela 4 – Buduće o-d matrice (izražene u tona/godina): trgovinski tokovi iz Balkanskih zemalja u
scenariju završetka koridora 4, 8 i 10
Belgrade, 2012
141
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
origin country
Albania
Algeria
Austria
Belarus
Belgium
Bosnia Hercegovina
Bulgaria
Croatia
Cyprus
Czech Republic
Denmark
Egypt
Estonia
Finland
France
Georgia
Germany
Greece
Hungary
Ireland
Israel
Italy
Jordan
Latvia
Lebanon
Libya
Lithuania
Luxembourg
Macedonia
Malta
Moldova
Montenegro
Morocco
Netherlands
Norway
Poland
Portugal
Romania
Russia
San Marino
Serbia
Slovakia
Slovenia
Spain
Sweden
Switzerland
Syria
Tunisia
Turkey
Ukraine
United Kingdom
Albania
5,671
15,307
35,384
632
4,900
33,930
218,393
65,857
6,059
18,171
1,581
70,013
0
1,330
11,180
13,112
88,974
1,362,708
26,448
754
1,532
1,709,540
301
26
15,686
10
2,339
294,238
5
20,457
14,569
331
11,953
743
62,728
5,289
30,425
424,047
159
433,321
5,079
9,829
12,250
2,083
19,945
1,525
4,662
642,568
236,520
10,177
Bosnia Herc
9,011
2,344
208,901
821
28,056
118,814
2,145,144
469
281,387
6,147
29,744
2,167
3,005
35,927
4
255,202
23,372
441,471
2,102
957
362,675
93
67
63
525
316
2,261
128,393
1
685
11,647
431
39,239
783
51,824
2,767
121,813
152,175
1,352,529
68,345
315,752
24,238
11,832
282,725
2,352
427
113,610
118,026
5,891
Bulgaria
22,042
0
594,616
16,168
305,486
147,500
267,702
141,194
311,982
47,064
84,295
6,342
53,350
173,811
59,004
1,084,718
1,717,034
547,173
7,891
26,473
1,015,770
2,530
1,902
1,280
465
10,414
7,485
963,395
341
53,760
979
279,951
223,050
10,255
333,559
9,927
1,790,166
2,633,612
168
666,880
123,911
101,535
204,544
49,257
192,689
214,905
56,648
1,539,344
4,683,189
285,415
Croatia
1,497
9,316
972,619
198,503
69,869
5,783,139
100,805
3,269
400,326
42,009
32,166
1,774
22,521
115,742
39
706,826
107,131
770,556
3,203
7,097
2,007,790
31
1,008
266
2,119
11,829
4,151
224,502
257
1,101
4,720
331,033
144,154
10,395
255,314
10,081
43,697
590,441
36
469,998
173,948
1,063,404
153,832
42,922
41,003
1,006
53,363
158,468
190,541
35,529
destination country
Greece
Macedonia
293,123
897,876
2,958
503,893
46,764
4,053
141
956,928
7,189
11,955
54,879
2,516,205
852,537
26,391
72,112
613,916
458
226,263
27,316
213,312
5,155
708,223
22,996
11,432
113
354,645
1,702
2,075,858
10,514
28,375
6
2,788,554
74,953
697,369
1,067,621
57,941
27,472
1,072
134,948
1,986
4,388,941
65,489
5,091
246
18,117
29
145,566
48
136,383
406
27,916
290
296,243
328
615,402
847
0
62,355
143
26,224
1,028
69,920
156
1,248,084
20,014
134,867
2,590
475,016
306,388
72,217
495
878,278
39,985
1,721,770
44,697
1,565
246,297
753,188
167,387
23,961
57,188
73,393
892,420
9,877
236,128
3,818
34,451
14,571
290,917
43
64,829
128
2,172,949
191,970
548,281
250,004
735,225
4,645
Montenegro
31,262
20,107
0
740
194,849
6,655
309,277
2
15,374
148
36
12
6
1,774
12,988
95,922
10,176
30
100,324
1
37
4
32,141
0
6,813
9
11,035
4
73,658
101,269
1,175,078
681
32,942
3,112
994
2,698
7,184
1,757
Romania
4,123
2,609
1,295,349
45,533
368,508
870,689
2,218,705
295,720
129,955
985,149
93,659
127,768
7,361
53,748
872,718
525
2,628,438
1,207,047
6,309,341
21,517
48,575
2,488,056
5,246
4,986
2,832
37,304
41,185
63,784
52,731
23,815
398,825
144
214,444
630,531
37,615
2,757,951
29,812
4,864,609
3,027
1,872,315
1,320,398
175,221
294,157
106,610
104,232
77,726
28,031
2,423,823
3,191,540
288,357
Serbia
167,348
1
349,330
48,698
57,349
1,271,051
490,068
590,779
1,982
183,499
12,388
23,304
2,149
21,898
119,778
2,284
498,502
168,680
710,802
4,443
10,121
470,109
706
125
56
1,386
2,454
2,428
1,580,513
15
20,290
200,360
7,691
92,476
8,322
234,435
1,881
535,600
1,749,851
35
662,150
334,631
57,780
71,947
63,462
115,895
342
249,496
2,324,259
26,425
Turkey
50,960
1,588,009
720,320
121,678
2,680,499
57,037
3,388,356
174,987
239,551
180,382
493,795
1,917,531
543,332
552,840
1,715,481
715,258
3,734,250
854,620
568,015
51,799
838,459
2,165,978
19,120
10,255
362,463
592,825
440,650
115,685
66,461
21,907
96,679
114
528,127
2,359,595
440,929
388,661
153,345
4,995,117
25,720,208
16
76,968
547,494
83,932
1,317,904
2,603,435
166,605
883,222
495,622
11,309,373
3,549,380
Tabela 5 – Buduće o-d matrice (izražene u tona/godina): trgovinski tokovi prema Balkanskim
zemaljama u scenariju završetka koridora 4, 8 i 10
Tabela 6 – Trgovinski tokovi između odabranih zemalja na osnovu o-d matrica Tabela 4 i Tabela 5
Belgrade, 2012
142
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
4. UVOĐENJE EVRO-MEDITERANSKIH UGOVORA O SLOBODNOJ TRGOVINI
Efekti uvođenja ugovora o slobodnoj trgovini koji se odnose na osnivanje Mediteranske Unije su uzeti
u obzir u ovoj analizi, ponovo koristeći model gravitacije opisane u pred-studiji izvodljivosti. Ovaj
rezultat usmerava ka razumevanju trendova povećanja zahteva i u tertnom transport na srednje/duge
staze karakterisane stalnim smanjenjem tarifa i obaveza u okviru Mediternaskog basena, kao i
smanjenjem vremena putovanja na osnovu poboljšanja pomorskih veza.
Scenario “Mediteranska unija” se planira, u smislu sklapanja ugovora o slobodnoj trgovini. između 27
članica EU, Balkanskih zemalja, Turske i svih Severnih Afričkih zemalja, u cilju eliminisanja carine i
barijera koje nastaju zbog tarifa sa istom prirodom i efektima šengenskog tipa.
Detaljnije, Tabela 7 i Tabela 8 prikazuju procentualni porast, podjednako u uvozu i izvozu, za svaku
zemlju u Evro-Mediteranskom basenu pod punim formiranjem Unije. Tamnija boja znači veći uticaj na
međunarodnu trgovinu te zemlje. Posebno, u tom smislu očekivani uticaj na region Balkana je veći u
odnosu na srednju vrednost regiona. Detaljnije, međunarodna trgovina proizvedene robe iz Srbije
beleži povećanje od 28,56% u izvozu i 10,63 % u uvozu prema/iz Mediteranskog basena.
Tabela 7 – % promena u uvozu, podaci iz wrt 2007,
pod pretpostavkom potpunog usvajanja ugovora o
slobodnoj trgovini
Tabela 8 – % promena u izvozu, podaci iz wrt
2007, pod pretpostavkom potpunog usvajanja
ugovora o slobodnoj trgovini
5. TRANZIT TURSKIH KAMIONERA KROZ SRBIJU
Veoma značajna za našu zemlju je ukupna trgovina Turske sa razmatranih 57 zemalja EuroMediterana koja iznosi oko 42 miliona tona/godišnje u izvozu i 75 miliona tona/godišnje u uvozu. Što
se tiče ove ukupne sume, tranzitna trgovina koja je potencijalno privlačna Srbiji je predstavljena preko
robnih tokova prema/iz zemalja Centralne Evrope (npr Francuska, Nemačka) i iznose približno 14,66
miliona tona/godišnje, podeljenih na 8,37 miliona tona/godišnje prema Severu i 6,29 prema Jugu.
Pomenuti robni tokovi trebaju biti prvo razvrstani na morske i drumske vidove transporta, a zatim
Belgrade, 2012
143
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
drumski transport treba podeliti na tokove koji prolaze kroz Srbiju i tokove koji prolaze kroz ostale
11
zemlje (npr. Bugarska): pregled svih situacija je predstavljen ispod (Tabela 9).
Prosečno polovina drumskog tranzita prolazi kroz Srbiju na putu prema Severu. Model procene govori
da će ukupna trgovina duž grane M1, krak između Pirota i Niša, biti oko 6,85 miliona tona/godišnje
(4,11 prema severu i 2,74 prema jugu), tako da je količina Turske trgovine preko Pirota oko 40%
prema severu i 50% prema jugu.
Posebno, u interpretaciji rezultata treba uzeti u obzir budući porast efikasnosti koridora IV, u smislu da
odgovarajuća “politika privlačenja” prema evropskom koridoru X treba biti podržana od strane Vlade
Republike Srbije da bi napravili put još atraktivnijim (npr. ukidanje tranzitnih taksi).
Završetak Koridora X je stvarni prioritet Vlada Republike Srbije i Republike Bugarske, o tome svedoči
ugovor potpisan 24. aprila 2010. godine između premijera Republike Bugarske Bojka Borisova i
12
bivšeg premijera Republike Srbije Mirka Cvetkovića . Na ovaj način, Koridor X, postižući veći protok
saobraćaja stiče i veću važnost kako od Severnih tako i od Južnih delova Evrope.
Trgovinski tokovi prema/iz turske (tona/godišnje)
Pravac
Prema severu Prema jugu
Ukupno
8374246
6289727
Morski transport
4938204
2986133
RoRo Jadransko more (Luka Trst)
2706430
1656998
RoRo Francuska
2231774
1329135
Drumski transport
3436042
3303594
Kroz Srbiju (Dimitrovgrad)
1659928
1396312
Kroz ostale Zemlje (Uglavnom Bugarska)
1776114
1907282
Udeo u transportu kroz Srbiju
48%
42%
Tabela 9 – Tranzit Turske kao potencijal razvoja pirotske okoline u trenutnom scenariju
Ovaj aspekt može biti veoma jasan kada pogledamo rastojanja. Na primer, roba između Istanbula i
Minhena bi putovala:
2154 km Koridorom IV,
2016 km Koridorom X, pravac Srbija-Mađarska ili
1928 km Koridorom X, pravac Srbija-Hrvatska.
Posebno, zadnja opcija znači dostizanje u praksi 10,5% uštede za svaku pošiljku, uzimajući u obzir da
je dnevni transport na graničnom prelazu Gradina oko 900 kamiona, to vodi do uštede od 41 miliona
tona/km dnevno.
6. INTERMODALNI TRANSPORT U SRBIJI
Jasno je da mreža terminala i strateški planovi za intermodalni transport nisu još uvek realizovani. U
Srbiji je delimično razvijena infrastruktura, na železnici i u lukama unutrašnjih plovnih puteva (luka
Novi Sad, Beograd i Pančevo) za kontenerski pretovar. Kod postojećih terminala postoji značajno
ograničenje vezano za postojeće lokacije, stara oprema i dostupnost investicija za razvoj. Intermodalni
transport u Srbiji se bazira na uvozu prekomorskih kontenera i vraćanje praznih kontenera u morske
luke. Kontenerski pretovar u Srbiji vrši se u lukama Beograd i ŽIT terminal (Železnički Integralni
11
Napomena: podaci vezani za granični prelaz kod Dimitrovgrada potvrđeni su od strane domaće ‘Republičkog zavoda za
statistiku’ za Srbiju. Pravci prema severu i jugu pripadaju trgovini od Turske prema EU i iz EU prema turskoj.
12
Izvor podataka: http://www.poslovnimagazin.biz/vesti/bugarska-i-srbija-potpisale-sporazum-o-policiji-i-carini-1-5473
Belgrade, 2012
144
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
transportni Terminal u Beogradu) gde intermodalni transport u Srbiji učestvuje u ukupnom transportu
sa 0,5%, a u EU zemljama sa 6-9%.
Podrška će biti obezbeđena racionalnom i ciljanom razvoju intermodalnog transporta na
međunarodnim koridorima da bi omogućili da intermodalni transport, unutrašnjim plovnim i kopnenim
putevima u Srbiji, bude bezbedan, efektivan, fleksibilan i jednostavan za njegove korisnike. U skladu
sa transportnim politikama EU i strategijama održivog razvoja transporta, glavni prioriteti
komplementarne transportne politike do 2014. u Srbiji biće:


Omogućavanje tehničke osnove za primenu tehnologije intermodalnog transporta,
konstrukcijom i rekonstrukcijom slobodnog UIC-C profila tunela i mostova i
Omogućavanje tehničke baze za primenu tehnologija intermodalnog transporta, razvoja
terminala za intermodalni transport.
Još uvek nisu striktno definisane lokacije intermodalnih čvorova. Defininisana su područja gde trebaju
da budu smešteni intermodalni čvorovi, a realna potreba za postavljanjem predviđenih intermodalnih
terminala biće definisana studijom izvodljivosti koja će biti urađena za svaku lokaciju posebno.
Projekat „Olakšavanje intermodalnog transporta u Srbiji“ ima za cilj, pored već pomenute 3 glavne
lokacije intermodalnih čvorova (Novi Sad, Beograd, Niš), da precizno definiše lokacije ostalih
intermodalnih čvorova i terminala u okviru intermodalne transportne mreže Srbije.
Usvojeni prostorni plan Republike Srbije (Sl. gl. 88/10) od 2010. do 2020. Godine definiše Slobodne
zone kao generatore razvoja pojedinih regiona u Srbiji i predlaže sledeće lokacije za razvoj
intermodalnih terminala: Subotica, Senta, Šabac, Sombor, Smederevo, Pančevo, Prahovo, Jagodina,
Valjevo, Užice, Čačak, Kragujevac, Kraljevo, Niš, Dimitrovgrad-Pirot, Priština, Preševo.
Planirana ulaganja u razvoj intermodalnog transporta po TMP su u minimalnom scenariju 26 miliona €
dok planirana ulaganja u razvojnom scenariju dostižu vrednost od 136 miliona €.
Vlada Republike Srbije je, na osnovu Master plana transporta, definisala kao prioritetne aktivnosti
izgradnju koridora X u cilju integracije domaćih transportnih puteva u evropsku transportnu mrežu.
Razvoj terminala u Pirotu vezan je za razvoj, kako mreže intermodalnih terminala Srbije tako i razvoj
intermodalnosti Republike Bugarske. Time transportni terminal u Pirotu postaje čvorište logističkih
operacija između Istoka i Zapada.
7. INTERMODALNI LOGISTIČKI CENTAR PIROT
Cilj izgradnje Intermodalnog Logističkog Centra Pirot je da se, pružanjem usluga iz oblasti transporta,
izađe u susret transporterima koji već koriste usluge u Slobodnoj zoni Pirot ali i transporterima čiji
kamioni i vagoni prolaze krakom koridora Xc i predstavljaju potencijal za pružanje transportnih usluga
od strane Intermodalnog Logističkog Centra Pirot. Kroz formiranje „Zelenog koridora“ koji će doprineti
smanjenju negativnog uticaja tranasporta na okolinu i kroz nastojanja Slobodne zone Pirot ILC Pirot
će postati deo intermodalne transportne mreže zemalja Zapadnog Balkana i Evropske Unije.
Što se tiče kvantitativne procene, trenutne potrebe za izgranjom Intermodalnog Logističkog Centra
proizilaze pre svega od korisnika Industrijske Zone Pirot, među kojima značajnu ulogu zauzima gigant
u proizvodnji auto-guma „Tigar Tyres“, deo Michelin grupe, kao i značajan broj transportnih jedinica
koje prolaze koridorom Xc . Značajno povećanje broja kamiona i vozova se očekuje nakon završetka
Koridora X gde Slobodna zona Pirot vidi mogućnost privlačenja pomenutih transportera pružanjem
različitih transportno-logističkih usluga.
Belgrade, 2012
145
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Pozicija budućeg transportnog terminala još uvek nije ispitana do detalja, dati su samo nacrti (skica
ispod) i pozicioniran je tako da može da se nesmetano širi usled povećanja kapaciteta. Detaljnije,
kapacitet terminala, saobraćajna infrastruktura, potrebna oprema za terminal i skladišni prostor biće
određeni nakon studije izvodljivosti.
Ilustracija 1 Nacrt Intermodalnog
logističkog Centra – jedan od tri
nacrta koji će ući u razmatranje u
studiji izvodljivosti koju će raditi
„Municipal Infrastructure Support
Programme 2008“.
Završetak studije izvodljivosti očekuje se do kraja novembra 2012. godine gde ćemo saznati
pojedinosti budućeg terminala. Nakon studije izvodljivosti nastavlja se sa daljom izradom projektne
dokumentacije.
Planirani zavrešetak Intermodalnog Logističkog centra Pirot predviđen je do kraja 2016. godine, a
površina predviđena planom detaljne regulacije za ILC je u ovom trenutku oko 30ha.
8. RAZVOJ MULTIMODALNE MREŽE JUGOISTOČNE EVROPE
13
Na razvoju Evropske intermodalne transportne mreže i pronalaženju najboljih transportnih rešenja na
ovom području, pored ostalog intenzivno se radi kroz različite programe Evropske Komisije za
unapređenje transporta. Neki od programa koji su aktuelni kod nas su „South East Europe
Transnational Cooperation Program“, zatim „FP7 (Seventh framework Program)“ koji se u okviru svojih
podprograma bave zahtevima unapređenja transporta na teritoriji EU i zemalja kandidata za članstvo
u EU.
Trenutno aktuelan projekat značajan za našu zemlju iz programa „South East Europe Transnational
Cooperation Program“ čije su aktivnosti usmerene na razvoju transportne mreže Jugoistočne Evrope
je projeakt „Adriatic Danube Black see Multimodal platform“ u kome učestvuju u ulozi IPA partnera
Opština Pirot, i kao pridruženi partneri - posmatrači „Ministarstvo Infrastrukture i Energetike Srbije“ i
„Privredna komora Beograd“.
Cilj pomenutog projekta je da analizira i prikaže kako unaprediti multimodalni transport između luka i
kontinetalnih zemalja u Jugoistočnoj Evropi. Za ovaj cilj projekat predviđeno je uspostavljanje
"Multimodalne transportne razvojne platforme", koji integriše različite regione i aktera iz oblasti
transporta u jedinstvenu mrežu.
U projektu učestvuju 43 partnera iz programskog dela Evrope. Predviđeni bužet za projekat je oko 5,5
miliona Evra, a trajanje projekta je 30 meseci. Projekat uključuje Regione, Univerzitete, Institute,
Lučke Uprave, Privredne komore, Uprave carina, Uprave železnica, Ministarstva transporta,
transportne asocijacije i klastere i ostale aktere u transportu...
13
Podaci uzeti iz radnog plana projekta u okviru programa SEE trnsnational cooperation „ADB Mulimodalna platforma“ koji je
trenutno u fazi implementacije
Belgrade, 2012
146
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Ovako formiran konzorcijum ostvariće cilj projekat kroz sledeće aktivnosti:
1. Analiza intermodalnih čvorova na koridorima Jugoistočne Evrope kroz širu analizu relevantnih
izvora uzimajući u obzir trenutne transportne zahteve kao i projektovano stanje 2015, 2025, 2035.
godine u zemljama Jugoistočne Evrope. Istraživanja nemaju za cilj stvaranje novog simulacionog
modela projektovanog stanja na temu zahteva transporta, zato što su rezultati dostignuti u
prošlosti veoma značajni i ostvareni kroz projekte koju su implemenirani do sada i koji su fazi
implementacije (SONORA, BATCO, CREAM, Freightvision...). Pod-aktivnosti u okviru ove
aktivnosti obuhvataju sledeće:
a. Analiza potencijalnog zahteva transporta i infrastrukturnih potreba (Gap analiza)
b. Proučavanje kvaliteta i performansi postojećih terminala na području koje zahvata
projekat
c. Proučavanje institucionalnih okvira, standarda i procedura
d. Osnivanje kvalitetne transportne mreže na transportnim koridorima
2. Drugi radni paket u okviru pomenutog projekta obuhvata istraživanje postojećih alata za
informacije o organizaciji intermodalnog transporta, praćenje železničkog transporta, informacije o
carinskim uslugama, informacije o transportu na Dunavu u cilju: osavremenjivanja i usklađivanja
informacija. Ciljevi ovog poglavlje biće ostvareni kroz sledeće podaktivnosti:
a. Pregled postojećih alata za praćenje i pronalaženje železničkog transporta
b. Analiza rečnih informacionih sistema u cilju osavremenjivanja
c. Harmonizacija carinskih procedura
d. Implementacija Pilot projekat Informaciono komunikacionih tehnologija
e. Harmonizacija alata za izbor moda transporta
3. Multimodalni razvojni centri
Cilj ovog radnog paketa je da se obezbedi efikasna promocija "rešenja po meri" za multimodalne
korisnike, uključujući i rešenja za poboljšanje kvaliteta u drumskom saobraćaju, kao poslednju
etapu u multimodalnom transportnom lancu. To će biti ostvareno kroz razvijanje inovativnog
modela promocije intermodalnog transporta pod nazivom "Multimodalni Centar za razvoj - MDC".
Ciljevi ovog radnog paketa biće ostvaren putem:.
a. Analiza lekcija naučenih od trenutnih aktivnosti promocije intermodalnog transporta
b. Definisanje smisla, potreba i targeta multimodalnih razvojnih centara
c. Stvaranje ADB modela za MDC
d. Otvaranje lokalnih agencija za međunarodne MDC
4. Zeleni transport u ADB regionu
Implementacijom "ADB sporazuma o zelenom transportu", istaknuće se posvećenost
transnacionalnih institucionalnih aktera prema primeni mera za internalizaciju eksternih troškova
zelenog transporta. Ovi ciljevi biće postignuti sledećim aktivnostima: Izračunavanjem spoljnih
troškova prevoza u ADB oblasti i troškova na izabranim pravcima; naučene lekcije od prethodnih
modela za proračunavanje troškova; Razvoj zajedničkih mera za internalizaciju eksternih
troškova; ADB sporazum o zelenom transportu: interesne grupe, cilj, obim; Uticaj na životnu
sredinu ADB projekta zelenog transporta: procena ADB akcije; Uključivanje ADB rezultata u
obrazovanje: razvoja zajedničkog programa obuke u oblasti saobraćaja ekonomije i teritorijalni
uticaj transporta na životnu sredinu, obraćanje studentima i praktikantima.
a. Eksterni troškovi u ADB regionu – analiza naučenih lekcija
b. Razvoj mera za internacionalizaciju eksternih troškova zelenog transporta
c. Formiranje transportnih ugovora o zelenim koridorima: zainteresovane strane, targeti,
ciljevi
d. Uticaj ADB projekta na zeleni transport: evaluacija ADB aktivnosti
e. Uključivanje ADB istraživanja u obrazovanje: razvoj sličnih trening programskih obuka
5. Implementacija pilot projekta – provera ICT modela
Ovaj Radni Paket je konačan rezultat ADB projekta, čiji je cilj da pokaže efikasnost radnih paketa
ADB Multimodalne platforme u postizanju opšteg cilja poboljšanja kvaliteta i održivosti ovakvog
transporta robe. IKT (Informaciono Komunikacione Alatke), CKN (Kvalitetna mreža koridora) i
MDC (Multimodalni Razvoji Centri), dizajniran i razvijen u prethodnim radnim paketima, kao ovde
Belgrade, 2012
147
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
međuzavisna sredstva postavljena da dostignu ciljeve novih usluga intermodalnog transporta robe
za nesmetan protok robe kroz multimodalne čvorove. Predviđena su četiri pilot projekti:
a. Protok robe od Crnog mora do kontinentalnih zemalja (GR/BG/RO i "Koridor Xc");
b. Protok robe od severnog Jadrana do kontinentalnih zemalja (AT/SK/SB/ HU),
uključujući i komplementarne linkovima na istočna i zapadna tržišta;
c. Koridor VIII i povezivanje regionalnog i lokalnog ICT sistema;
d. Protok robe Dunavom od Slovačke do Crnog mora.
Ovakav pristup razvoju transporta primenjen u našoj zemlji značajno bi poboljšao trenutno stanje
intermodalnog i kombinovanog transporta u Srbiji i omogućio integraciju u evropske tokove
intermodalnog i kombinovanog transporata.
Veoma je značajno iskoristiti šansu povećanja cena Ro-Ro transporta za Turske kamionere koje voze
robu do zapadne evrope zbog čega se sve više koristi drumski transport. Organizacijom Ro-La
transporta kroz našu zemlju znatno bi privukli transport na relaciji Turska, Zapadna Evropa.
9. ROLA KROZ SRBIJU
14
Dokaz o tome da je međunarodni "Ro-La" transport moguć kroz Srbiju govori članak objavljen na sajtu
Železnica Srbije o pilot projektu Ro-La voza koji je prošao kroz Srbiju septembra 2006 godine.
"Ro-La" voz za prevoz kamiona železnicom, je 23. septembra 2006. godine je po prvi put saobraćao
prugama Srbije. Voz je krenuo iz turskog grada Halkali do austrijskog grada Velsa preko: Kapikule–
Svilengrad/Dragoman–Dimitrovgrad/Sid-Tovarnik/M-Savski/Marof-Dobova/Jesenice-Wels.
Železnice Srbije prevezle su kompoziciju dugu više stotina metara, sastavljenu od 20 specijalnih
vagona, koja je prevozila isto toliko kamiona-šlepera.
Kompozicija je od Turske do Austrije prevalila rastojanje od skoro 2.000 km, a vožnja je trajala oko
sedamdeset sati.
Pored značajnog deviznog prihoda koji će ovi vozovi doneti srpskim železnicama i promotivnih efekata
u robnom saobraćaju, "Ro-La" vozovi predstavljaju zajedničku poslovnu aktivnost evropskih
železničkih uprava radi ostvarivanja što bolje pozicije na tržištu transportnih usluga, posebno u odnosu
na drumske prevoznike.
Slika br. 1 R-La voz kroz Srbiju – pilot projekat
14
Tekst
i
slike
preuzete
sa
sajta
Železnice
latin/home/glavna_navigacija/prezentacije/RoLa_vozovi.html
Belgrade, 2012
Srbije
http://www.zeleznicesrbije.com/active/sr-
148
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Projekat je imao promotivni period od septembra do novembra 2006, kada je šest promotivnih vozova
prevezlo 84 kamiona.Transport je tada otkazan zbog organizacionih i komercijalnih problema. Kako
interesovanje za takvom vrstom transporta postoji na pomenutom pravcu, oživljavanje ovakvog oblika
prevozne usluge zavisiće pre svega od mogućnosti definisanja komercijalnih uslova prihvatljivih za
15
tržište.
10. OMOGUĆAVANJE ROLA TRANSPORTA KROZ SRBIJU
Kako bi iskoristili mogućnost koja nam se u trenutku pruža kroz veći protok saobraćaja kroz Srbiju pre
svega Turskih kamionera potrebno je preduzeti određene korake u cilju što bržeg pronalaženja
rešenja kako bi se privukli transportni tokovi. Obzirom da su cene Ro-Ro transporta znatno povećane i
da se turski kamioneri sve više opredeljuju za drumski transport, jedno od rešenja je pružanje Ro-La
usluga kroz Srbiju.
Kako bi što pre došli do rešenja ove sitacije potrebno je preduzeti niz korka počevši od analize
postojećih podataka vezanih za Ro-La transport (analiza onoga što je do sad urađeno na tom polju –
studije, domaći i strani projekti), proučavanja infrastrukture i regulativa vezanih za Ro-La transport,
formiranja ruta i umrežavanja sa susednim zemljama u cilju harmonizacije regulativa.
Veoma bitna stavka je formiranje informacionog sistema vezanog za Ro-La transport, kako internog
tako i eksternog u cilju što boljeg upravljanja Ro-La transportom kroz Srbiju, kao i formiranje razvojnih
centara koji će omogućiti komunikaciji sa ostalim Ro-La centrima u cilju daljeg razvoja i unapređenja
Ro-La transporta.
Takođe je veoma važno uzeti u obzir smanjenje zagađenja okoline, kao veoma bitne stavke,
korišćenjem ovakvog vida transporta i iskoristiti činjenicu i podatke postojećeg pilot projekta Ro-La
voza koji je prošao kroz Srbiju septembra 2006. godine u cilju uštede vremena pri simulaciji Ro-La
transporta.
Ro-La termionali su dostupni do same granice tj do Segedina na Severu, dok na Jugoistoku Bugari
spremno dočekuju Ro-La transport sa izgrađenim dva termianala: jedan u Dragomanu na samoj
granici sa Srbijom dok je drugi u Svilengradu na Granici sa Turskom.
16
Ilustracija 2 - ROLA transportne usluge koji pruža kompanija ÖKOMBI Gmbh in Austria .
15
UTICAJ KOMBINOVANOG KOPNENOG TRANSPORTA NA ZAŠTITU ŽIVOTNE SREDINE, dr Zoran Bundalo, rad za 4.
Nacionalnu konferenciju o kvalitetu života, Kragujevac, Maj 2009
16
Slika preuzeta sa sajta http://www.oekombi.at/
Belgrade, 2012
149
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
LITERATURA:
[1.] LOGICA, Napulj Italija, Opština Pirot, SZP, PREDSTUDIJA IZVODLJIVOSTI IZGRADNJE
INTERMODALNOG LOISTIČKOG CENTRA PIROT, Autori: U ime agencije LOGICA Scarl:
Vittorio Marzano,Lucia Ciciarelli, Sergio Bologna, Barbara Trincone; u ime Slobodne zone
Pirot: Dr. Dragan Kostić, Zoran Petrović, Aleksandar Simonović, Aleksandar Panić, Maja
Vasić, Vladan Stojanović, Novembar 2010
[2.] Projekat „ADB Mulimodalna platforma“ u okviru trećeg poziva programa SEE transnational
cooperation koji je ternutno u fazi implementacije.
[3.] UTICAJ KOMBINOVANOG KOPNENOG TRANSPORTA NA ZAŠTITU ŽIVOTNE SREDINE,
dr Zoran Bundalo, rad za 4. Nacionalnu konferenciju o kvalitetu života, Kragujevac, Maj 2009
[4.] Dr. Francesca Trampus PhD in Transport Law University of Trieste (Italy)
USING EPZs TO BUILD TRADE CAPACITY: CHANGING INTERNATIONAL LEGAL
ENVIRONMENT WEPZA 2003 ISTANBUL CONFERENCE
[5.] Dr Dragan Č. Kostić, RAVNOMERNI REGIONALNI RAZVOJ KROZ SINERGIJU SLOBODNIH
ZONA, INDUSTRIJSKIH PARKOVA I LOGISTIČKIH CENTARA
[6.] STRATEGIJA REGIONALNOG RAZVOJA REPUBLIKE SRBIJE ZA PERIOD OD 2007. DO
2012. GOD, Vlada RS „Službeni glasnik RS”, br. 55/05 i 71/05 – ispravka.
[7.] EFEKTI RAZVOJA INTERMODALNIH TERMINALA U SRBIJI, Izveštaj faze 3, IMOD-X
Intermodalna rešenja i konkurentnost u transportnom sektoru Srbije, REPUBLIKA SRBIJA
MINISTARSTVO ZA KAPITALNE INVESTICIJE BEOGRAD, SRBIJA; SAOBRAĆAJNI
FAKULTETUNIVERZITETA U BEOGRADU; SINTEF TEHNOLOGIJE I DRUŠTVO
TRONDHEIM, NORVEŠKA
Belgrade, 2012
150
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
RAILWAY SIDINGS IN SLOVENIA- PROBLEMS AND MEASURES TO
INCREASE THEIR ATTRACTIVENESS
Klara Zrimc, Prometni Institut Ljubljana d.o.o., Ljubljana, Slovenia
Mihaela Fridrih Praznik, Prometni Institut Ljubljana d.o.o., Ljubljana, Slovenia
Mateja Hočevar, Prometni Institut Ljubljana d.o.o., Ljubljana, Slovenia
Mateja Matajič, Prometni Institut Ljubljana d.o.o., Ljubljana, Slovenia
1. INTRODUCTION
The construction and use of private sidings was relatively common in Slovenia in the period before
gaining independence, but after that there was a decline trend in interest in using the sidings in
Slovenia and elsewhere in Europe. According to the Slovenian Railways there were 243 sidings in
Slovenia in 1993, in 2002 there were only 199 left, in 2011 the number of registered sidings reduced to
the overall of 175. Foremost is this due to the development of efficient and optimized logistics
distribution chains, and more cost-effective and more flexible organizational delivery of goods by road.
In this paper we analysed the ”state of the art” and problems of private sidings from the owners point
of view, in the end we made proposals for measures to increase the attractiveness of the use of
private sidings in Slovenia.The analyse was based on a survey made by the Institute of Traffic and
Transport Ljubljana for the needs of the study "Analysis of opportunities and development needs of
private sidings in Slovenia”.
In the scope of the analysis of the existing situation of private sidings there were 155 sidings
analyzed which are served from 67 stations. As can be seen from the picture below, from the
total of 155 analyzed sidings in Slovenia, there are 78 % active sidings classified where traffic
is carried, while 13 % of private sidings are defined as inactive, which means that in the last
two years there was no traffic. 9 % of the sidings are closed.
Picture 0-1: Review of the railway sidings and their status along the supply stations
Source: Institute of Traffic and Transport Ljubljana, 2012.
Belgrade, 2012
151
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
The analysis of private siding owners showed that some owners own several sidings at the same or at
different locations. For the study of private sidings there were a total of 117 owners recorded, while the
18 owners own more siding on the same or different locations.
Analysis of the traffic dynamics on private sidings in Slovenia showed that over 20 % of all owners of
private sidings carried out 90 % of freight wagons and transported tonnage in 2010. The largest
owners by number of wagons or carried tonnes in 2010 were Instalacija l.l.c. with 30 %, Petrol l.l.c.
with 19.0 % and Acroni l.l.c. by 5 %.
Private sidings of Luka Koper and Slovenian Railways were not considered in the analysis, since the
purpose of the study was to show the general situation of private sidings in Slovenia, which means
that the basic activity of presented owners is not related to the actual transport, but their sidings
represent an additional activity and easier transfer of goods to the end users. Transport on private
sidings of Luka Koper represent 80 % more traffic in the number of transported consignments as was
the traffic in 2010 on all private sidings in Slovenia.
2. THE SURVEY
Transport and Traffic Institute Ljubljana l.l.c. conducted a survey during the period between 9.9.2011
and 18.11.2011 with private sidings owners for the need of the study "Analysis of opportunities and
development needs for private sidings in Slovenia". The aim was to obtain information on current state
of private sidings, on mode and extent of private sidings use, information about the reasons for nonuse or partial use of sidings and information on the advantages and disadvantages of rail transport
from the user's perspective. The questionnaire was sent to 117 owners of private sidings by email. 44
owners of private sidings responded (38 % of who received the survey questionnaire), of which 36
sidings owners returned the completed questionnaire (31 % of who received the survey
questionnaire), which is almost a third of all, which was sent a questionnaire.
Between the owners of private sidings, who completed a questionnaire and gave some information on
private sidings there are some owners who have owned several sidings on the same or different
locations, so the response to the survey was slightly larger in terms of private sidings.
The survey was quite broad and was largely based on the basis of previously proposed answers.
Questions offered a choice of responses, that the owners of sidings mostly completed. More
difficulties in completing the survey questionnaire was in part related to the volume of traffic, where it
was necessary by the sidings owners to enter the transportation volume for the past several years and
planned growth or decline in transport volumes. Questions about the transport segment were thus only
partially fulfilled, but their responses were meaningfully used in further analysis.
From a total of 117 questionnaires sent to the owners of private sidings a survey was completed by 36
owners or 31% of the total, which is a reasonably good basis for the preparation of the analysis.
Questionnaire was completed by important railway transport users as well as users who rarely use
railway transport or those who by a variety of reasons currently not use the railway transport.
Owners of sidings that submitted a survey questionnaire were classified into each group from largest
to smallest user or owner of the sidings (rank), keeping in mind the amount of traffic of those sidings
owners that didn’t submit the questionnaires (in the analyzes and calculations Luka Koper, Slovenian
Railways and its subsidiaries are not taken into account).
From a total of 36 sidings owners who completed a questionnaire, in the viewpoint of transport work
done in 2010, a questionnaire was answered by 15 major users, 14 medium users and 7 smaller users
or non-users of private sidings. In each group, we classified the following sidings owners who
completed questionnaires:
17
Group 1: Big users
In the group of Big users who responded to the questionnaire, we classified Acroni from Jesenice, with
the largest share (8.82 %) of shipments in 2010, followed by Instalacija with 7.81 % share of
shipments and by far the largest share of cargo transported (29, 89 %), and Petrol with 4.23 % share
17
Big usees carried more than 1 % of shipments in 2010 and transported more than 0,5 % of cargo, such as Acroni, Instalacija
in Petrol.
Belgrade, 2012
152
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
of shipments and 11.91 % of freight carried.
Important users are also Store Steel, Lesonit, Nafta Petrochem, GG Novo mesto, Butan plin, VIPAP
Videm, Istrabenz plini, Kamnolom Verd and Ursa Slovenia. In the group of Big users we also ranked 3
sidings owners (Talum, IAK and Salonit Anhovo), which had less than 1 % share of shipments in
2010, but carried more than 0.5 % of the cargo.
18
Group 2: Medium users
Among Medium users we classified sidings owners, which transport work in 2010 ranged between
0.07 and 0.7 % of shipments and between 0.01 and 0.31 % of freight carried, namely: Paloma, Zavod
RS za blagovne rezerve, Kovinatrade, GG Bled, Lafarge Cement, SILGAN Ljubljana, Alpos,
Radenska, Container, KZ Ptuj, Tanin Sevnica, Trimo and Color.
Among Medium users we classified the owner of private sidings Jata Emona, which had less than 0.07
% of the shipments in 2010, and therefore a little more cargo carried as Trimo, Tanin Sevnica and
Color.
19
Group 3: Small users
Among Small users of private sidings, which did not exceed 0.03% of shipments and 0.02% of cargo
in 2010, we classified following private sidings owners: Etra 33, Železarna Ravne Monter, Pivovarna
Union, Kovinar from Jesenice, Hoja and private siding owners Ikebana Brinc and Pivovarna Laško,
which didn’t use the private sidings in 2010 but completed the survey anyway.
3. ANALYZES OF REASONS FOR NOT USING OR PARTIAL USE OF PRIVATE SIDINGS
Within the questionnaire, which was sent to the owners of private sidings, we also asked about the
problems, the advantages and disadvantages of railway transport and the conditions that would
contribute to an increase in the use of private sidings and railway transport.
Analyzed answers of the respondents were based on a selection in the advanced proposed answers,
with the possibility of additional references and own answers.
3.1 Existing problems of individual private sidings from the perspective of the owners
Analysis of existing problems of private sidings showed that the greatest dissatisfaction for sidings
owners is with the organization of deliveries. With the poor organization of deliveries agrees almost
half of big users because they use rail transport more often and are more dependent on it and less
than a quarter of medium and some smaller users. Few owners believe that the sidings are poorly
maintained and have insufficient axle load, few more indicates wear of tracks as the existing problem.
Under category “Other” owners mentioned the high costs of maintenance of private sidings, rigid
organization of deliveries, insufficient number of transported wagons and high price of transport.
3.2 Benefits of railway transport from the perspective of the owners
Analysis of the benefits of private sidings from the perspective of sidings owners showed that the
majority of owners that responded to the survey are well aware that railway transport is becoming
increasingly important, as it is the most environmentally friendly form of transportation and a very
important factor in sustainable development. Depending on the answers of the respondents the big
advantage of railway transport is also the possibility of increasing the quantity of transported cargo
and transport of heavy loads. Less than half of the private siding owners recognize the advantage of
railway transport in higher utilization of wagons, higher efficiency due to fewer staff, lower price of
railway transport compared to road transport, less transport manipulations and reliability of transport.
That the railway transport can carry more cargo volume is very important for big and medium users,
which is also reflected in the responses of most which completed the survey. Almost half of big users
agree that railway transport is efficient and therefore require less staff, but this fact preferred not to be
identified by smaller users. Smaller users do not indicate reliable railway transport, higher utilization of
transport wagons and less manipulation as an advantage. Nearly half of small users, some medium
users and one third of big users agree that railway transport is cheaper over road transport.
18 M
edium users carried less than 1 % of shipments and less than
Kovinatrade.
19 S
0,4 % o
f total cargo in 2010, such as
mall users and non-users of private sidings carried less than 0,04 % of shipments and less than
use the private sidings in 2010, such as Etra 33, Železarna Ravne Monter, Pivovarna Union.
Belgrade, 2012
Paloma, Zavod RS za blagovne rezerve,
0,03 % o
f total cargo in 2010 or they didnt
153
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3.3
Weaknesses of railway transport from the perspective of the owners
Analysis of weaknesses of private sidings from the owner’s perspective showed that half of the
owners, who responded to the survey indicate lower average speeds and poor railway links as
weaknesses of railway transport, influenced mainly from the lack of investment in railway infrastructure
in previous years and overpriced railway transport. Also, almost half of owners think that additional
cargo handling vehicle-wagon and vice versa, carrier delays in delivery and removal of cargo
are weakness in railway transport. A smaller proportion, 8% believe that the weakness of rail transport
is in low utilization of the wagons, 11% have problems with limiting the loading of wagons due to lack
of axle loads. In a comparison between groups of owners, most disadvantages of railway transport
indicate big users, more than half of them are the opinion that the price of railway transport is too high
and the average speed is lower than on the road. They are dissatisfied with carrier delays in delivery
and removal of cargo and poor rail links. Half of bigger customers agree that the price of maintenaning
the private siding is too high.
3.4
The possibilities of increased use of private sidings
Analysis of the conditions, under which the siding use could be increased shows that if current
railway fares would be reduced from 10 to 50% more than half of sidings users would used it on a
larger scale, almost half of respondents were convinced that railway transport would be more
frequently used in the event of more accurate delivery, or if there are less delays in
transportation. In particular smaller users would use private sidings to a greater extent if the railway
transport was less time consuming and didn’t need as much administration, and if their customers
would choose for such a service. Amongs “Other” the owners indicated that the use of the sidings is
dependent on the current situation on the market and on suppliers and customers, and that sidings
would be used to a greater extent if specific recipients and senders had available sidings.
4. MEASURES
Following the above presented problems of private sidings in Slovenia we present three groups of
measures that could be used by the Government to increase the interest of the private sector to invest
in the development of private sidings and, consequently, also to increase their use. These are namely
measures to improve the technical condition of the private sidings, measures to improve competitive
conditions for railway transport with the use of private sidings and measures to improve the availability
of public railway infrastructure.
4.1 Measures to improve the technical condition of private sidings
Maintenance of private sidings should be done in a manner that its frequency and scope is dependent
on several factors, especially on the volume and type of traffic that is carried out on private siding.
Measure 1: Adoption of a statutory instrument concerning the standards for railway
sidings maintenance.
In order to relieve the costs of mandatory maintenance of sidings for the owners of sidings, the costs
could be taken over by the Government, in whole or partially, which would mean a good financial
incentive to increase interest of owners for the use of private sidings and consequently the use of
railway transport services.
Measure 2: The takeover (partially or fully) of the costs of mandatory maintenance of
railway sidings within the framework of maintaining of public railway infrastructure.
Given into account that the siding owners highlighted the high cost of sidings maintenance as a
weakness it makes sense that in the context of state aid in Slovenia, like in Austria, the refund or tax
credit for part of the cost of sidings maintenance is also allowed. As a criterion for determining the
remuneration of maintenance costs the actual managed volume of maintained sidings per kilometer
could be used.
Measure 3: The introduction of a state aid system for the maintenance, renewal or
extension of existing railway siding and their construction.
Belgrade, 2012
154
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
As part of government incentives for the development of private sidings it is reasonable to allow the
access to these resources also to other interested subjects, specially carriers which would have,
together with the owners or users of sidings, the interest to finance the construction of new or
renovation or expansion of existing sidings, where to identify its long-term economic benefit.
Measure 4: Encourage of carriers investments in the development of railway sidings
which can have long-term economic benefit.
To achieve a balanced development of the private sidings network, logistics and distribution centers
with private sidings it is very important that a strategy in the form of stand-alone document or as part of
a national program for the development of public infrastructure is carried out at the national level.
Measure 5: Development Strategy of railway sidings.
The European Regional Development Fund (ERDF) has available resources for joint financing of
projects for the development of infrastructure and industrial projects, which promote economic and
social development and cohesion in the less developed parts of the European Union. These funds
could be used for the development of private sidings, but the potential beneficiaries of these funds
operating in the less developed regions of Slovenia are often not aware that the funds are available or
are not familiar with the procedures to be carried out, that such funds can benefit from, so it would
make sense that they are the most informed about the programs and opportunities that draw on these
funds.
Measure 6: Raising railway sidings owners’ awareness of the possibility of obtaining
grants of the European Union.
In accordance with the law, which regulates rail safety, it is necessary that the conditions and
relationships for the maintenance of sidings are regulated by the contracts between the infrastructure
manager and the owners of the sidings.
Existing agreements on mutual relations, which govern the relationship of private sidings, have
become obsolete, as they are largely concluded before 2005, and they often no longer reflect the
actual state of ownership, since the owner changed or ceased to exist or they legally and
organizationally transformed or changed the company name under which they operate. The Cargo
transportation company lead such contracts and is also responsible for updating these contracts.
Given that these contractual arrangements relates to the use of infrastructure and the maintenance of
proper technical condition of sidings for safe railway traffic, which is in line with the reorganization of
the company Slovenian Railways Ltd. into system of a Holding the activity was transferred to
Slovenian Railways - Infrastructure Ltd., it is necessary that Slovenian Railways - Infrastructure l.l.c.
enter into this contractual relationship or edit a new standardized contracts.
Measure 7: The introduction of standardized contracts for the arrangements of mutual
relations regarding railway sidings use by public railway infrastructure manager.
Such axle load should be provided on private sidings, which is equal to the line feeding the private
siding. This would allow easier technological work processes to optimize the utilization of wagons and
tractors. For sidings, which are powered by the main line, axle load is 22,5 tonnes per axle, for sidings
on regional lines there is a minimum axle load of 20 tonnes per axle or 22,5 tonnes per axle.
Measure 8: Ensure of appropriate axle load of railway sidings.
With the electrification of private sidings on electrified lines simpler technological work processes and
better use of locomotives would be enabled. Emissions to the environment would reduce (noise,
exhaust), burden on locomotives would increase and the travel time would reduce.
Measure 9: Electrification of railway sidings.
With increasing railway safety by upgrading the interlocked switch to private sidings setting times
would shorten and traffic safety would increase.
Measure 10: Interlocked switch to private siding.
4.2 Measures to improve competitive conditions for the use of private sidings
The existing system of state aids for part of the transport costs, which in accordance with the
applicable law on railway traffic, carriers of goods can benefit from, it would make sense to expand
Belgrade, 2012
155
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
and provide compensation of transportation expenses for consignors and owners of private sidings
which use sidings to transport their goods. For these entities financial incentives could be provided in
the form of compensation or part of the cost of transport in the form of a tax deduction on the tax
return. As a criterion of the scope, the extent of sidings use per kilometre or volume of tonnage /
wagons at the sidings could be used.
Measure 11: The introduction of a state aid system for partial refund of transport costs
for users of railway sidings.
Existing system of financial incentives, governed by the law of the railway traffic, granted to carriers in
railway traffic, may be worth exploring in terms of efficiency and by upgrading and complementing the
system of state aid, which is in line with the Community guidelines on State aid for railway
undertakings.
A balanced and well-designed program of incentives for railway traffic carriers would also contribute to
a more competitive rail transport (more efficient deliveries, greater flexibility, lower rail fares, ...), and
this would consequently reached a higher interest of owners and other potential users of sidings for
rail transport services.
Measure 12: Introduce of incentives to improve the quality and competitiveness of
railway transport carrier.
An appropriate spatial planning of business centers and industrial plants in the local spatial planning
documents can significantly contribute to the improvement of the use of sidings and, consequently, to
greater use of rail transport. For this purpose, it is reasonable to establish the criteria under which it
will allow the construction or development of such facilities only in the immediate vicinity of the railway
infrastructure, if under these facilities, business that can service the transport network will be held.
Measure 13: Promote the development of commercial centers and industrial plants in
the immediate vicinity of the public railway infrastructure.
To improve the use of private sidings it is very important that in conjunction with other measures also
support measures for transport, environmental and other policies are implemented, which will improve
the conditions of rail transport compared with other modes of transport, especially road transport, and
will encourage relief of road infrastructure by shifting freight from road to rail.
Such measures include in particular: the internalisation of transport costs with the introduction of fees
for heavy road freight vehicles, the mark-up to the tolls on sections where there is severe congestion,
and for road vehicles, causing significant environmental damage; the introduction or upgrading of
existing systems of state aid that promote the development of terminals and intermodal transport;
introduction of stricter time limits in the transport of goods by road.
Measure 14: Increase the competitiveness of rail transport and promote the freight shift
from road to rail with supportive measures.
By creating the conditions and by encouragement of conclusion of long-term contractual relationships
between the owners and users of private sidings, operators and carriers, the reduction in risks would
be reached that otherwise owners of sidings assume when investing their capital in the development
of sidings and by their application.
Measure 15: Promote long-term cooperation between the users of railway sidings,
carriers and operators of public railway infrastructure.
The big problem with the use of private sidings highlighted by owners of sidings is the communication
between the key players involved in the realization of the railway transport, between the state as
owner of public railway infrastructure, carriers and users of private sidings.
Country as a carrier for the promotion and development of transport by rail could therefore be active
and as promoter or initiator in the involvement in the design of open dialogue between the owners and
operators (eg, the creation of an informal network of interested parties, information portal for
monitoring the development and use of sidings) and thereby promote the development of a unified
strategic planning.
Measure 16: Unifying strategic planning and create open dialogue between users of
railway sidings, carriers and country.
Belgrade, 2012
156
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
4.3
Measures to improve the availability of public railway infrastructure
Measures to relieve bottlenecks on the lines of the railway infrastructure in Slovenia are defined in the
National Programme of the Slovenian Railway Infrastructure (NPRSZI) and other strategic projects,
mainly related to an increase in capacity of the existing single-track trails: Ljubljana-Jesenice-state
border; Divača-Koper, Maribor-Šentilj section and Pragersko-Ormož section and track Ormož-Murska
Sobota-Hodoš-state border. By balancing bottlenecks, especially with the two-tier upgrade, to avoid
the implementation of train crossings, in order to significantly reduce journey times, which affects the
quality of rail services and, consequently, also on better terms with the use of sidings.
To ensure the appropriate axle load on public railway infrastructure (axle load category D4 (22,5 t /
axle and 8 t / m)) on the lines of V. and X. Pan-European corridor, which is also defined in the
agreements AGC and AGTC. This allows higher utilization of wagons and locomotives.
Ensure of loading gauge UIC-C1 on the main lines for the purpose of implementation of piggy-back in
the way to meet the loading gauge UIC-C1. This profile is also defined in the AGTC Agreement.
Overhaul of tracks, carrier and fixing material and thresholds on the lines of the public railway
infrastructure, which will increase the speed (elimination of slow runs) and improve the technical
characteristics of lines and the resulting increased utilization of separate rail sections.
Measure 17: Improve the technical characteristics of existing public railway
infrastructure.
With the optimization of technological processes of work in the railway traffic between carriers and
operators of public railway infrastructure, the efficiency of rail transport, in order to ensure a higher
quality, can be improved. Train routes that enpower the sidings, would be required to coordinate with
other ongoing train timetable, because of the specifics of the flow of cargo on the sidings over long
period of time this is not possible. In addition, freight trains serving the sidings are usually at a
disadvantage because of lower ranking of the trains.
In the context of optimization it is necessary to simplify the procedures for procurement of wagons and
ensure the timely delivery of these sidings due to their unavailability or unforeseen extension of freight
wagons, which the carrier did not include.
The vast majority of cargo transfers to trains in shunting yards. There are still reserves to reduce the
time of technological processes of shunting trains for the needs of empowering the sidings. By
reducing the time, delivery times on private sidings can be shorten, which increases the
competitiveness of rail transport.
Measure 18: Optimization of technological processes on the relation carrier-public
railway infrastructure manager.
5. CONCLUSION
As demonstrated by the survey results, the majority of private siding owners are of the opinion that
railway transport is environmentally friendly form of transportation and allow the movement of large
amounts of cargo and heavier loads, which is definitely an advantage of rail transport compared to
road transport. Among respondents there is also to indicate strong dissatisfaction with railway
transport due to lower average speed of railway transport, poor rail connections and transport
delays in delivery and removal, which is certainly impact on the poor state of infrastructure and
diversification compared to road infrastructure. More than half of respondents believe that the price of
railway transport is too high, and that the railway transport would be more frequently used in the
event of price reductions of 10-50 %. Railway transport would be more frequently used also in the
case of a more accurate delivery of carriers and by receiving government benefits. The state may
contribute to the increased interest of private sector to invest in the development of private sidings
and, consequently, also to increase their use.
Belgrade, 2012
157
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
BIBLIOGRAPHY
Information from Slovenian Railways – Infrastructure;
Information from Slovenian Railways – Cargo transportation company;
Information from Slovenian Railways – Section for railway tracks maintenance;
Contracts on mutual relations between owners of private sidings and Slovenian Railways for
each private siding;
[5] Station operating systems of railway stations;
[6] Business directory Bizi.si (2011).
[1]
[2]
[3]
[4]
Belgrade, 2012
158
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
INTERMODAL INFRASTRUCTURE PLANNING IN LJUBLJANA:
FIELD SURVEY AS A METHOD FOR PUBLIC PARTICIPATION
Klemen Gostič, Institute of Traffic and Transport Ljubljana, Ljubljana, Slovenija
Summary
From the year 2008 Municipality of Ljubljana was included in the international Civitas ELAN project.
With the aim to achieve better living environment in the European cities, project activities included
sustainable transport measures from 37 project partners in five European countries. One of the project
activities was to include public into discussions for future development of intermodal passenger
infrastructure. With conducting 617 surveys data about current use and expectations towards
intermodal infrastructure in Ljubljana were collected. Survey was carried out on 17 locations including
city centre of Ljubljana, main train station, city bus stations and Park and Ride facilities on the
outskirts. Within the questionnaires respondents were invited to present their own perspective on the
measures that should implemented in order to achieve more user friendly and functional intermodal
passenger infrastructure in Ljubljana. Article presents the importance of public participation in the
processes of transport infrastructure planning and includes methodology, main results and outcomes
of conducted field surveys in Ljubljana.
Key words: passenger intermodal infrastructure, transport planning, participatory planning, public
participation, methodology, user’s satisfaction, service quality perception
1. INTRODUCTION
Favorable geo-strategic position, location on the crossing of V. and X. pan-European transport corridor
and centrality of service, economic and production activities, are just some of the factors for the
importance of Ljubljana urban region (LUR) in Slovenia. During the years 1991 and 2002 LUR
recorded 5.3 % growth of population thus twice exceeding the national average. By increasing the rate
of motorization (524 cars per 1,000 inhabitants at the end of 2011) and the daily migration flows
between city and the outskirts to 120.000-140.000 daily immigrants, the importance of effective urban
and transport planning became an important issue in public discussions.
Currently available data indicate that two thirds of the whole trips in the city of Ljubljana is done by car
transport, which is fallowed by 13 % of public transport users and 20 % by walking or using a bicycle
(Guzelj in Trošt, 2011). Considering the current situation transport plans for the city of Ljubljana are
addressing the issues of lowering demand for car use thus improving the conditions for effective use
of public and bicycle transport. With the aim to allocate user’s needs and perspectives for the future
transport planning process a survey on usage and perspectives of intermodal infrastructure in
Ljubljana was done within CIVITAS Elan project.
2. INTERMODAL TRANSPORT INFRASTRUCTURE
When discussing passenger transport we are usually referring also on integration of transport systems
or intermodality. In reality, each passenger trip is always conducted of at least two transport modes
which can include walking, cycling, public transport or car use. Intermodality represents the use of
several transport modes in one trip when all used modes are combined or integrated. Integration of
different public modes is usually possible thanks to adequate intermodal infrastructure or to intermodal
agreements concluded by transport operators. In the best option these agreements allow a common
reservation for the whole trip, coordinated timetables, a common checking, the certainty to travel to the
final destination despite delays faced by one or several transport modes during the trip, etc (Rodrigue,
Comtois, Slack, 2009). The change of the transport modes is taking place on the intermodal
passenger infrastructure or intermodal hubs. When distinguishing intermodal hubs we mostly
Belgrade, 2012
159
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
concentrate on bus and train interchanges, Park and Ride (P+R) systems, cycling stands on
intermodal interchanges (Bike and Ride, B&R systems) and others. Besides infrastructural elements
intermodality of passenger transport is also related to integration of time tables and quality of services,
which additionally improve level of service and benefits of intermodal passenger transport. Main
benefits of intermodal transport are:
improvement of accessibility of different transport modes;
provision of connections between different modes of transport;
reduction of travel time and distances between different points of interest;
improving quality and precision of given information between transport modes;
better accessibility to different transport hubs.
3. PASSENGER PERSPECTIVE AND QUALITY OF PUBLIC TRANSPORT SERVICES
The integration of different transport modes represents one of the ways to improve quality of a system
as a whole, thus targeting the user’s interests to receive expected level of quality service. Looking
more closely at the issue of user’s interests, it becomes apparent that these cannot be reduced to the
quality alone, but to meet the user’s needs of mobility in general (Schiefelbusch, 2009). The best
solution to overcome the barriers of dissatisfied public transport users is their involvement in
preplanning and also implementation activities. To successfully implement intermodal transport
services or facility, a certain degree of public involvement should be achieved within:
political level: the framework for public transport and intermodality is a set up and the strategic
decisions on the level of service are made;
planning level: concepts for the service are developed and planned in detail including the
preparation of operation and operators and the level of capacity provided;
provision level: planned concepts are implemented, bearing in mind that the deviations from
the pre-planned pattern of intermodality links or transport in general are kept at the minimum;
practical level: practical problems and users expectations have to be solved with applicable
solutions to arising problems (Schiefelbusch, 2009).
After the planned activities are being put into operation, users state their personal sadisfaction with
implemented services. The practices of quality management measurement of satisfaction can be
performed as mystery shopping surveys (MSS), direct performance measurements (DPM) or customer
satisfaction surveys (CSS) (Meier, Neugebauer, 2005). CSS surveys with proposals of further
transport implementations are also to be used in practices when public is to be questioned on their
proposals for further needed implementations in the field of transport operation services. Usually there
is a clear disconnection between realized and perceived level of transport and intermodal
infrastructure services (EN 13816), which can be defined as:
difference between sought and targeted service quality (provides costumer orientation);
difference between targeted and delievered service quality (measure of entrepreneurial
performance);
difference of delivered and perceived performance quality (indicator of the importance of
personal experiences, options and also prejudices);
difference between perceived and sought service quality (customer satisfaction). (Meier, 2005)
User’s perspectives concerning public transport and also performance of all the means of public
transport within intermodal chain, are to be included in the preparation of transport plans in the local or
regional level. Public participation in the phases of strategic transport planning are usually
implemented during the broad preparation of the transport concepts or when some activities have
already took place and the public is to be asked about the satisfaction with services and proposals for
further implementations. If the communication with wider public during the planning processes is
conducted in the right way, implementations also receive some degree of agreement within the public.
Surveying activities represent only one of the options on which public point of view can be
emphasised, as there are also possibilities to conduct round tables or focus groups with different
stakeholders e.g. The general proposals from the public are to be further analysed and in the
reasonable scale implemented in the overall transport strategy (SUMP, 2011).
Belgrade, 2012
160
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
4. SURVEYING METHODOLOGY
Same as in other Civitas ELAN partner cities also in Ljubljana the survey on intermodality and
intermodal infrastructure planning was prepared. Although the Civitas ELAN cities can’t be indefinitely
compared by its urban structure, demographic status, usage of transport modes e.g., comparisons
between cities in terms of usage and intermodal infrastructure operation can be exposed. The survey
within Ljubljana was prepared with the aim to gain additional data about satisfaction with intermodal
infrastructure, usage of intermodal interchanges and satisfaction with functioning of intermodal
interchanges. Survey was carried out on various locations around Ljubljana Civitas ELAN test corridor
on Dunajska, Slovenska and Barjanska streets and on Park and Ride facilities on the city outskirts. In
the survey correspondents also proposed their view on intermodal infrastructure in the future. During
the surveying period, before the summer vacations in the July 2011, altogether 617 surveys on
intermodality in Ljubljana were assessed.
In order to reach respondents that are using intermodal infrastructure and also other respondents that
are less likely to use intermodal junction points the structure of surveying locations was split into two
categories. In the first category surveying took place on intermodal interchanges where there was
more likely to survey more or less regular users of intermodal infrastructure. At the intermodal
interchanges 303 surveys were completed. Second category of surveying location remained neutral,
because in the main city squares, before shopping malls and on other interested locations the
possibility to survey a person which is regularly using intermodal interchanges is lower.
Surveying on intermodal interchanges included main Ljubljana railway station (located on the X. panEuropean corridor) with the nearest car and bicycle parking places, main Ljubljana bus station, city
public transport stations Bavarski dvor (both ways), Konzorcij, Pošta and Drama (all one way) and
Park and Ride system Dolgi most, P+R Stožice and P+R Rudnik. Both genders were equally
distributed and also the surveying sample resembled to demographic structure of Ljubljana.
5. USER’S PERCEPTION OF CURRENT INTERMODAL INFRASTRUCTURE IN LJUBLJANA
In the questionnaire there was a sequence of questions referring to the perception of the intermodal
infrastructure planning processes in Ljubljana. In order to understand the results of the survey better
the current situation on intermodality in Ljubljana that could have an effect on the answers was also
considered. Those influences were introducing of BicikeLJ public bicycle rental system in May 2011
and implementation of 25 electronic timetables displays on frequent bus stations in Ljubljana within
Civitas ELAN project in September 2010.
th
Municipality of Ljubljana (MOL) in May 12 2011 introduced the public bicycle rental system BicikeLj
with 300 bicycles on 30 parking places. The renting system was well accepted since in just two
months after activation almost 17.000 users have logged to the system and 130.000 bicycle rentals
have been made. Further on until September 2012 almost 900.000 rentals have been made from
more than 37.700 long-therm users. For busting the usage of new rental service many promotion
activities took place. Survey showed that many respondents felt familiar with the intermodal
infrastructure planning from the promotions of BicikeLj renting system. Since implementation of the
public bikes renting systems presented new travel option for the residents, the implemented innovation
also improved the status of intermodality in the city.
Also many respondents felt that the electronic displays on the city bus stops are the right way to
promote intermodal infrastructure in Ljubljana, since additional information about accurate bus arrivals
encourages use city bus services. Although the timetable displays are proven to be innovative and
important for the users of public transport services, some users share same opinion that electronic
timetable should be located on almost every bus station in the city. Some of the respondents have
also some bad experiences with inconsistency of displays with actual bus timetables as busses
sometimes arrive later than it is shown on display which is quite disturbing from the user’s perspective.
Consequently, some respondents proposed better functioning of time schedules and real time
information systems.
The main results of the field survey indicated that citizens in overall feel informed about intermodal
infrastructure planning processes and are rather satisfied with the information they receive. When
questioning the awareness about the on-going process of intermodal infrastructure planning 65 % of
respondents answered affirmatively that they are familiar with transport planning processes taking
Belgrade, 2012
161
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
place in the city. Survey showed that more than one third (37 %) of the respondents felt familiar with
the planning processes in Ljubljana from the implementations in site or they have heard it from a
friends/relatives. Some (21 %) heard about the intermodal infrastructure planning from municipal
newspapers and 17 % from regional or national television. From transport company web pages
(Ljubljana City Public Transport, Slovenian Railways) 11 % of respondents heard from the transport
infrastructure planning and other from meeting from representative of the city or from municipal
webpage (5 %). Analysis thus shows that the practical implementations of the intermodal infrastructure
have a significant importance on the feeling of acceptance from the wider public. Long-term planning,
public involvement and real implementations have an effect on the perception of the offer and the
quality of intermodal public transport services within the public.
In the questionnaire we also wanted to analyse the main issues of satisfaction or dissatisfaction on the
passenger intermodal infrastructure. Public transport users are in general satisfied with the level of
security at interchanges, received information and the offer of services (vending machines, shops) at
the interchanges etc. Field survey indicated that citizens are less satisfied with car and bicycle parking
facilities near intermodal interchanges (train station, main bus station), and also with frequencies of
the city buses and regional trains. The respondents would like to see more electronic timetable
displays on the main interchanges and a further spread of interchanges where integrated public
transport card (Urbana) could be used and filled. Users also proposed further improvement of public or
intermodal infrastructure in Ljubljana.
Picture 1: Surveying on the city bus stations with
electronic timetable displays
Picture 2: BicikeLj, public bicycle rental system in
Ljubljana. Rental station near main train station.
6. PROPOSALS ON THE PUBLIC ON INTERMODAL INFRASTRUCTURE IN LJUBLJANA
With the aim to receive some more or less innovative ideas and follow the criteria of participatory
intermodal infrastructure planning, the respondents were invited to describe their recommendations for
improvements of intermodal interchanges. Proposals were collected in the open case answers, so the
respondents could freely state their opinion and propose improvement on intermodality in Ljubljana.
One thirth of the respondents choose to recommend some additional ideas on improvement of
intermodal infrastructure and by grouping the stated answers main proposed ideas were specified.
Overall, user’s proposals towards better function and connections of transport in Ljubljana were not
directly focused on intermodal infrastructure, but were more connected to activities for improvement of
public or personal transport operation. Users of intermodal interchanges would prefer more frequent
connections of city busses as they perceive that the quality of intermodal transport terminals also
reflects in quality of its services. Some users were negatively oriented towards current bus timetables
(lack of 24-h service) and its frequency outside the rush hours. Question arose if timetable
optimization could suffice to achieve more frequent bus transport or there should be some additional
investments made in order to maximize public transport operation in general (e.g. increasing the
number of operating busses, optimizing the routes e.g.). Considering the improvement of public
transport system operation, users highlighted better connection of rail public transport with other
motorised or non-motorised means of transport. If rail public transport users would have had better
connections with public transport from the main or peripheral train stations to their daily destination,
they would have used it more regularly. In that field some progress has already been done. With the
Belgrade, 2012
162
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
aim to improve access to the rail passenger transport, in the year 2009 study of revitalization of
existing railway stations in the suburban area of Ljubljana was carried out (Institute of Traffic and
Transport Ljubljana, Slovenian Railways, 2009). On the basis of settlement density and traffic analysis
the study examined the possibility of establishing 16 new locations of rail passenger stops within the
wider area of Ljubljana urban region. With additional connections of bus or P+R system in the region,
the proposed locations for new smaller rail stations could represent useful intermodal passenger
terminals in the city and also in the wider region.
Also there were proposals to improve transport infrastructure on the interchanges. Users propose that
every bus stop (even outside the city centre) should be well protected against the weather conditions
and have other necessaries (timetables, seats ...) that are depending on the importance of the bus
stop. There were also proposals for better connection of main bus station with city public transport,
which should be resolved by construction of Emonika transport junction point on the place of current
main railway station. Proposals are also aiming at the infrastructural and informational improvements
on bus interchanges and to spread the locations of digital timetable displays that were put into
operation at the end of the year 2010.
As mentioned surveying also took place in the P+R facilities near the ring-road around the city of
Ljubljana. P+R systems allow affective connection of personal motorized and public transport since
users can park their cars outside the city and continue their travel to the city centre of by public
transport. From the users perspective the attention towards the increase the number of parking places
was brought. In the morning rush hour parking places on the P+R system Dolgi most (217 parking
places) is filled quickly, while the newly build P+R system at the Stožice arena (1,200 parking places)
is almost fully free due to unfriendly location to means of public transport. The users also perceive the
timetable intervals rather low, especially during the summer time when frequency of the bus
connections from P+R to the city centre is decreased. Users also propose the additional guarding
procedures on P+R Dolgi most, since in the past some cases of vandalism have occurred.
To achieve appropriate level of the intermodality there is an importance also to combine public
transport and non-motorised personal transport. With combining bicycle trips and public transport one
can further reduce the negative impacts of transport on the environment and space in the city. While in
Ljubljana there are about 8,000 bicycle racks, their quality and capacity near public transport stations
and P+R systems are rather low, which was also stated from the users. Some proposals were
referring to additional implementation of bicycle racks at the main train and bus station in Ljubljana, so
they could use their bikes to continue the daily commute to the desired destination.
Picture 3: One of the few bicycle racks near main
train station in Ljubljana
Picture 4: In the morning hours car parking
places at P+R system Dolgi most are already
fully occupied
In the terms of improving overall transport condition in Ljubljana, some respondents would like to see
the reintroduction of city tram line. Also there were proposes for additional prolonging of some city bus
routes to the neighbouring cities and good connection of the busses to the newly build P+R facilities in
the region. Results of the survey on intermodal infrastructure planning arose some new options to
further develop intermodal infrastructure in Ljubljana. The impression came into notice that the
respondents were in most cases very satisfied to be questioned on their proposals for the future
development of intermodality and transport in general in their city.
Belgrade, 2012
163
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
7. CONCLUSION
The intermodal infrastructure planning survey gave us some new information about usage and
perspective on intermodality in Ljubljana. We can conclude that in general people feel informed about
intermodal infrastructure and are rather satisfied with the information they get but they would still like
to be more included in preparational and organizational processes for intermodal infrastructure
planning. Many of respondents are regularly using intermodal junction points and are in general also
rather satisfied with its functioning. User of public transport are satisfied with security in interchanges,
offer of services (vending machines, shops ...) and also with information they get on interchanges, but
are less satisfied with car and bicycle parking places near interchanges and also with sequences of
the buses. Also some new ideas for the improvement on intermodal junction points were received and
present the potential for future improvements.
The next step for further improvements on intermodal interchanges planning and functioning would be
to get specific and more accurate data about usage of transport modes in and outside the city centre
of Ljubljana. It is rather important to get to know other commuting habits from users of personal car
transportation in order to get to know which “soft and hard” measures are to be used for increasing the
rate of more sustainable passenger transport modes or the combination of personal and public
transport (P+R, car sharing, ...) in Ljubljana. Surveying of the city inhabitants of their transport vision is
just one of the steps to achieve more user’s friendly and effective public or personal transport in the
city of Ljubljana and also in the wither region.
BIBLIOGRAPHY
[1] Guzelj, T., Trošt, D., 2011. Makro in mezoskopska preveritev koncepta trajnostnega prometa v
Ljubljani. PNZ, OUP MOL.
[2] Institute of Traffic and Transport Ljubljana, 2011. Participatory intermodal infrastructure
planning in municipality of Ljubljana. Final report of Civitas ELAN measure
[3] Institute of Traffic and Transport Ljubljana, Slovenian Railways, 2009. Revitalizacija obstoječih
železniških postaj in postajališč v primestnem območju Ljubljane. Končno poročilo.
[4] Meier, H., Neugebauer, N., 2005. Costumer perspective in Quality management. Edited by: M.
Schifelbsch, D. Hans-liudger. Public transport and its users. The Passenger’s perspective in
planning and Costum Care, 299 p.
[5] Rodrigue J.-P., Comtois C., Slack B., 2009, The Geography of transport systems. 352 p.
[6] Schiefelbusch, M., 2009. Passenger interest in Public Transport. p. 5-18. Edited by: M.
Schifelbsch, D. Hans-liudger. Public transport and its users. The Passenger’s perspective in
planning and Costum Care, 299 p.
[7] Sustainable urban mobility plans (SUMP), 2011. 12 p.
Belgrade, 2012
164
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
MODERN RAILROAD TERMINALS AS RELATED TO URBAN
MATRIX DEVELOPMENT
Ksenija Stevanović, Faculty of Architecture, Belgrade, Serbia
Zdenka Popović, Faculty of Civil Engineering, Belgrade, Serbia
Milica Pajkić, Faculty of Architecture, Belgrade, Serbia
Abstract:
In the era of integration of all means of transportation, as well as expansion of railway networks for
high speed trains, there is a revived interest in railway transport. The renaissance of railway, led to a
great production of exclusive new generation terminals, multimodal traffic interchanges. These points
are formed on airport terminals, on intersections of important regional and main traffic lines and in big
cities.
In this paper, attention was dedicated to terminals in major cities, where space and resources are
inevitably limited and the rule of the planers is to reach the best compromise. We list a number of
demands that terminals have to fulfil regarding efficiency and environmental protection. Since the
adoption of pass-through type terminals is of crucial importance, we recognise their advantages used
to exploit the concept of vertical content development. This superposition of content provides for easy
transition from one method of transportation to another, as well as independent surfaces for
movement for individual transportation systems, reduces the occupancy of city property and easily fits
into a unique architectural form.
Finally, the paper also notes the importance of architectural prevalence as part of the ambiance and
the city as a whole.
The goal of this paper is to identify the importance of modern railway passenger terminals as related
to city transformation. New city terminals consider several design and urban integration challenges
including:
- integration with different transport, making multimodal interchange;
- functional advantages of the pass-trough type of station towards urban matrix;
- energy efficient solutions for these mega city hubs;
- commercial developments into new city centres;
- site responsive design
Key words: Railway terminals, multi-modal traffic interchange, pass-through terminal concept,
coexistence with the urban matrix, morphogenesis
1.
INTRODUCTION
The time of huge and fast global changes results in great architectural production in all areas, due to
new technologies and possibilities, as well as the flow of capital. Traffic buildings, as a part of the
traffic infrastructure, are also being improved by new architectural solutions and reconstructions all
Belgrade, 2012
165
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
around the world. The general reorganization of traffic is leading towards the integration of all types of
transport into a unified system. Ease of transfer between different modes of public transport is a great
contribution to mobility which can be made by the transport industries. In this way, the advantages of
different methods of transport are becoming more prominent, while the flaws are reduced (1). In
accordance with these tendencies, a revival of railroad passenger traffic took place, followed by a reactualization of city terminals as key spots on the railroad network.
th
The end of the 20 century and the beginning of the new millennium is a period of the renaissance of
railroad terminals, which are in the function of the concept of integrated traffic, and a period of
improved railroad networks, achieved by the introduction of high-speed trains.
Railroad terminal buildings have undergone changes both in function and in appearance. Thus today,
general functional demands these terminals have to satisfy in order to service the increasingly
demanding customers can already be recognized even without the necessary time distance.
Sustainable growth philosophy in transport sector has a key role in battle for environmental protection.
Railway transport is considered relatively clean and energy efficient using electricity instead of nonrenewable energy resources.
Constant expansion of railway networks for high-speed trains, as well as comfortable and fast travel
they offer, reduced the use of cars and are also taking over passengers who travel on relations
between 500 and 1400 km from airlines.
2. MODERN TERMINALS AS MULTIMODAL TRANSPORT INTERCHANGES
The aboveementioned phenomena and facts also caused an extremely fast construction of modern
railway terminals. With their functional concepts and shape solutions, they represent the paradigm of
new railway station facilities. They are straightforward, materialized examples of the idea and
imperative of merging all traffic systems in order to achieve more efficient and healthier functioning as
related to the environment. In this regard, new-generation terminals are multi-model traffic
interchanges, places where people switch modes of transportation, resulting in use of adequate
transportation both on the regional level and the metropolitan level (Figure 1). These landmarks within
the traffic network make it possible to emphasize the advantages of a certain traffic system, as well as
to reduce its flaws, and reduce traffic jams and pollution by providing better propulsiveness.
These points are formed on airport terminals, on intersections of important regional and main traffic
lines in big cities.
Urban multimodal interchanges can only benefit the community by making public transport more
atractive by opening up comercial and social opportunities. The station can be more vital and
synergetic public facility. In thr proces of creating station to a product that:
- improove public transport, accessible to all and attractive to all,
- becomes a thriving public space,
- is quality urban design,
all have a part to play, transport operators, local and central authorities, developers, investors and
designers, but it is a vision of designers which will act as a catalist in that proces.
Belgrade, 2012
166
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 1. Complexity of Lerter station in Berlin, traffic intersection: Stadtbahn above, regional rail
below, and the multifunctional hall in between
In this paper, special attention is dedicated to terminals in major cities, since they are the most
complex – encompassing both systems of non-urban traffic and city transportation. On the other hand,
these mega city structures have their specific features in cooperation with the urban matrix, unlike the
incompatible old ones (Figure 2), which makes them even more important to the development of
healthier cities.
Figure 2. Frankfurt historical station, conflicts with urban matrix
3. ADVENTAGES OF PASS-TROUGH TERMINAL CONCEPT
For 25 years, in major European cities, new railway terminals are being constructed and old, historical
ones are being improved. Modern station facilities are adapted to the continual railroad network, as
well as other forms of public transport, thus creating the traffic interchange.
Modern railway terminals have to fulfill a number of demands regarding efficiency and environmental
protection.
By determining the phenomenon that railway station poses by it presence in the city and by their
analysis we are able to recognise what are the conflicts that it is posing, but also which are the
Belgrade, 2012
167
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
advantages for the town. New railway terminals give the experience for the interaction, mutual
progress of the station and the city (4).
The urban aspect of terminals is viewed from the standpoint of the needs of a metropolis, as well as
spatial potentials. In order to be able to use their main advantage, accessibility in central city zones,
railroad terminals in big cities, due to a lack of building land, have to search for compromise solutions,
such as trenching of the route, vertical approach, etc (3).
The adoption of pass-through type terminals is of crucial importance, not only because of their
advantages in comparison to oldones, but in using the methods to exploit the concept of vertical
content development (Figure 3). This type is more suitable for city giving large abilities for smooth and
easy interchanges, offering the possibility of vertical connection of different methods of transport,
without impeding the city network (5).
Figure 3,Pass-trough type of railway station concept; longitudinal and cross section showing vertical
content superposition
Different modalities of this station type offer different possibilities of shaping – from the design of the
entrance zone to an underground station only, to the formation of a single arch over an over ground
railroad terminal building
Among the list of pass-trough type terminal advantages we recognise the most important ones:
- Vertical superposition of content provides easy transition from one method of transportation to
another, as well as independent surfaces for movement for individual transportation systems;
- Avoidance of conflicts with urban matrix
- Reduces the occupancy of city property and easily fits into a unique architectural form.
- The accessibility from different sides and levels makes better propulsiveness for great number of
users;
Time and exploitation have selected high-quality, functional schemes of station premises, rejecting
outdated terminus station type, developing subtypes of pass-through stations. Improved concepts of
these stations do not use pedestrian bridge-access and under halls anymore, but multipurpose halls
and vestibules instead.
4. FUNCTIONAL AND SHAPE CRITERIA TO BE APPLIED
Today, railroad terminals are a part of integrated city structure, so that the basic constitutive elements
of the station, the station square, the main hall, the platform space, are sometimes the infrastructure
on which new objects are built. Thus, the station square, station building and platform areas are not
Belgrade, 2012
168
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
the only parts of railroad stations any more. The often new constitutive elements are commercial and
business contents or other public spaces created within the station, which give the final imprint on the
station with their size and expression. Thus, the station merges with the urban mechanism, not only
with its infrastructure, but with its suprastructuree, as well (Figure 4).
Figure 4. Tiburtina station in Rome, 2001, „bridge“ station as city boulevard with shopping mol
connecting two separated parts of town
The quantity of traffic within a station is also defined mostly depending on its place and importance
within the railroad network system. The chosen or, in many cases, imposed location of the station is
related to the city, the city suburbs, new commercial centers, intersections of regional routes, or airport
terminals. All these locations have their determining factors, which are, more or less, spaces that are
already built and thus dictate the search for compromise solution. Furthermore, demands for the
shaping of stations within a city, an airport terminal, or a commercial centers etc. are different.
Although we classify stations from a few aspects: according to their importance and purpose in the
system of the railroad network, according to the type of traffic within them, according to their size, it is
possible to establish the factors that determine the architecture of all of them.
The analysis of these fresh, modern solutions reveals radical ideas in design approach, thus opening
new fields of research. Special attention is given to the platform area, as it is the most distinctive
characteristic of a station building, thus presenting a challenge to architects-constructors. Wide span
platform constructions, as representatives of revolutionary spirit of the most inventive century of
modern times, attracted the best engineers of the time to a competition in using new materials to
create the most dramatic and impressive spans of pure arches, which are very impressive . Solutions
range from modified and sophisticated use of the traditional platform arch, to complete disappearance
of the station building architecture, when it simply becomes a part of city infrastructure (6).
It is possible to distinguish certain common determinants and new experiences as well as some
practice criteria that new terminals should offer :
- The design should emphasize the interchange`s role as a portal into different transport modes,
provide a welcoming environment for the traveler and create interest by emphasis of the arrival and
departure points.
- The architectural expression of the terminal should reflect the culture of the century and the
technology of contemporary travel.
- The architecture, technology and facilities should work together to provide a coherent whole.
Belgrade, 2012
169
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
- Design should be `timeless` yet of its time. Robust design should give the terminal a sense of
permanence. High –quality construction should ensure that railway stations are desirable places to
visit for a long time.
- Modern stations prioritize technology, movement and speed, thus making these characteristics a
visible and active part of modern urban life. This stage is a constitutive, sometimes basic architectural
motive, observable through different layers. The dynamics of station premises, the train design, station
and platform commotion are present and visible in the life of a city (7). The importance of architectural
prevalence as part of the ambiance and the city as a whole, makes movement and speed active part
of modern urban life.
- Specific features regarding the quality and comfort of terminals concerning good orientation, the
presence of natural light, climate conditions of big voluminous spaces…
An interchange should be designed with good sight lines.
Spaciousness is important, especially since many people are prejudiced against enclosed and
underground stations because these spaces have been cramper in the past.
- Unlike the first railroad terminals, which were in the service of the needs of large train formations,
new sophisticated concepts are entirely in the service of a great number of customers. Special
attention is given to proper orientation, shortest possible routes, as well as pleasant stay and
movement through a space full of different views. Fluxes of great numbers of people were studied,
entrances were cleared, parking spaces provided along with easy access from different methods of
transportation.
- From the aspect of ecology and environment protection, the effects stations have on their immediate
surrounding, as well as microclimatic conditions within the station itself, are especially analyzed today
(8). The pressure is on to make public transport attractive, with the long term effect of improving
quality and mobility and saving depleting energy resources.
- Removal of barriers for customers, abundance of daylight, a space filled with views, easy orientation
and safe passage through space are only some of the stated imperatives.
Figure 5. New Waterloo Station in London, platform movements as active part of urban life, being
memorable landmark of the city
Belgrade, 2012
170
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
- The abundance of natural light is characteristic of all new railroad station examples. Natural daylight
creates a sense of well-being and reduces a sense of enclosure. Even in cases of trenched routes,
designers find solutions to provide a deep penetration of daylight (Figure 6). This imperative of proper
lighting further contributed to the possibilities of grandiose modern arches, light constructions, mostly
steel, with special covering and multilayered structure.
Figure 6. Stuttgart New station, pedestrian city square above tracks with lantern day lighting
platforms;
As before, big investments and different expert organization are mobilized, the most eminent experts
are taking part in the construction of these systems of traffic infrastructure, which are visual and vital
landmarks of cities, new centers offering various contents, and which will only in time be fully affirmed
and perceived in the context of an entire period of society and architecture.
5. CONCLUSION
Global outstanding architectural production appears as consequence of fast comprehensive
technological and economical improvement.
Traffic infrastructures also run out the transition and rationalization all over the world. The all kind of
traffic is going to be integrated in unique system improving all their advantages, minimizing their
drawback. According to those tendentious becomes revival of railway traffic as well as importance of
city railway terminals, the key check points in whole railway network.
Modern station facilities are adopted to the continual railroad network, as well as other forms of public
transport, thus creating the traffic interchange. These interchanges make traveling more efficient,
more comfortable, offering various services to users.
Contemporary railway terminals use pass-through station concept exploiting vertical content
superposition. This concept allows continuity of urban matrix, reduces the occupancy of city property
thus leaving possibilities for more suitable land-use (9). These terminals provide better accessibility as
well as great propulsivness through station itself.
Stations of a newer date fulfill the aspect of sustainable development and environmental protection
reducing pollution and noise and making new city centers.
New city terminals consider several design and urban integration challenges including:
- integration with different transport, making multi-modal interchange;
Belgrade, 2012
171
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
- functional advantages of the pass-trough type of station towards urban matrix;
- energy efficient solutions for these mega city hubs;
- commercial developments into new city centers;
- site responsive design
Finally the renaissance of railway terminals offer certain specific features regarding the quality and
comfort concerning good orientation, the presence of natural light, climate conditions of big
voluminous spaces…
These modern terminals are opening a glorious new chapter in the history of railroad terminal
architecture.
Great demands and funds which are being invested into these buildings, gathered the most prominent
architects and constructors, offering a display of modern terminals, which combine the static and
dynamic character of the building into a unified whole, celebrating new technologies and speed and
opening a new glorious chapter in the history of railroad terminal architecture.
REFERENCES
[1] Blow Christopher, Transport Terminals and Modal Interchanges, Architectural Press, Oxford,
2005.
[2] Maletin Mihailo, Gradske saobracajnice, Gradjevinski fakultet u Beogradu, 1996.
[3] Ross Julian, Railway Stations-Planning, Design & Management, Architectural Press,
[4] Oxford 2000.
[5] 4 Ventura Paolo, Citta e Stazione Ferroviaria, Firenze University Press-EDIFIR, 2004
[6] Stevanovic Ksenija, Renesansa zeleznickih terminala, Zaduzbina Andrejevic, Beograd,
[7] 2008.
[8] Binney Marcus, Architecture of rail, Academy Edition, London 1995.
[9] Ferrarini Alesssia, Railway Stations, Electa architecture, 2005
[10] 8 Richards Brian, Future transport in cities, Spon Press, London 2001
[11] 9. Stevanović Ksenija , Renesansa terminala na prelasku dva veka, “Arhitektura i
[12] 10. Renaissance of Railway Stations, Bund Deutcher Architekten, Deutche Bahn, Deutches
Arc 11. 11, Edwards Brian, The Modern terminals, Spoon, London,
Belgrade, 2012
172
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
PROVIDING CO-MODALITY OF PUBLIC PASSENGER TRANSPORT
THROUGH A STANDARDIZED UNIFIED ELECTRONIC TICKETING
SYSTEM IN SLOVENIA
Primož Kranjec, Prometni institut Ljubljana,Ljubljana, Slovenia
Dušan Fajfar, IGEA, Ljubljana, Slovenia
Aleksander Đurić, Logiteh, Maribor, Slovenia
Marko Samec, Dinocolor,Vojnik, Slovenia
Vladimir Tkalec, CENT.SI, Celje, Slovenia
Abstract
In 2007 Ministry of infrastructure and spatial planning launched a framework project on integrated
public transport in Slovenia aiming at establishment of an integrated public transport service based on
co-modality of railway, regional and city bus transit. This paper gives an overview of implemented
subprojects within the framework casting focus on the results of the “Elaboration of standard for
unified electronic ticket in Slovenia” subproject that was completed at the end of 2011. Electronic
ticketing systems and solutions are presented in the scope of public transport in Slovenia where
several custom-designed electronic ticketing systems already exist and operate. Currently applied and
state-of-the-art technologies and conceptions of card-based electronic ticketing systems world-wide
are given, with special attention to contactless cards, NFC mobile phones and bank cards and other
RFID technologies. Provided technology and economic analyses of different ticketing technologies
and concepts an open CI system based on MIFARE DesFIRE contactless card technology has been
proposed to be adopted as a nation-wide Slovenian standard of unified electronic ticket. Possibilities
of supporting technologies like the novel NFC and bank card ticketing have been studied to make the
system user friendly and all-encompassing. A proposal of Slovenian standard based on ISO 1545 and
ISO 15320 international standards is depicted in terms of preferences and weaknesses still to be
solved. The new ticketing system is also estimated in terms of implementation and up-keeping costs of
SW and HW and system organisation.
Key words: integrated public transport, co-modality, electronic ticketing system, contactless cards,
MIFARE, NFC, bank cards, ISO 1545, ISO 15320, cost analysis
Belgrade, 2012
173
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. INTRODUCTION
This paper gives overview of the results of the project “Elaboration of Slovenian standard for unified
electronic ticket [1]” that was realized in 2011 and is part of umbrella project of integrated public
transport in Slovenia started in 2007 by Ministry of transport. The goal of the integrated public
transport project is to establish unified electronic ticket and harmonized time-table for bus and railway
traffic.
In Slovenia electronic ticketing systems are in use by almost all public transport operators. The
problem is that the implemented ticketing systems are not interoperable in terms of technology, data
models, product definitions, validation rules, missing business agreements, etc. With the elaboration of
Slovenian standard for electronic ticketing the goal was to set up general conditions for interoperability
of different electronic ticketing systems. The given project covers many aspects of electronic ticketing
systems starting from technology of contactless smart cards overview, including a survey of different
implementations of electronic ticketing systems for public transport in the Europe and worldwide,
analysis of systems’ implementation at Slovenian transport operators and electronic ticketing system
technology providers, research of possibilities to use new technologies like NFC and bank cards,
analysis of technological and data model standards with detailed description of SIST EN 15320:2011
and finally to different SWOT analyses and implementation cost estimations of interoperable electronic
ticketing system.
The project was primarily technologically oriented and results give a proposal for a unified technology
platform and a unified data model as basis for a Slovene national standard for electronic ticketing
systems implementation. The project did not deal with problems regarding unique tariff model, zone
model vs. distance model, check in vs. check-in/check-out system, product definition, validation rules,
business and clearing model, data exchange between different systems, organization, business
agreements, etc.
2. TECHNOLOGY OF ELECTRONIC TICKETING SYSTEMS
Electronic ticketing technologies are generally classified according to the way they are used. The
closer the card is to the terminal, the more reliable the transaction is, but the more constraining it is for
the user.
Contact-based technologies that are generally not used in public transportation are mainly based on a
standardized communication between user devices (only memory or smart cards) and access systems
compliant to the ISO 7816 standard [2].
Contactless cards operate on the principle of inductive loops and data are transferred by means of
alternating magnetic fields generated by the reader. Basically there are 3 available contactless smart
cards standards [3]: ISO/IEC 10536 (Close-coupling), ISO/IEC 15693 (Vicinity-coupling) and ISO/IEC
14443 – Type A/B (Proximity-coupling). The most widely used standard in public transportation is
ISO/IEC 14443 [4] which in general describes how contactless cards and terminals should work to
ensure industry-wide compatibility. Beside public transport sector this standard is also used in identity,
security, payment and access control applications. Avery standard ensuing from ISO/IEC 14443 is
also NFC (Near Field Communication) standard. Actually NFC is a set of standards where
communication protocols and data exchange formats are based on ISO/IEC 14443.
Public transportation is one of the most suitable sectors for use of contactless technology. The
reasons lie primarily in the ease of use for the passenger, speed of the transactions and controlled
payment services. The most important technology implementations that we encounter in the world are
as follows:
CALYPSO [5] is a standard for electronic public transport ticket, which was developed by a group of
European partners in the following cities: Brussels, Lisbon, Konstanz, Paris and Venice.
A Calypso portable device was historically a microprocessor smart card, but as technology moves on,
new devices like JAVA contactless cards, NFC mobile phones, USB key with a contactless
communication interface are also supported. Calypso is an open technology, free from any
manufacturing monopoly making it both economical and adaptable to evolving future technology
changes.
Belgrade, 2012
174
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
With more than 52 million Calypso cards and 260.000 readers at the beginning of 2010, Calypso is the
largest microprocessor based smart card technology ticketing system. The number of Calypso users is
constantly increasing all over the world. Calypso is currently presented in Belgium, Canada, China,
France, Israel, Italy, Portugal, United Kingdom, etc.
FELICA [6] is a contactless smart card by Sony, which was originally intended to pay fares for public
transport in Hong Kong. Due to its functionality and ease of use is now being extended for payment of
products in all kinds of shops and vending machines. There was an attempt to specify FeliCa as "ISO
14443 Type C", but this initiative did not end up in the final standard.
FELICA is “the facto” standard in Japan and it is used in many industry areas. FeliCa is used in
transportation tickets for railways and buses in Japan and many other countries in Asia [6].
MIFARE [7] is a registered trademark of NXP semiconductors for a series of chips in contactless smart
cards. It is the most widely used technology in the world (according to some estimates MIFARE cards
account for 80% of the market of public transport - more than one billion cards issued since 1994).
MIFARE covers different kinds of contactless cards whereby in public transportation are mostly used
MIFARE Classic (memory card), MIFARE Plus (security upgrade to MIFARE Classic), MIFARE
Ultralight (inexpensive memory card) and MIFARE DESFire (microprocessor smart card).
MIFARE technology is used in many industry areas while in public transportation this technology is
applied in more than 650 cities all over the world. Currently more than 50 countries adopted MIFARE
technology. MIFARE technology is also the only technology used in the electronic ticketing systems in
Slovenian public transport.
3. NEW TECHNOLOGIES IN PUBLIC TRANSPORT
Throughout the world, public transportation is "smart," and getting smarter. Transit authorities want to
go away from proprietary-based systems and into new, open standards and open fare payment
technologies. By using open standards, transit authorities can procure fare collection equipment from
multiple vendors and rely on it to work together seamlessly. Open payment systems allow use of smart
cards and similar devices that passengers already have, rather than requiring them to use a card
dedicated to a specific transit authority. In an open payment system, riders can use the existing
contactless credit and debit cards (like MasterCard PayPass and Visa PayWave) to pay their fare
directly, by tapping the card on a fare-gate or bus fare-box. Other contactless smart cards, such as
university, government, and corporate IDs, and mobile phones (NFC), can also be used in open
payment systems, as well, allowing transit users to pay their fare using cards and devices they already
dispose of.
NFC and contactless payment cards are already available and very promising for use with transport
applications.
Near Field Communication (NFC) [8] is a standards-based, short-range wireless connectivity
technology that enables simple and intuitive two-way interactions between electronic devices. With
NFC technology, consumers can perform contactless transactions, access digital content and connect
NFC-enabled devices with a single touch. NFC simplifies setup of some longer-range wireless
technologies, such as Bluetooth and Wi-Fi. It is also compliant with the global contactless standards
(ISO 14443 and/or ISO 18092), which means transport agencies that have already deployed
contactless programs enjoy a built-in advantage, as their equipment may readily interact with NFCenabled mobile devices and provide richer services.
The NFC Forum has identified three basic use cases for NFC: connection, access, and transactions.
All three have application in public transport. For example, an NFC-enabled phone can connect with
an NFC-enabled kiosk to download a ticket, or the ticket can be sent directly to an NFC-enabled
phone over the air (OTA). The phone can then tap a reader to redeem that ticket and gain access.
Belgrade, 2012
175
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 1: Public transport ticketing with NFC phones [8]
There are three options for storing the ticket securely on the phone, each of which may have a
different provider:
A handset manufacturer can provide NFC-enabled phones with embedded secure elements
SIM manufacturers can provide the SIM cards, via the mobile network operators, needed to store
ticket applications
Secure Digital card manufacturers can offer SD cards, when the ticket is stored in a pop-out card
There are many players who need to be involved in developing an NFC transport system. In most
cases, the requirements will be driven by the transport operator, who will be looking to integrate NFC
applications into an existing structure for travel and customer service, ticketing, access control, and
payment. This may or may not already include contactless acceptance capability.
Contactless payment cards are very suitable to be used in public transport, too. The transit and bank
card payment industries have historically taken different approaches to processing payments and
managing risk. However, as bank card issuers offer contactless credit, debit and prepaid cards and
institute new programs for low-value transactions, transit agencies can take advantage of these
programs to directly accept contactless bank cards for fare payment at the point of entry where the
fare media is ordinarily presented. This can yield significant benefits for transit fare collection vs. other
non-cash approaches.
MasterCard PayPass [9] and Visa PayWave [10] use contactless technology based on ISO 14443 and
are designed for low-value payments well suited for use in trafficked areas (café, kiosks, vending
machines and transport). There are many pilot projects where payment card is used as fare media
(ticketing application added on payment card) or as payment method (single journey payment) for
public transport. There are also live mass roll out project (Slovakia, Turkey, London…) where public
transport operators and financial institutions find the suitable business model for all parties involved.
The new technology are developing very quickly and in the near future the NFC technology will be
integrated in almost all mobile phones and we will have contactless payments cards in the pocket (or
even on mobile phones), so the technology will not be a problem. The challenge is to develop right
business model and agreements between public transport operators, public transport authorities,
financial institutions, telecommunication operators, etc. They all need to work together to ensure that
any ticket can be bought with payment card or NFC mobile phone and also stored within this media
and used in every public transport anywhere.
Belgrade, 2012
176
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
4. ORGANISATION OF PUBLIC TRANSPORT IN SLOVENIA
Public passenger transport in Slovenia is characterised by transported passenger volume not
exceeding one in a big metropolitan agglomeration on one hand, while on the other scattered
population in numerous smaller settlements can’t bear a true comparison to a city passenger transit.
Two modes of public transport – bus and train score together app. 65 million vehicle kilometres and
nearly 90 million passenger journeys on a yearly basis. Only few population centres in the country
make a proportion of 1.200 vehicles in regional bus and train services vs. 300 in city transport far in
favour of long-distance or inter-urban transport.
Organization of public transport can be analysed through entities and processes playing role in
management, planning, financing and determining of the price of public transportation products.
Unification of a ticketing system implies also unification of entities and processes in the overall system.
In Slovenia today city public transport is entirely covered by bus lines and managed by municipalities.
Currently, city transport services are organized in 11 municipalities, operated by several transport
operators (concessionaires). With one exception these operators also provide regional bus services.
The regional bus public transport is managed by the Ministry of Transportation and operated by 39
transport operators (concessionaires). Passenger rail transport is managed by the Public Agency of
the Republic of Slovenia for Railway Transport, entrusted for publishing of "network statement" and
train paths allocation. Passenger rail transport services are operated by Slovenian Railways as a
single service provider.
Figure 2: The management of public transport in the Republic of Slovenia [1]
Involvement of different managing authorities in public passenger transport entails diversification of
public transport funding and subsidizing and thereby diversification of implementation of planning and
provision of services as well as development policies among ministry, state and municipality bodies as
well as operators.
Planning of city public transport is done exclusively by municipalities imposing the plans to the bus
operators. In regional bus service, on the contrary, planning is done by concessionaires trying to
answer and balance the needs of municipalities, passengers and private sector, thus letting the
Ministry of transport only the minor role. Planning initiative in railway transport is born by Slovenian
Railways being also entrusted for compliance with international timetables. The Agency of the
Republic of Slovenia for Railway Transport only endorses the timetables.
Belgrade, 2012
177
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 3: Planning of public transport in Slovenia [1]
Tariff policy follows similarly diversified scheme as planning. Here Slovenian Government pops up as
an additional player to adopt the tariffs proposed by the railway company. Municipalities dictate the
tariffs in city services while Ministry of transport imposes fares and discounts for single bus tickets in
regional bus transport. Other products (tickets) in regional bus service or in railway transport are
entirely in the domain of respective operator.
This diversification of entities and processes calls for system unification.
5. ELECTRONIC TICKETING IN SLOVENIAN TRANSPORT
In Slovenia the electronic ticketing system is already used by almost all of the public transport
companies. 3 different systems are implemented: Margento company [11] with URBANA [12] card
covers city bus transport in Ljubljana, Princ company [13] covers Veolia transport and MARPROM
transport operators and company Četrta pot [14] with product e-karta [15] covers Slovenian railways
and all other bus operators.
Electronic ticketing systems are mostly used for regular passengers with monthly tickets, except in
capital of Ljubljana, where electronic ticketing system is part of city card system and is also used for
single journeys.
The existing electronic ticketing systems in Slovenia are not interoperable. They are all based on the
same technology MIFARE, so the used equipment is compatible except in the small part where older
generation of MIFARE Classic cards and appropriate equipment is used.
Company
num. of validators and
mobile terminals
num. of sales
points
num. of contactless
card
Četrta pot
1550
130
180.000
Margento
440
270
600 000
Princ
330
19
75.000
SUM
2320
419
855.000
Table 1: Dimension of implementation of electronic ticketing systems in Slovenia [1]
Company
MIFARE Classic
MIFARE Plus
DESFIRE EV1
SUM
Četrta pot
100.000
30.000
50.000
180.000
Margento
/
/
600 000
600.000
Princ
75.000
/
/
75.000
SUM
175.000
30.000
650.000
855.000
Belgrade, 2012
178
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Table 2: Number of electronic tickets of different types [1]
Company / Card
type
Četrta pot
Margento
Princ
SUM
MIFARE Classic
560
/
/
560
MIFARE Plus
/
/
/
/
DESFIRE EV1
1120
710
350
2180
SUM
1680
710
350
2740
Table 3: Number of terminal equipment of different types (validators, mobile terminals, sales points)
[1]
The upper numbers show that Mifare DesFire card is used in more than 75% and almost 80% of
terminal equipment is compatible with this technology. Regarding this and directions from general
overview of electronic ticketing technology the Mifare DesFire technology is proposed to be used for
implementation of integrated ticketing system in Slovenia. Existing differences in equipment can be
easily overtaken by replacing some older terminal equipment and contactless cards.
Also we analyzed compatibility of existing equipment with the new technologies. Only small part of
equipment supports NFC technology for using NFC mobile phones for electronic ticketing and there is
no support for EMV standard that enables using standard bank cards for electronic ticketing. While
these are technologies of the near future the proposal is that the new terminal equipment that will
replace the exploited one should support these technologies. In this way in few next years the
equipment in Slovenia will be prepared for oncoming technologies.
Special attention was put to consider possibility of using bank cards for electronic ticketing. Beside
analyze of word developments and implementations of bank cards in public transport the meetings
with Slovenian banks were done. The first limitation found was that at the moment there are no
contactless bank cards in mass use, just a few pilot projects. With participation of banks in public
transport system there will be new players and consequently new organization and business models
should be prepared. While all this cannot be solved in short time, the suggestion is, that the electronic
ticketing system in Slovenia in the first phase should be implemented without bank cards, but the
equipment should be step by step prepared to be capable to include bank cards in the system. For
that time we also expect that world standards for using bank cards in public transport will be
developed by word players in this field like MasterCard and Visa.
6. DATA MODEL OF INTEGRATED PUBLIC TRANSPORT
A problem to achieve interoperability of existing systems is principally not a matter of different HW
technology (card and terminal equipment technology) but rather of divergent data models underlying
terminal and back-office applications at ticketing system providers. Not a single data model used in
existing Slovenian ticketing systems complies with the international or national standards; actually
they are custom designed and developed from the scratch in consideration of particular transport
operators’ needs. As a consequence, all technology providers consider their data model and its
implementations a business secret and are not willing to share their model with each other.
Overview of the world standards on ticketing systems’ interoperability additionally supports the above
conclusion for data models being the core problem [16]. Since interoperability is a problem in all
systems a variety of standards was developed focusing on data models. Low level is dealt with in EN
1545 standard [17] dated in 2005 which defines elementary data types, code lists and data elements.
This standard is accepted worldwide but it only defines data elements without reference to data model
itself. The most recognized public transport interoperability standards are ITSO [18] in United
Kingdom, Calypso [5] in France and Belgium, SDOA [19] in Netherlands, VDV Kernaplikation [20] in
Germany and APTA [21] in USA. All these standards put the data model in focus and all of them
support compatibility with EN 1545.
Europe wide interoperability is subject of Interoperable Fare Management Project (IFM) [22] that
started in 2008 where the majority of European organizations involved in national standards for public
Belgrade, 2012
179
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
transport development were engaged. The objective of the IFM Project is to provide passengers with
shared types of contactless media throughout Europe. These can be used to hold multiple transport
products (“tickets”) in different geographic areas and for sustainable modal switching, such as the use
of “Park and Ride”. Short term (priority lane) goals of the IFM project are to use multi-application
platform, provide a portal to load remote multiple IFM applications onto a single locally-issued media
and update existing EU IFM standards. But the final goals are to develop a common EU-IFM
application, develop a common product template and develop common fare collection processes.
Proposal of common Slovenian data model for interoperable public transport, which was developed in
the late 2011 is based on EN 15320:2007 standard: Interoperable Public Transport Applications –
Framework [1],[23]. This EN standard defines a technology neutral environment for an Interoperable
Public Transport Application within the confines of the definition of identification card systems.
Figure 4: Overview of standards for electronic ticket media in public transport [24]
This European standard (EN 15320:2007) describes the minimum requirements for an interoperable
transport application that may exist on a Machine Readable Card, either alone or together with other
applications, and is therefore a description of datasets and formats at the logical level. The standard
doesn’t describe the actual format of the data held on the card. This format may be derived from a
mapping of the data to the card using an ASN.1 encoding rule. Mapping on a card may take many
forms dependent upon the card architecture and encoding: memory cards, processor cards; MIFARE,
CALYPSO…
This standard doesn’t provide rules for physical implementation in terms of different technologies but
forms a foundation for interchange of details concerning how this standard has been physically
implemented.
This standard makes the basis for interoperable tickets to be used across the public transport network
in Europe:
-
different operators within one network: multioperator and multimodal system,
-
different networks in one country,
-
different countries
in order not to inhibit commercial competition.
Belgrade, 2012
180
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 5: Interoperable Fare Management System [23]
Figure 5 shows components and relations of an interoperable fare management system. The EN
standard describes the components of the application necessary to support an interoperable
environment:
-
accessing the Interoperable Public Transport Application,
-
data structure and presentation,
-
sizing and enumeration of data,
-
data access methodology,
-
security and access considerations and
-
dealing with legacy systems.
The standard specifies sets of data in a structured form as well as the rules for dealing with those data
to enable products such as tickets to be written and used on Machine Readable Card in a manner to
minimize the amount of data to be held on a card.
Associated with the data is the set of processes which applies to the data within the application. The
inclusion of process provides for similar data to be treated in a similar way by all external services and
terminals leading to true interoperability.
Standard EN 15320 builds data model from data elements primarily originated in EN 1545. Data
elements are grouped together in data structures of different types: mandatory (always presented),
additional (data written at creation of product) and logging (changing data and log data). Data
structures are combined to create 5 different types of data group: application environment, products,
holder, event log and wrapper (intended specifically for migration of legacy systems). Using these 5
data groups with 4 fundamental products (Stored travel rights, Charge to account, Customer
entitlement, Ticket) all functionality of ticketing in public transport can be covered.
The proposed common data model is very extensive and use of optional data elements and data
structures in the processes define typical implementation of a ticketing system. While the EN 15320
represents just a frame the final data model for the implementation can only be prepared after the
common products and pertaining rules and processes have been defined by the public transport
network manager.
Using EN 15320 we must be aware that despite standardization of data elements, data structures and
data groups the standard still allows partially different implementations due to optional data groups
and data elements ensuing from its wide conception.
At the moment there is no commercial implementation based on the EN 15320 standard but there is a
long term commitment for the existing ticketing systems in Europe to migrate to EN 15320. For all
these reasons we propose that Slovenia should apply the EN 15320 standard as a basis for
interoperable ticketing system in public transport.
Belgrade, 2012
181
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
7. IMPLEMENTATION ANALYSIS OF TICKETING SYSTEM
Before analysis of country wide use of an interoperable electronic ticket other implementations of
country ticketing system were considered. Scattered population settlement with small urban centres
and many isolated hilly regions don’t allow implementation of a mass transit ticketing conception. To
solve an imposing problem of sporadic passengers from remote areas with usually weak technology
skills, also parallel use of paper-based or ultra-light tickets was examined.
Use of parallel systems makes an impact to the overall ticketing costs. Use of ultra-light tickets (chippaper ticket like MIFARE Ultralight) allows good integration of sporadic passengers in the system.
Ultra-light tickets permit transaction monitoring on the account of additional costs induced by
maintenance of parallel systems and keeping selling post and ticket stock at the driver in the vehicle.
Introduction of ultra-light tickets seems irrational also in terms of upcoming technologies like NFC and
debit/credit cards that should cover single journey passengers.
The logical solution is to keep the existing paper tickets to provide a soft transition and serve for the
sporadic passengers without a plastic card. This system partially loses integration of transaction
management but with incentives on chip card use the amount of paper ticket users is expected to be
negligible low. Good attitude of users towards chip card was additionally proved in a public survey.
Coming back to the standard electronic ticket, we are faced by two feasible options bearing quick and
country-wide implementation. The first option is to extend one of the existing ticketing systems now
scoping on a city use and footing on a custom designed solution. The second option refers to a
completely new system that needs to be developed from the scratch, based on a national standard.
An option with bank cards was ruled out as a single one since it excludes a population share without
their own bank account (e.g. children). It is only regarded as a supporting solution in the future.
Adoption of the existing ticketing system by one provider and its extension to the whole country is
favourable for its quicker implementation but on the other hand entails a dependency on a single
provider imposing its own standard and development pace. It also brings big problems (and costs) in
integration of new ticketing systems with existing back-office systems of transport operators. Such a
closed solution may result in long-term costs rise due to exercising of a monopoly status.
Standardized electronic ticketing makes an optimal solution allowing competency of all providers on
the market and thereby easier integration of new technologies, better control of operation,
maintenance and development costs and impact on system adaptation. This solution induces higher
costs in the implementation phase for more implementation steps to be made, but the aforementioned
facts make it long-term highly sustainable in long-term phases of maintenance, adaptation and HW
and SW development.
Ticketing system implementation costs for a transition from the existing paper based ticketing to
electronic ticketing are broken down in a table 4.
SW/HW/certification
Option 1
Option 2
HW terminal equipment & electronic cards
1.651.600
1.651.600
Terminals and back-office SW for transport operators
3.070.000
3.120.000
Central transactions and clearing information system
900.000
900.000
Implementation of a certification centre
/
500.000
Total
5.621.600
6.171.600
Table 4: Breakdown of ticketing system implementation costs (in EUR) [1]
The costs are based on assumption that the electronic ticketing technology adopted by public
transport management is based on MIFARE DESFIRE card. The costs of HW terminal equipment
(validation, purchase, mobile terminals, SAM modules) and electronic cards are the same in both
options [25]. Operators’ back-office software needs to be upgraded and connected to the central
Belgrade, 2012
182
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
transaction and clearing system. The standardized solution (Option 2) also requires an implementation
of a certification centre.
As evident from the table 4 the total implementation cost of Option 2 is app. 10% higher than of Option
1. Provided equal cost basis an analysis of operating and maintenance costs was also conducted. The
discrepancy of costs is not substantial. Difference in costs in favour of Option 1 is relatively small in
consideration of the long-term advantages positive cost impact it entails.
8. CONCLUSIONS
The project gave an answer to the question about the proposed technology: unified platform is based
on MIFARE DesFire technology while applied common data model of interoperable public transport
system in Slovenia should be compliant with the EN 15320 standard. Only having a unified technology
doesn’t itself guarantee to achieve ticketing interoperability. In the figure 6 a general scheme of
necessary components for interoperability of public transport in Europe are depicted. The same
scheme also applies for Slovenia.
Figure 6: Interoperability in public transport [24]
The unification of technology is a qualifying condition but it doesn’t make the actual problem since it is
covered by the standards. The core problem to be addressed are system organization and business
agreements that should include issues of unique tariff model, zone model vs. distance model, check in
vs. check-in/check-out system, product definition, validation rules, business and clearing model, data
exchange between different systems, organization, etc. These agreements should involve all entities
and stakeholders referred to in the previous topics (public bodies, operators...).
Speaking about interoperability the first step is decision how deep the integration of public transport in
Slovenia penetrates. There are two opposite implementation possibilities:
-
multi-application environment: partners are obligated to use a unified technology while products,
tariff system, etc. remain in exclusive competence of each partner,
-
integrated public transport: Along with the unified technology partners also define a unique tariff
system, common products, clearing, etc.
In the first case the user only benefits to use the same electronic card for all public transport. The card
is able to hold many tickets, but ticket in use is valid just for specific operator operating the purchased
service. Implementation of this system is primarily a technological project and can be realized in
relatively short time. The advantage of this approach is step by step implementation: generally less
problematic technological unification is implemented first while further integration depends on the
Belgrade, 2012
183
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
interests of partners and business agreements between them. A weak point of this approach is small
progress steps: the only advantage the passengers get is a single card. Additionally, the final
implementation costs are expected to be higher comparing to the second case (possibility).
In the second case the user can use his ticket on all buses and trains at any operator. Implementation
of this system is primarily matter of a management and organization project that requests longer
implementation time. An indispensable precondition for implementation is a concluded business
agreement between all the subjects in the public transport (managing organizations, operators, local
communities, government, etc.) regarding unique tariff system, common products, clearing, etc. This
process can be very hard and time consuming on account of presumably many iterations. It is
important to point out a risk of the whole interoperable ticketing system project failure in case the
business agreement cannot be achieved.
The question is: what is the best way to take in Slovenia with respect to the current situation. If the
integrated public transport is long term goal it should undergo step by step implementation. The most
feasible solution is to take the first step in unification by migration to MIFARE DesFire technology on
regional bus service integration. The Ministry of Transportation as a managing authority for 39
operators should lay down a unique tariff system, common products and processes in life cycle of
each product and clearing. While at the moment just two technology providers provide ticketing
systems to regional bus operators only this two systems must be adapted to the new model based on
EN 15320 standard. This partial approach is the simplest and can be regarded as learning process for
the future steps when other modes and operators are to be involved.
Integration of regional bus service should be followed by integration of public railway transport where a
single manager, single operator and one technology provider (already involved in support of regional
bus service) don’t make a substantial problem.
City transport is proposed to further remain independent in the framework of municipality
management. A care should be taken with implementation of unified ticketing system on a regional
level in order for the common Slovenian products to be operable also on city buses. Normally this
requires new business agreements regarding clearing and needed upgrade of existing city ticketing
systems to accept common products. The agreements of the state with city transport seem to be a
challenging work to do in the future.
Belgrade, 2012
184
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
IGEA, Prometni institut Ljubljana, Logiteh, Oblikovanje standarda za enotno elektronsko
vozovnico (Elaboration of standard for unified electronic ticket), final report, Ministry of transport,
Ljubljana 2011,
ISO/IEC 7816 Standard
Klaus Finkenzeller, RFID Handbook, 2010
ISO/IEC 14443 standard
Calypso Networks Association, http://www.calypsonet-asso.org/
Sony, www.sony.net/Products/felica/
NXP, http://www.nxp.com
NFC Forum: NFC in Public Transport, January 2011, http://www.nfc-forum.org
Mastercard, http://www.mastercard.com
Visa, http://www.visa.com
Margento, http://www.margento.com/
Urbana, http://www.jhl.si/holding/urbana
Princ, http://www.princ-card.com/
Četrta pot, http://www.cetrtapot.si/
e-karta, http://www.e-karta.si/about_e-karta/
Recommendations for a standardisation of intermodal information and ticketing services, KITE,
th
Deliverable D17, 6 Framework Programme, April 2009
SIST EN 1545-1:2005 and SIST EN 1545-2:2005 Standards
ITSO, www.itso.org.uk
Translink, http://www.translink.nl
VDV, www.vdv.de
APTA, www.apta.com
IFM, http://www.ifm-project.eu
SIST EN 15320:2011 Standard
Klaus PHILIPP, Electronic Fare Management, Europe and Interoperability, presentation,
Elektronicke platby v doprave Conference, Praga, 21.2.2008
Tender documentation “Nakup infrastrukture za delovanje sistema enotne mestne kartice (EMK)
mestne občine Ljubljana in izvajanja storitev centra za upravljanje”, Portal javnih naročil, Uradni
list
RS
št.
objave:
JN4087/2008
z
dne
23.05.2008,
vir:
www.enaročanje.si/Dokumentacija/2008/5/469873968777031584/Razpisna_dokumentacija_EMK(JN_02-2008-OP).zip
Belgrade, 2012
185
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
COST ANALYSIS FOR INTRODUCTION OF NEW INTERMODAL
TRANSPORT SERVICES IN ALPINE REGION
Mojca Tomšič, Prometni institut Ljubljana d.o.o., Ljubljana, Slovenija,
mag. Blaž Jemenšek, Prometni institut Ljubljana d.o.o., Ljubljana, Slovenija,
Summary :
At the beginning the article contains a short presentation of issues related to the area of the Alps, in
particularly, the environmental sensitivity of tight valleys, which are more and more burdened through
the increasing volume of transport. A short presentation of technologies of intermodal transport of
goods, suitable for the transport through the area of the Alps, follows.
Further the identification and analysis of cost elements of road and rail transport follow, together with
the identification of costs in case of introduction of new products of intermodal transport in the Alpine
region; in particular, accompanied and unaccompanied mode of intermodal transport. Costs are
analyzed according to categories and types of intermodal transport modes; in addition, the comparison
between individual modes of transport and the comparison between transport only by road and only by
rail, is also prepared. Mutual comparisons of costs show that accompanied intermodal transport
(RoLa) is not economically feasible without specific stimulation measures of the state, while
unaccompanied intermodal transport is cheaper than the alternative road transport.
Key words: Alps, intermodal transport, rail, road, costs
ANALIZA STROŠKOV UVEDBE NOVIH INTERMODALNIH PREVOZOV NA OBMOČJU ALP
Povzetek:
V članku je uvodoma kratko predstavljena problematika območja Alp, in sicer okoljska občutljivost
ozkih Alpskih dolin, ki so s povečanjem obsega prevozov blaga vedno bolj obremenjene. Sledi kratka
predstavitev tehnologij intermodalnega prevoza blaga, primernih za prevoz preko območja Alp.
V nadaljevanju so identificirani in analizirani elementi stroškov cestnega in železniškega prevoza nato
pa so identificirani stroški uvedbe novih produktov intermodalnega prevoza na območju Alp, in sicer
spremljenega in nespremljanega načina intermodalnega prevoza. Stroški so analizirani po kategorijah
in po vrstah intermodalnih načinov prevoza, poleg tega je pripravljena tudi primerjava med
posameznimi načini prevoza ter primerjava med prevozom samo po cesti in samo po železnici.
Medsebojne primerjave stroškov kažejo, da spremljani intermodalni prevoz (RoLa) brez posebnih
stimulativnih ukrepov države ni ekonomsko vzdržen, medtem ko je nespremljani intermodalni prevoz
cenejši od alternativnega cestnega prevoza.
Ključne besede: Alpe, intermodalni prevoz, cesta, železnica, stroški
1. INTRODUCTION - CHARACTERISTICS OF ALPINE SPACE
The Alps are one of the greatest natural and geographical spaces in Europe where approximately 14
million people live. In accordance with a delimitation which has been determined within the framework
of the Alpine convention, the Alps cover an area of 190.959 km² which measures 1,200 km in length
and 300 kilometres in width. The Alpine arc extends across eight European countries of which 3.6% of
the entire surface of the Alps stretches across the border of Slovenia. The greatest shares of the
Alpine area are located in Austria (28.7%), Italy (27.2%) and France (21.4%), followed by Switzerland
(13.2%), Germany (5.8%), etc.
The accelerated economic development within and outside the region of the Alps, in the past decades
has given rise to issues and questions in the fields of settlement and transport which cannot be solved
only by means of common endeavours of the Member States of the Alpine Convention. The problem
particularly refers to a high level of growth of passenger and freight transport, the orientation towards
Belgrade, 2012
186
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
urbanisation of numerous Alpine valleys and increasingly greater disagreements regarding limited
natural surfaces within the Alpine region. Owing to limited trends of development, the requirements for
the protection of the nature have been strengthened which also include the regulation of traffic flows
and mobility inside and outside the region of the Alps (The Permanent Secretariat of the Alpine
Convention, 2011).
Increased traffic volume in Alpine space should not endanger nature and to the detriment of the
population of the Alpine areas. Intermodal transport is environmentally friendlier and thus the
instruments for its development in the Alpine region should make intermodal transport more
competitive.
Through the Alps also Pan-European Corridor X. is running. One of the important intermodal freight
generators for the area of the Alps and Central and Eastern Europe is the Port of Koper, connecting
different destinations throughout Europe. The study is dealing with costs analysis among two
intermodal types of freight transport (technologies “A” and “C”, railway part) comparing to costs with
road transport, taking into account also external costs which are much more higher in road transport
and are not paid yet by the operator.
2. TECHNOLOGIES OF INTERMODAL TRANSPORT
When discussing the technologies of intermodal transport across the Alps, it is necessary to focus on
three types of technologies representing a connection between road and rail transport: the so-called A
technology, B technology and C technology. They are distinguished with regard to which part of a
goods road motor vehicle is carried by rail. One of the main differences between these technologies is
the relationship achieved between the weight of a vehicle and the weight of a wagon against the net
weight of the useful load. This relationship determines the productivity of the method of transport and
the following table shows relationships for different technologies.
Table 2-1:
Relation between the weight of a vehicle and the weight of a wagon and the net
weight of the useful load according to the individual type of technology
Relation between the weight of a vehicle and
Type of technology
the weight of a wagon and the net weight of
the useful load
74:26
A technology
38:42
B technology
12:88
C technology
Source: Zelenika, 2001.
2.1 TECHNOLOGY “A”
The technology A is also called the Piggy-back, “Ro-La transport” or “rolling motorway”. It presents the
carriage of trucks by rail as whole, i.e. articulated vehicles with semi-trailers and trucks with trailers. In
this case we also talk about accompanied transport since the drivers drive the vehicles over the
loading ramp onto the wagons and then accompany them on the same train in a special passenger
car. Vehicles are loaded on wagons according to the “first in – first out” system which means that the
vehicle which has driven onto the wagon first, also drives off it first.
The floor of wagons for the transport of trucks is lowered and the wagons are connected between
each other in a manner that enables the driving of the trucks along the wagons during their loading or
unloading. The height of road vehicles may, depending on the type of the railway tracks, amount to 3.6
to 4 m. Trucks with trailers may be up to 4 m high which is harmonised with the road traffic regulations.
The gross weight of a train is approximately 1.000 tonnes and its greatest speed is limited to 120
km/h.
Belgrade, 2012
187
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 2-1: An example of the technology “A” (unloading)
Source: Hungarokombi, 2012
2.2 TECHNOLOGY “B”
Intermodal transport of the B technology presents the carriage of trailers and semi trailers by rail
without the articulated vehicle and drivers of trucks.
Loading and unloading of wagons can be carried out in two ways (Zelenika, 2001):
horizontally (by means of a special articulated vehicle, semi trailers and trailers are driven
in reverse over the loading ramp onto intermodal spine wagons) and
vertically (by means of a container grappler lift with a special gripper bar onto special
pocket wagons).
The vertical system of handling is more often used as it has certain advantages over the horizontal
technique, which are the following:
it is not necessary to equip wagons with additional devices;
the dead load of a train is lower;
handling is faster (horizontal handling of a semi trailer: 10 minutes; vertical: 4 minutes);
independence between the delivery and conveyance and loading on wagons – shorter
waiting time for the articulated vehicles, and
minimum tyre wear in the case of vertical handling.
The abovementioned advantages of the vertical handling are most noticeable when using uniform
pocket wagons with a dead load which is for 8 tonnes lower than the one of the intermodal spine
wagons. In addition to trailers and semi-trailers they also enable the carriage of swap bodies and
containers. The undisturbed transport of trailers and semi-trailers by rail depends on track gauge and
types of wagons. Intermodal spine wagons for horizontal loading are slightly higher than pocket
wagons for vertical loading. So, the “piggy-back” semi-trailers may be higher by 8 to 10 cm when
carried by pocket wagons on the same track gauge than when carried with spine wagons.
Belgrade, 2012
188
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 2-2: Loading of a semi-trailer (B technology) onto a railway wagon (vertically technique)
Source: Hungarokombi, 2012
2.3 TECHNOLOGY “C”
In the case of systems of the C technology, swap bodies (upper structures of trailers or semi-trailers
without the under body (chassis)) and containers are carried and handled. The swap container is a
loading unit adjusted to the dimensions of a road vehicle and fitted with struts underneath to change or
“swap” between the road and railway transport mode. It is typical for the combined transport of C
technology that the system “lift and drop” by means of mobile cranes is used for loading and
unloading. Wagons for the transport of swap bodies and containers may be special pocket wagons,
spine wagons or flat wagons of a standard construction. These wagons are mostly without sides or
these are very low; they have a flat floor which can bear high loads. Because it is possible to carry
higher consignments the floor of wagons is as close to the upper edge of the track as possible. Air
bags must be fitted into the road cargo vehicles so that swap containers may be discharged on
specially incorporated struts/legs and the user loads or unloads goods as he wishes. The length of
swap bodies is between 6.35 m and 13.5 m, but the most frequent length is 7.15 m with a constant
width of 2.5 m and height of 2.6 m. The four-axle flat wagon with a loading length of 14.6 metres and a
load bearing capacity of 45 tonnes is the most suitable for the transport of swap bodies. Its loading
length enables the transport of two swap bodies with a length of 7.15 m with the full utilisation of the
loading length. This wagon also enables the carriage of a combination of swap containers, swap
bodies and containers.
Figure 2-3: An example of the technology “C” (a swap body - tank container loaded on a wagon)
Source: Hungarokombi, 2012
Belgrade, 2012
189
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3
ANALYSIS AND PRESENTATION OF COSTS
In the intermodal mode of transportation costs arise from several modes of transport used. In the
present case, these are transport by road and by rail.
20
The costs can be divided into costs that are independent of the path length (e.g. purchase of road
vehicles, the rental of railway wagons, wagon maintenance, cleaning passenger coach for intermodal
road-rail transport, ....) and the costs, which depend on the path length (fare , toll, ...). At the end all
costs can be converted or calculated on the level of the unit, which may be the path length (in
kilometres), tonne of transported goods (per tonne), or whole transported truck, container or wagon
(the transport unit).
These transport costs are, on the other hand, the revenues of the operator together with addition of
the reasonable profit, from these reason incomes are not treated as a separate category. For
unaccompanied transport, rail transport is cheaper than road transport alternative thus we estimate
that there is a real possibility of creating new services. When accompanied intermodal transport costs
are compared with alternative road transport are quite high, we estimate that under current market
conditions there is less (no) chances of setting it up without additional transport policy measures. In
addition to the analysis of direct costs or. price of new intermodal services we also indicate below the
social benefits from the creation of new intermodal services for the country, which is reflected in the
amount of lower external costs and provide an incentive for the state to take steps to transport policy
strengthens and supports such new services.
3.1 COST ANALYSIS OF ROAD TRANSPORT
In road transport costs can be divided into the following categories:
-
The cost of purchase of the vehicle,
Insurance,
Taxation of vehicles,
Tire wear,
Cost of fuel (diesel),
Maintenance of vehicles,
Tolls,
Labour costs (driver).
For higher utility value all costs of road transport were recalculated per kilometre, i.e. we used 40-ton
truck costs. Costs were recalculated based on the following assumptions:
-
-
-
The price of purchase of the vehicle - 40 ton truck (semi-tractor) is 130,000 EUR, the
prescribed annual depreciation rate is 14.3% (depreciation period of seven years);
Insurance - included are damages caused to third parties, truck insurance (damage on the
truck) and damage to cargo caused by driver behaviour;
Tire wear: 6 x 2 tires were considered and the price of EUR 500 per tire, it was considered
that the truck tires lasts 250.000 kilometres and 350.000 kilometres on the trailer;
Fuel price: it was taken into account that the fuel consumption is 35 litres per 100 km, the
price for a litre of diesel fuel is 1,344 EUR (April 2012), it was also taken into account the
statutory reimbursement of excise duty to carriers;
Toll: for the Slovenian toll road it was taken into account amount of 0,27 EUR / km, that in
average 80% of the journey is made by toll roads (taking into account day and night rates, and
the average EURO standard vehicles), it was taken into account also the annual fee for road
use that is payable upon registration of the vehicle;
Vehicle maintenance: costs estimated in the amount of half of the depreciation costs;
Labour costs: estimated labour costs on the annual level are assessed in the amount of
22.800 EUR (2nd gross wage inclusive of employer's contributions and paid absences, such
as annual leave and sick leave).
20
In the calculations we took into account the prices applied in Slovenia; costs that are independent of the path
length were recalculated using the relation between the length of certain part of journey to the whole journey.
Belgrade, 2012
190
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Table 0-1:
Costs of road transport per kilometre in EUR
Costs per km in EUR
Cost categories
for year 2012
0,186
0,100
0,036
0,459
0,093
0,215
0,228
1,317
1. Cost of purchase of the vehicle
2. Insurance
3. Tire wear
4. Cost of fuel (diesel)
5. Vehicle maintenance
6. Tolls
7. Labour costs
Total costs per kilometre
3.2 COSTS ANALYSIS OF RAIL TRANSPORT
Similar costs categories as in road transport appear also in rail transport, only it is more difficult to
estimate the level of individual categories. Problems come from the method of recording and
displaying the costs of railway companies. Therefore, we focused on use of available data. The data
was obtained from the transport operators and Slovenian Railways.
On the basis of the available data following cost categories that incurred in transport by rail were
identified:
-
-
-
-
-
Rental costs for freight wagons for accompanied combined transport, according to operators
information are between 50 and 65 EUR / day, the lease agreement is usually concluded for
one year, the wagons in Europe are owned by Ökombi;
Rental costs for freight wagons for unaccompanied combined transport are 26 EUR / day, the
lease agreement is concluded for one year;
Rental costs of hiring passenger coaches for accompanied combined transport as estimated
by operators are between 300 and 350 EUR / day, lease is usually for one year;
Current maintenance of freight wagons (capital maintenance is already covered under the
lease and is not paid separately), according to the relevant technical services of Slovenian
Railways costs are between 530 and 639 EUR per year and per wagon;
Current maintenance of passenger coaches (capital maintenance is already covered under
the lease and is not paid separately), according to the relevant technical services of Slovenian
Railways costs are 350 EUR per coach per day or 12.665 EUR/ month;
Cleaning of passenger coaches;
Transport fare:
- fare for unaccompanied transport for Slovenian course is 420 EUR per wagon;
- average fare for accompanied transport for Slovenian course in international traffic is about
20 EUR per train kilometre;
Handling (loading / unloading at terminals), price manipulation in Slovenia (terminals of
Slovenian Railways) is 24 EUR per transport unit.
The costs of the rail transport, which are independent of the path length (e.g. rental of wagons, ..),
were recalculated using the relation between the length of certain part of journey (Slovenian) to the
whole journey.
3.3 ANALYSIS AND COSTS ESTIMATION
3.3.1
Unaccompanied intermodal transport
Costs for unaccompanied intermodal transport on the destination Koper Luka – Ljubljana – Jesenice –
München (Bavaria)/ Stuttgart (Baden Wuerttemberg) arise just from railway transport. Total length of
journey is 840 km of which the Slovenian part is 226 km.
Belgrade, 2012
191
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
In costs estimation the following assumptions were considered:
-
-
To carry out such a transport one train (one set) with 19 wagons would be needed, namely 18
for the realization of transport and one for a reserve (due to maintenance);
The number of trips in one year would be 250;
It was considered that in one trip it would be transported 18 20' and 18 40', a total of 36
containers or 54 TEUs. On one car, it is possible to load different combinations of containers
(e.g. 3x 20 ', 1x 20' and 1x 40 '),
20' container is loaded on average with 16 tons and 40' with 26 tons of cargo, all together 756
tons of goods per train.
Transport costs can be divided into the following categories:
-
Rental costs for freight wagons for the transport of containers (26 EUR /wagon / day);
Current maintenance of wagons (639 EUR/wagon/month);
Transport fare for Slovenian course (420 EUR/wagon/trip);
Costs of handling (loading/unloading) on terminals (24 EUR/operation).
On the basis of above mentioned presumptions the following costs were calculated for Slovenian
course.
Table 0-2:
Unaccompanied combined transport costs for destination Koper Luka – Ljubljana CT Jesenice state border.
Cost categories
Rental costs of freight wagons (18+1)
Current maintenance of freight wagons
Handling on terminals
Transport fare
Total
in EUR per year
48.511,98
2.063,06
216.000,00
1.890.000,00
2.156.575,03
in EUR per trip
194,05
8,25
864,00
7.560,00
8.626,30
Based on this calculation, and data on the costs of road transport, we calculated the cost per unit and
comparison between road and rail. In addition, we recalculated the rail equivalent transport by road,
namely, we considered that the trucks are loaded 26 tons (due to limitations on the total weight of 40
tons), the transport would take 36 trucks. The results are shown in the following table.
Table 0-3:
Comparison of transport costs for the destination Koper Luka – Ljubljana CT Jesenice state border:
Rail transport
Road transport
Rail equivalent transport
by road
Average per TEU in
EUR
159,75
297,64
Average per ton of
goods in EUR
11,41
11,91
Average per km in
EUR
38,17
1,317
239,62
11,41
1,06
All costs of transport by road (36 trucks) for one run on this route amounted to 10.715,11 EUR, which
is 2.088,81 EUR more than by rail. Rail transport is cheaper, even if we look at the costs per TEU or
per tonne of goods it is significantly higher only if we look at the cost per kilometre.
In the case of unaccompanied intermodal transport on this route it can be concluded that the rail
transport is cheaper than transport by road and the operators can add their reasonable profit
(revenue).
Freight transportation by rail as an alternative to road transport also means lower external costs from
the social point of view. External costs include negative impacts of transport on the environment and
society that are not paid by user of transport services but by the society. The main categories of
external costs of transport in the Alps are noise, traffic accidents, air pollution as well as traffic
congestion. Cost comparison of unaccompanied intermodal transport and road transport, taking into
account the external costs is shown in section 3.4.
Belgrade, 2012
192
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3.3.2
Accompanied combined transport
Costs for introduction of accompanied combined transport on the route Cervignano – Maribor Tezno
arise from road and rail transport. Total length of the route is 318 km, from that 44 km on Italian and
274 km on Slovenian side. According to intermodal operators opinion the total length of the route is on
the border of acceptability for accompanied combined transport.
In assessing costs the following assumptions were considered:
-
To carry out such transport one train (one set) with 21 wagons would be needed, namely 20
for the realization of transport and one for a reserve (due to maintenance);
Passenger coach is needed for accompanied combined transport for accommodation of truck
drivers;
The number of trips in one year would be 250;
It was considered that in one trip it would be transported 20 trucks. It is possible to load only
one truck on one wagon, overall length is limited by the maximum allowed length of the train;
Each truck is loaded with 25 ton of goods.
Rail transport costs can be divided into the following categories:
-
Rental costs of freight wagons for piggyback transport (60 EUR/wagon/day),
Current maintenance of freight wagons (530 EUR/wagon/month),
Rental costs of passenger coach (330 EUR/coach/day),
Current maintenance of passenger coach ( 350 EUR/coach/day),
Cleaning costs for passenger coach (100 EUR/trip),
Transport fare on Slovenian course (20 EUR/train kilometre),
Handling costs on terminals (24 EUR/operation).
On the basis of above mentioned presumptions the following costs were calculated for Slovenian
course.
Table 0-4:
Transport costs of accompanied combined transport for course Sežana state border –
Maribor Tezno
Cost categories
Rental costs of freight wagons 20+1
Current maintenance of freight wagons
Rental costs of passenger coach
Current maintenance of passenger coach
Cleaning of passenger coach
Transport fare
Total
in EUR per year
459.900,0
11.130,0
120.450,0
127.750,0
25.000,0
1.370.000,0
2.114.230,0
in EUR per trip
1.839,6
44,5
481,8
511,0
100,0
5.480,0
8.456,9
Transport fare by rail for Slovenian part of the trip (without handling costs on terminals) is 422,85 EUR
for truck, or 446,85 EUR per truck if handling costs are included.
Transport fare by rail for Slovenian part of the trip is 1,63 EUR per truck per kilometre, 11,17 EUR
per ton (whole truck 40 ton) or 17,87 EUR per ton of goods (if just weight of goods is considered).
Despite the fact that the combined transport service is performed by rail also costs associated to road
transport incurred, namely:
Belgrade, 2012
193
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Table 0-5:
Categories of costs of road transport in the piggyback transport in EUR per kilometre
Costs per km in EUR
Cost categories
For year 2012
0,186
0,100
0,093
0,228
0,607
1. Cost of purchase of vehicle
2. Insurance
3. Maintenance of vehicle
4. Labour costs
All costs per kilometre
Table 0-6:
Estimated costs of accompanied combined transport on course Sežana state border –
Maribor Tezno
Par truck in
EUR
Per truck per
km in EUR
Per ton of
goods in EUR
Rail transport costs
446,85
1,63
17,87
Road transport costs
115,35
0,42
3,85
Total
562,20
2,05
21,72
Table 0-7:
Estimated transport costs just by road on course Sežana state border – Maribor
Tezno
Par truck in
EUR
360,89
Road transport costs
Per truck per
km in EUR
1,32
Per ton of
goods in EUR
14,44
On the basis of the calculated estimated costs can be concluded that the transport of intermodal
accompanied transport on the route is 115,35 EUR per truck or 26 % more expensive comparing to
road transport. The costs per truck per kilometre also differ by 55% (also in favour of road transport).
The cost per net tonne are also lower in road transport for 7,28 EUR, or almost 50%.
Based on calculations of costs estimates on this route it can be argued that the transport of rolling
motorway service is in such conditions (without subsidies) not feasible because the costs are too high.
It should be noted that these are just the transportation costs and costs of operators and theirs
reasonable profit should be added.
3.4 COST COMPARISON OF INTERMODAL AND ROAD TRANSPORT WITH EXTERNAL
COSTS INCLUDED
Costs of road and intermodal transport, discussed in the previous sections, were recalculated to the
unit of 1000 tonne-kilometres, to facilitate comparison with external costs. To the aforementioned
costs also external costs were added, which include costs of accidents, emissions, noise pollution,
impacts of climate change, congestion, etc.. that carriers of transport services do not pay, but they are
paid by the society or state (Table 3-8).
Belgrade, 2012
194
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Table 3-8:
Costs comparison of road and intermodal freight transport including external costs
Intermodal transport
Road
transport
Accompanied
rail transport
(RoLa)
Unaccompanied
rail transport
56,0
87,3
50,5
External costs per 1000 tonne km
21
(EUR) (CE Delft, Infras, Fraunhofer ISI)
52,0
6,6
6,6
Total per 1000 tonne km (EUR)
108,0
93,9
57,1
Cost category
Costs per 1000 tonne km (EUR)
In the case of adding external costs of transport to rail piggyback transport and to road transport costs
(52 EUR/1000 tkm for heavy-duty road vehicles and 6,6 EUR/1000 tkm for rail freight), the price of
piggy-back transport including external costs would be cheaper than the alternative road transport, the
total cost on the studied route would amounted to about 94 EUR/1000 tkm and 108 EUR/1000 tkm for
road.
Unaccompanied intermodal transport (rail part) compared to the road is in already cheaper, but if
adding external costs to both the unaccompanied (container) transport would be almost half cheaper
and would amount to around 57 EUR/1000 tkm on studied course.
4
CONCLUSION
Efficient and environmentally friendly transport system is one of the most important elements and
factors for the successful operation and development of the economy. This is especially important in
space and environmentally sensitive areas, which include the Alpine area. Alps occupy a significant
proportion of our country, so we have much greater obligation to promote transport systems and
technologies that follow the precepts of sustainable development.
Intermodal transportation modes certainly are among the transport systems and technologies that
follow the guidelines of sustainable development. The world and especially Europe have seen a large
increase in the use of these modes, which are also found in this study. We have also found that there
is the potential for even greater volume of these modes of transport
Slovenian public railway infrastructure is currently at least on major routes suitable for intermodal
transport of all three techniques, problems or restrictions for such modes represent the maximum
permissible length and weight of trains. Bottleneck on the public rail network represents a single-track
railway line Divača - Koper, which currently reduces the potential for the greatest Slovenian generator
of intermodal transport (Luka Koper) for greater throughput of cargo to rail transport system. As we
have seen in other studies it is necessary to pay attention to the dual-track single-tube tunnel
Karavanke to improve direct links over Alps. The tunnel present specified technical barrier to the
transport of intermodal transport units, as in the tunnel at the same time cannot meet certain type of
passenger and freight trains. In addition to these measures, it is necessary for the development of rail
transport in general, as well as the further development of intermodal transport, the double-track lines
to ensure mutual trains, tracks equipped with signalling devices, which will allow train running in
harness, electrification of non-electrified lines, increasing line speed of existing lines , upgrade traffic
and provide remote control of train traffic.
In the cost analysis, we found that the accompanied combined transportation is significantly more
expensive than road transport and therefore little used. It is spread primarily in connection with the
Republic of Austria due to the limitations of transport by road and because of the large financial
incentives from the state. As market category of interest is only product of short-rail trains in the
21
European average, CE Delft, Infras, Fraunhofer ISI, 2011. Congestion costs included, in rail transport electric
traction was taken into consideration.
Belgrade, 2012
195
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Brenner pass between Italy and Austria. These trains are always fully booked because it is much
shorter route of transport, drivers avoid bad weather, but it is also affordable. In road transport, the
route mentioned means large fuel consumption and tire wear - high altitude, steep road that must be
overcome trucks, consequently, longer transport time.
If we take into account transport costs together with external costs of transport (the average in the EU
22
amounted to 52 EUR/1000 tkm to HGVs and 6,6 EUR/1000 tkm for rail freight transport (electric
traction) the accompanied combined transport would be cheaper from the road, the same applies to
unaccompanied, which is cheaper in the first place, i.e. without taking into account external costs.
Cost analysis for unaccompanied intermodal transport (transport of containers) found out that rail is
cheaper. The obstacles are mainly in infrastructure quality and frequency of service.
It was found out that the development of intermodal transport is emphasized by the development
documents, both on the national as international level, but the existing measures offered by the
applicable national law, proved to be insufficient. To improve the attractiveness of this form of
transport would be required to introduce at the implementation level new and innovative measures that
have already proven as a form of good practice.
The government should, from our point of view, at least in the early stages until the product is fully
enforced, financially encourage such modes. By shifting trucks from road to rail reduction of traffic (at
the Corridor V the density of traffic, especially trucks is very large) and thus the number of accidents
would be achieved. This would likely also reduce the costs of maintenance of roads, that are mostly
just destroyed by trucks. In addition, the reduction of pollution would be achieved also.
If we conclude in short:
-
Advantages of intermodal transport:
- Less trucks on roads
- Lower density of traffic,
- Increased safety on the roads
- Less pollution
Disadvantages of intermodal transport:
- Poor availability of wagons for piggyback transport (in Europe are owned by Ökombi)
- The necessary co-financing by the State
Options / opportunities for intermodal transport:
- Future changes in behavior in the freight sector,
- The improvement of regional and local infrastructure,
- New jobs
Risks for intermodal transport:
- The availability of financial sources,
- Inadequate railway network,
- Difficulties in the maintenance of rail networks and
- Cost of services (high).
Proposals for state measures to encourage intermodal transport mode:
-
-
22
Financial encouragements, such as:
- Modernization of terminals,
- Construction of new terminals,
- Direct financial encouragement for each shifted truck,
- Cross financing.
Changes in the regulation of road transport, in particular towards the internalization of external
costs, such as
- - The increase in tolls for heavy goods vehicles
- - The introduction of parking fees for heavy trucks on highways
- - Restrictions on road traffic in sensitive areas - shift the transport of dangerous
goods on the train.
CE Delft, Infras, Fraunhofer ISI, 2011.
Belgrade, 2012
196
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Most important findings are:
- Restrictions from the infrastructure point of view are especially in the railway infrastructure;
- Great obstacle or restriction for accompanied combined are transport costs;
- Without financial incentives, and changes in the regulation of road transport changes will
not occur.
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
AMZS, Fuel prices. Found online at: http://www.amzs.si/default.aspx.
DARS, Tolls. Found online at http://www.dars.si/Vsebina/Cestnine.aspx?id_menu=44.
Direkcija RS za ceste. Traffic counting (2010). Found online at: http://www.dc.gov.si/si/promet/.
CE Delft, Infras, Fraunhofer ISI, External Costs of Transport in Europe, Update study for 2008,
Final report, Delft, 2011.
International Union of combined Road-Rail transport companies. (2010). Annual Report.
International Union of combined Road-Rail transport companies. (2010). Statistics.
Internal sources Adria Kombi. (2012).
Luka Koper, Terminali in tovor. Kontejnerski in ro-ro terminal. Found online on 23.4.2012 at
http://www.luka-kp.si/slo/terminali-in-tovor/kontejnerski-in-ro-ro-terminal.
Ministry of finance, Customs office RS. Refund of excise duty for commercial purpose. Found
online
at:
http://www.carina.gov.si/si/ostale_dajatve/trosarine/vracilo_trosarine/vracilo_trosarine_za_kome
rcialni_namen/.
NAPA North Adriatic Ports Association. Found online at: http://www.portsofnapa.com/aboutnapa.
Data of Slovenian Railways, Unit Cargo Transport (2012). Combined transport SŽ.
Adria Transport data, 2012.
Adria Terminali data, 2012.
»Study on development of piggy-back transport in the Republic of Slovenia«; Final report,
Ljubljana, Prometni institut Ljubljana d.o.o., July 2010.
»A study on the possibilities of improving intermodal transport through the Alps for the project
TRANSITECTS«, Final report, Ljubljana, Prometni institut Ljubljana d.o.o., October 2011
»Analysis of options and the development needs of public infrastructure in the Republic of
Slovenia «, Final report, Ljubljana, Prometni institut Ljubljana d.o.o., March 2011.
UIC. (2009). DIOMIS: Evolution of intermodal rail/road traffic in Central and Eastern European
Countries by 2020 (Slovenia).
Zelenika, R. (2001). Prometni sustavi, Tehnologija – organizacija – ekonomika – logistika –
Menadžment. Rijeka: Ekonomski fakultet u Rijeci.
Belgrade, 2012
197
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
COMPUTER AIDED SUPPORT FOR MODELLING OF RAILWAY
CAPACITY CONTAINED IN UIC 406 LEAFLET
Damijan Žagavec, Prometni institut Ljubljana d.o.o, Ljubljana, Slovenia
Klemen Ponikvar,Prometni institut Ljubljana d.o.o, Ljubljana, Slovenia
Abstract:
UIC – international union of railways published a new UIC leaflet 406 in the year 2004, which explains
the methodology for the calculation of railway tracks capacity. The paper deals with the development
of a methodology for determination of railway line capacity. The methodology was adapted to suit the
Slovenian railway infrastructure and traffic operations. The methodology is based on a new UIC 406
method.
A paper describes a mathematical model for estimation of track occupation and calculation of train
reclassifying capacity as well as for rail line. The model includes a definition of all time-based items
needed for description of a holdover time of a rail vehicle on a track and gives a calculation of maximal
capacity in trains (number of trains) in a given time period. The model has been verified and evaluated
for the selected rail line on a Slovene railway network.
The above mentioned methodology of the calculation for railway line capacity of the chosen railway is
implemented in the program tool RailSys. The article contains an accurate description of the computer
based model for the calculation of railway line capacity.
Conclusion of the article includes results of railway line capacity of the chosen railway, calculated with
the program tool RailSys.
Keywords: transport, railway transport, line capacity, railway line, RailSys
RAČUNALNIŠKO PODPRT MODEL ZA OCENO PREPUSTNE ZMOGLJIVOSTI ŽELEZNIŠKIH
PROG V SKLADU Z ZAHTEVAMI OBJAVE UIC 406
Povzetek:
Mednarodna železniška unija (v nadaljevanju UIC) je leta 2004 izdala objavo št. 406, s katero želi
poenotiti metodologijo za izračun izkoriščenosti železniških prog. V članku so predstavljeni povzetki
omenjene metode, predvsem njihove prednosti, ter njihova uporaba na Avstrijskih (OEBB) in Nemških
(DB) železnicah.
V prispevku je opisan predlog metodologije, ki zadostuje zahtevam objave UIC 406 hkrati pa je
prilagojena slovenski železniški infrastrukturi in odvijanju prometa na njej. Poudarek je na določitvi
elementov, ki predstavljajo vhodne parametre za omenjen izračun zmogljivosti prog, ter upoštevajo
obstoječe stanje železniške infrastrukture in voznega parka tirnih vozil v Republiki Sloveniji.
Omenjena metodologija izračuna prepustne zmogljivosti je implementirana v programskem orodju
RailSys. Tako je v članku natančno opisan računalniško podprt model za izračun prepustne
zmogljivosti železniškega omrežja
V zaključku prispevka so predstavljeni rezultati prepustne zmogljivosti izbrane proge, izračunani s
podporo programskega orodja RailSys
Ključne besede: promet, železniški promet; zmogljivost, proga, postaja, vozni red, vozni čas. RailSys
Belgrade, 2012
198
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. INTRODUCTION
This paper describes the relatively new UIC 406 method for calculating capacity consumption on
railway lines. The UIC 406 method is an easy and effective way of calculating the capacity
consumption, but it is possible to expound the UIC 406 method in different ways which can lead to
different capacity consumptions. This paper describes the UIC 406 method and how it is expounded in
Slovenian.
The UIC 406 leaflet from year 2004 [1] describes a simple, but fast and effective way to evaluate the
capacity utilization of railway lines. The capacity analyses carried out during the last years using the
UIC 406 method have been presented in a number of papers (e.g. [3], [5] and [7]). However, it is
possible to expound the UIC 406 method in different ways which can lead to different results. In spite
of that fact, hardly any analyses of the differences have been carried out.
Any railway-infrastructure evaluation, in order to be generally valid, must be underpinned by a
common definition of capacity among railway infrastructure managers (IM). Due to the different
concepts and procedures concerning capacity and the resulting calculations applied by IMs, a
comparison is not feasible and general conclusions are not possible, which means that a unique
procedure must be developed.
2. DEFINITIONS
This paper uses terminology usually used in the railway literature. However, since the terminology
differs from country to country, an overview of the terminology used in this paper is provided in table 1.
Table 1: Short description of terminology [5]
term
explanation
block occupation The time a block section (the length of track between two block
time
signals, cab signals or both) is occupied by a train
The time difference between actual headway and minimum allowable
buffer time
headway
The distance between the front ends of two consecutive trains
headway
moving along the same track in the same direction. The minimum
distance
headway distance is the shortest possible distance at a certain travel
speed allowed by the signalling and/or safety system
The time interval between two trains or the (time) spacing of trains or
the time interval between the passing of the front ends of two
headway time
consecutive (vehicles or) trains moving along the same (lane or) track
in the same direction
running time
The difference between the planned running time and the minimum
supplement
running time
secondary delay A delay caused by a delay or cancellation of one or more other trains
A link between two large nodes and usually the sum of more than
line
one line section
Points of a network in which at least two lines converge. Nodes can
nodes
be stations or junctions.
Points of a network where overtaking, crossing or direction reversals
stations
are possible, including marshalling yards
Point of a network in which at least two lines converge and neither
junctions
overtaking, crossing nor direction reversals are possible
The part of a line, in which the number of trains and the infrastructure
line sections
and signaling conditions do not change fundamentally.
Belgrade, 2012
199
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
The block occupation time is presented in the following figure.
Figure 1: Elementary occupation time [1]
3. RAILWAY CAPACITY
The capacity of any railway infrastructure is the total number of possible paths in a defined time
window, considering the actual path mix or known developments respectively and the IM's own
assumptions.
Railway capacity is relatively easy to determine the capacity on roads – the capacity is normally just
determined as vehicles per hour. Capacity on railways is, however, more difficult to determine since
the capacity depends on both the infrastructure and the timetable.
The reason that it is difficult to define railway capacity is that there are several parameters that can be
measured. The parameters seen in figure 2 (Number of trains, stability, heterogeneity and average
speed) are dependent of each other.
Figure 2: The balance of railway capacity [1]
Figure 2 shows that capacity is a balanced mix of the number of trains, the stability of the timetable,
the high average speed achieved and the heterogeneity of the train system. It is for instance possible
to achieve a high average speed on a railway network by having a high heterogeneity – a mix of fast
and slower trains serving all stations. However, the cost of having high average speed with a high
heterogeneity is that it is not possible to run as many trains with a high stability (punctuality) than if all
trains ran with the same speed. If it is wanted to run more trains it is necessary to run with less mixed
traffic and thereby have a lower average speed as it is known from e.g. the suburban railway network
in metro systems.
Belgrade, 2012
200
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
In this qualitative model (figure 2), an axis for each parameter is drawn from a unique origin. A
chord links the points on the axes, corresponding to the value of each parameter. The length of the
chord represents the capacity. Capacity utilisation is defined by the positions of the chord on the four
axes. Increasing capacity means increasing the length of the chord.
3.1 Number of trains
If the capacity is measured as the number of trains per hour, the capacity in a cross section can be
calculated as [3]:
K qmax n
where:
K
– the capacity;
qmax – the maximum traffic intensity [trains/h];
n
– the number of train paths.
When running many trains per hour it is not always possible to combine trains stopping at all
stations and faster through going trains. This is due to the fact that the faster trains will catch up with
the slower trains, which causes conflicts. Hence fast trains catch up with slower trains all trains will
have the same stopping pattern when close to the maximum capacity – the timetable will be
homogeneous.
3.2 Heterogeneity
A timetable is heterogeneous (or not homogeneous) when a train catches up another train. The
result of a heterogeneous timetable is that it is not possible to run as many trains as if the timetable
was homogeneous – all trains running at the same speed and having the same stopping pattern.
SSHR - Sum of Shortest Headway time Reciprocals – describes both the heterogeneity of the
trains and the spread of trains over the hour [3]:
N
SSHR
i 1
where:
ht,I –
N –
1
ht ,i
the shortest headway time observed between two trains;
the number of trains in the cycle observed.
Since fast trains can be caught behind a slower train it is important to have enough headway time
at the arrival at the end of the line section to avoid secondary delays.
The SAHR – Sum of Arrival Headway time Reciprocals – describes the spread of trains over the
hour at the arrival station [3]:
N
SAHR
i 1
where:
A
ht,i –
N –
1
htA,i
the headway time observed between two trains at the end of the line seciton;
the number of trains in the cycle observed
SAHR will always be smaller than or equal to the SSHR. The SAHR is only equal to SSHR in case
of a homogeneous timetable and the difference will increase the more heterogeneous the timetable is.
A measurement of the homogeneity can therefore be found by combining SSHR and SAHR [3]:
N
Homogeneity
SAHR
SSHR
i 1
N
i 1
1
htA,i
1
ht ,i
The homogeneity is then equal to 1 when the timetable is completely homogeneous and opposes 0
when the heterogeneity increases.
Belgrade, 2012
201
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3.3 Average speed
A train consumes a different amount of capacity at different speeds. When a train stands still, the
train consumes all the capacity since it occupies the block section for an infinite amount of time. When
the train speeds up the train occupies the block section for shorter time whereas more trains can pass
the same block section – more capacity is gained. However, when increasing the speed also the
braking distance is increased which means that the headway distance – and headway time – is
increased whereas capacity is lost.
When both fast and slower local trains are running on the same railway line it is possible to achieve
a high average speed. However, if the railway line has lack of capacity it might not be possible for the
fast trains to run at the maximum speed.
3.4 Stability
When discussing railway capacity it is important to look at the stability of the railway system too.
The stability of the railway system is difficult to work out as such. The punctuality of the trains is,
however, derived from the stability.
It is difficult to evaluate the stability – or punctuality – of a planned timetable not yet put in
operation. Experienced planners might, however, have an idea of how changes in a timetable or the
infrastructure might affect the punctuality. It is only possible to estimate the punctuality of smaller
changes in the timetable or infrastructure using the experience. If the punctuality of larger changes in
the infrastructure and/or timetable have to be estimated it is necessary to use simulation tools. Even
though it is difficult to predict the future punctuality a general rule of thumb is that the punctuality will
drop when the capacity utilization increases.
Even though it is possible to achieve higher capacity utilization on a railway line it is often said that
there is no more capacity if the punctuality drops below a certain limit. Changing the timetable for the
railway line examined may increase the punctuality so that it is possible to have higher capacity
utilization before dropping below the punctuality level where it is said that there is no more capacity.
4. DETERMINATION OF CAPACITY ACCORDING TO THE UIC 406 METHOD
Capacity consumption on railway lines depends on both the infrastructure and the timetable.
Therefore, the capacity calculation according to the UIC 406 method is based on an actual timetable.
The capacity calculation is based on the compression of timetable graphs on a defined line or line
section. All single train paths are pushed together to the minimum headway time, so that no buffer
times are left. The compression of the timetable graph has to be done with respect to the train order
and the running times. This means that neither the running times, running time supplement, dwell
times or block occupation times are allowed to be changed. Furthermore, only scheduled overtakings
and scheduled crossings are allowed!!
To evaluate the capacity utilization it is necessary to know both the infrastructure and the timetable.
Therefore, the first steps of evaluating the railway capacity are to build up the infrastructure and
create/reproduce the timetable. To evaluate the railway capacity according to the UIC 406 method, the
railway network has to be divided into line sections. For each line section the timetable has to be
compressed so that the minimum headway time between the trains is achieved.
When the timetable has been compressed it is possible to work out the capacity consumption of the
timetable by comparing the cycle times. The workflow of the capacity evaluation can be seen in figure
3.
Figure 3: Workflow of the UIC 406 method
Belgrade, 2012
202
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
5. RAILSYS – COMPUTER AIDED SUPPORT FOR CALCULATION OF RAILWAY CAPACITY
5.1 About RailSys software
RailSys software is integrated management of timetable paths and infrastructure data for the entire
planning and operations process. RailSys software has the following system components:
-
Infrastructure data management
Timetable construction/slot management
Track possession planning “run and construct”
Simulation
Print, evaluation and documentation
Timetable design and construction: Complete train patterns for entire days are easily created with the
Timetable Manager. The train routes are interactively specified within a network graph. RailSys
automatically calculates and evaluates the running times, block occupation and conflicts with other
trains networkwide as soon as a train is entered or edited.
Assessment of the operational quality: The timetable works in theory? No day is like another one in
real life. Small and large perturbations cause delays. The Simulation Manager simulates a variety of
operational days with realistic and individual delay characteristics. The Evaluation Manager supports
the assessment of the simulation results. Various statistics provide dependable information about
delays, resulting punctuality, or the quality of connections within the network, lines or stations.
Infrastructure planning: The Infrastructure Manager is designed for accurately capturing, editing and
managing all infrastructures of any size. Infrastructure can be entered as a draft. The comfortable
editing functions allow for easy updates. Changing infrastructure designs are captured in multiple
variants. The variants are used for timetable construction, possession planning, simulation and
operational comparison of different planning stages with the Timetable and Simulation Manager.
Belgrade, 2012
203
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Operational planning for track work: Building new or maintaining existing infrastructure often causes
deteriorated conditions for train operation. The Timetable Manager evaluates and precisely locates the
resulting conflicts. The user can interactively alter the train schedule in accordance with the track work,
or reroute trains within the network. Any time penalties as well as the remaining train path options are
displayed in tabular or graphical form for trouble-free operations planning during track work.
5.2 Capacity Management (UIC code 406)
Capacity Management (UIC) enables you to calculate capacities in accordance with UIC code. For a
given timetable, a line section is chosen for which a compression of train paths should be performed.
The compression of the train paths within a line section is undertaken for a specified time period. Both
the line section and the time period are user definable. RailSys automatically compresses the utilised
train paths with consideration of the minimum headways. The result is the infrastructure occupation
time within the specified time period. Additional buffer time can be added for specifying a requested
operational quality. The occupation time and the buffer time add up to the over all time requirement
within the specified period. The quotient of the over all time requirement and the investigation period is
the relative capacity consumption. The capacity consumption represents the utilisation level of the
infrastructure and provides an indication of capacity constraints.
The remaining useable capacity of the line section can be identified by adding additional paths until
the specified time period is saturated with train paths and buffer times.
Capacity management for long time planning: The capacity calculation in accordance with the UIC
leaflet 406 is based on a timetable. However, most of the time the infrastructure providers can only
estimate the future traffic volume based on vague prognostic information. This information might be
insufficient for the creation of a timetable.
5.3 The compression of the train paths
The compression of the train paths within a line section is undertaken for a specified time period. Both
the line section and the time period are user definable. RailSys automatically compresses the utilised
train paths with consideration of the minimum headways.
By the "Method for train selection" it is possible to choose between the so-called DBmethod and the
ÖBB-method for the calculation of the interlinked level of occupation.
DB-method (see figure 4):
Start of the interlinked level of occupation:
- The train which entering time of the calculation step coincides as minimum with the
starting time of the defined calculation period is the first train. The timetable graph inside
of the calculation step must be completely within the calculation period (see in figure train
number 3).
- In the process of compression the first train (train number 3) is changed to the starting
time when entering the calculation step.
End of calculation period:
- The last train entering the section before the calculation period is over. The remaining
timetable graph may be outside of the calculation period (see fig. train number 4).
- The first train which is relevant for the calculation is copied and set behind the last train as
"Dummy train" (see in figure train D)
- When the process of compression has finished the occupation time is the result of the
difference between the starting time of the calculation period and the time beginning of the
first block section occupation of the "Dummy train".
Belgrade, 2012
204
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ÖBB-Method (see figure 4):
Start of the interlinked level of occupation:
- All trains which timetable graphs, also partially, extend into the defined calculation period
(see fig. train 1-3).
- The trains entering the calculation step before the starting time are not changed in the
process of compression (see at train number 1 and 2).
- In the process of compression the first train entering the calculation step after the starting
time (train number 3) is pushed to the train ahead until the first block section occupation is
equal to the starting time.
End of the calculation period:
- The last train entering the section before the calculation period is over. The remaining
timetable graph may be outside of the calculation period (see fig. train number 4).
- When the process of compression has been finished the occupation time comes to the
result of the difference between the starting time of the calculation period and the finishing
time of the first block section occupation belonging to the last train.
Figure 4: DB- and ÖBB-method for calculation of the interlinked level of occupation [8]
After the program determines which train passes are to be compressed, the timetable compression
begins with
the first train that travels the entire calculation step in the calculation period (2.a.) (ÖBB- and
DB-method) or
the first train that starts in the calculation step after the calculation period has begun and
passes a portion of the line (2.b.) (ÖBB- and DB-method) or
Belgrade, 2012
205
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
the train that starts before the calculation period begins, but then proceeds to pass part or all
of the calculation step in the calculation period (2.c.) (only in ÖBBmethod, in DB-method this
train is discarded).
Figure 5: Path compression [8]
In cases 2.a. and 2.b., the start of the block section occupation in the first block section of the
calculation step is moved to the start of the calculation period. In example 2.c., the train path remains
in the same position. When condensing the timetable the following train is pushed to the block section
occupation of train ahead, but the starting time of this train inside of the calculation step is maximum
adjusted up to the start of the calculation period, so that gaps between the block section occupations
may occur. Compression always begins at the start of the calculation period. Timetable compression
stops upon reaching the train whose first occupation is fully within the calculation period and is
performed until its final occupation inside of the calculation step.
5.4 The resulting infrastructure occupation (line Pragersko-Ormož)
The resulting infrastructure occupation time is measured at the beginning of the calculation step. The
infrastructure occupation time is defined as the time from the start of the calculation period to:
the end of the first occupation of the final train in the ÖBB-method,
the beginning of first block section occupation of the "Dummy-train" in the DBmethod
The results of the compressed paths for line Pragersko-Ormož are displayed in the figure below.
Figure 6: Calculating the infrastructure occupation
Belgrade, 2012
206
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Results of analysis of capacity of the line Pragersko-Ormož:
•Capacity utilization time:
Tog*=1.111 min
•Average headway:
tsm* = 17,6 minutes for each train;
•Capacity:
82 trains per day
6. CONCLUSIONS
The paper has described the capacity theory for railway lines and how the capacity consumption can
be evaluated for railway lines. Furthermore, quantitative methods to evaluate (and compare) capacity
consumptions on railway lines in a fast and easy way have to be developed.
When there is a quadruple track available, it has been decided that the track occupations of the actual
timetable should be used. If there is no actual timetable the timetable with the minimum number of
conflicts should be examined instead. It is furthermore only allowed to move a train from one track to
another if there is an unequal utilization of the tracks.
Even though the capacity analysis shows that it is possible to run more trains in the section analyzed,
it is not always possible. The analysed line section can be too short to see that it is not possible to run
more trains (e.g. due to capacity restrictions outside the analysis area) – the so-called network effects.
Using the UIC 406 capacity method it is easy to make annual capacity statements on maps showing
the capacity utilization on the railway network. Using the UIC 406 capacity method to make capacity
statements it is important to use the same line sections each year to avoid the paradox that an extra
train or an unwanted overtaking results in less capacity utilization.
The software RailSys includes the compression of sequential timetable train paths within one
calculation step. This produces the interlinked level of occupation for the section under review. To use
the UIC capacity approach, it will require a timetable that includes either the entire network or at least
several lines. After the train paths are compressed, more paths can be added to the timetable as a
means of determining the remaining infrastructure capacity.
The capacity utilization on railway lines is very responsive to the network examined. Therefore, the
capacity utilization should only be compared relatively.
Belgrade, 2012
207
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
REFERENCES
[1] International Union of Railways: UIC Code 406: Capacity; 1st edition; September 2004 [A
reference to the UIC]
[2] Landex, A et al; The UIC 406 capacity method used on single track sections, Centre for Traffic
and Transport ATKINS, Denmark, 2007, pp. 2-10.
[3] Klahn, V.: Rail Delft, Implementation of the UIC 406 Capacity Calculation at Austrian
Railways; 2006; pp. 4-7
[4] Žagavec, D. et al: Določitev metodologije za izračun prepustne zmogljivosti železniških prog,
Prometni institut Ljubljana d.o.o., Ljubljana, 2007, pp. 19-51
[5] Anders H. Kaas et al: Evaluation of railway capacity, Centre for Traffic and Transport,
Denmark, 2007; pp. 5
[6] Kokot V.: Uskladitev parametrov železniške proge z dinamiko vožnje vlaka, doktorska
disertacija, Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani, Ljubljana, 2002,
pp.104-156
[7] Wahlborg, M., Banverket experience of capacity calculations according to the UIC capacity
leaflet. Proc. of the 9th International conference on Computers in railways, eds. C.A.- J. Allan,
C.A. Brebbia, R.J. Hill, G. Sciutto & S. Sone, pp. 665-673, 2004
[8] RailSys: User Manual, May 2012, pp. 366-378
Belgrade, 2012
208
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
CONCEPTION OF TRAIN OPERATION TECHNOLOGY ON
LJUBLJANA RAILWAY STATION DURING EXECUTION OF
CONSTRUCTION WORKS SUPPORTED BY RAILSYS ENGINEERING
SOFTWARE
Damijan Žagavec, Prometni institut Ljubljana d.o.o, Ljubljana, Slovenia
Primož Kranjec, Prometni institut Ljubljana d.o.o, Ljubljana, Slovenia
Klemen Ponikvar,Prometni institut Ljubljana d.o.o, Ljubljana, Slovenia
Abstract:
The planned construction activities at the Ljubljana station will bring about traffic disruption (e.g. train
delays) on the entire railway network. A well-selected and planned construction technology and
according traffic operation technology conception during the construction works at the Ljubljana station
is essential for control and limitation of traffic disruption. Major construction works are planned at the
Ljubljana station, which will increase station and traffic flow capacities and allow implementation of
supplementary passenger services at the station area (shopping mall). The works will be phase-run,
each putting some restriction of exploitation of available station transport infrastructure; therefore it is
necessary to conceive a train operation phase-wise.
The paper presents a methodological approach to the train operation conception and its
implementation on a selected case phase. Methodology describes spatial and technical limitations to
be considered as well as procedure for elaboration of train operation microsimulations implemented in
Railsys engineering software. The results show resolving of delays, conflicts between the train paths
and track occupancy during the construction works.
Key words: transport, railway traffic, train operation technology during construction works, traffic
technology, railway station, RailSys, simulation, resolving of conflicts
ZASNOVA TEHNOLOGIJE ODVIJANJA PROMETA NA ŽELEZNIŠKI POSTAJI LJUBLJANA V
ČASU IZVAJANJA GRADBENIH DEL S PODPORO PROGRAMSKEGA ORODJA RAILSYS
Povzetek:
Načrtovani gradbeni posegi na postaji Ljubljana bodo povzročali motnje v prometu in širitev motenj
(npr. zamude vlakov) na celotno železniško omrežje. Dobro načrtovana in izbrana gradbena
tehnologija in ustrezna zasnova tehnologije odvijanja prometa vlakov v času gradbenih del na postaji
Ljubljana je ključnega pomena za nadzor in omejevanje motenj v prometu. Na postaji Ljubljana se
načrtujejo večja gradbena dela, s katerimi se bodo povečale postajne kapacitete ter pretočnost
postaje, hkrati pa se bodo na postajnem območju uvedle dodatne dejavnosti za potnike (večji
nakupovalni center). Predvidena dela bodo potekala v več fazah, ki bodo različno omejevale postajno
prometno infrastrukturo, zato je potrebno zasnovati odvijanje prometa vlakov za vsako posamezno
fazo.
V članku je predstavljen metodološki pristop k zasnovi odvijanja prometa vlakov za izbrano fazo
nadgradnje postaje Ljubljana, pri čemer so opisane prostorsko-tehnične omejitve, ki jih je potrebno
upoštevati, ter postopek za izdelavo mikrosimulacije odvijanja prometa vlakov, ki je izdelan s
programskim orodjem RailSys. Predstavljeni rezultati mikrosimuacije kažejo reševanje zamud,
konfliktnih situacij med voznimi potmi in tirno zasedenost v času gradbenih del.
Ključne besede: promet, železniški promet, tehnologija prometa v času izvajanja del, železniška
postaja, RailSys, simulacija, razreševanje konfliktnih situacij.
Belgrade, 2012
209
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. INTRODUCTION
Ljubljana railway station is located at the crossing of X. and V. Pan-European corridors passing
through the territory of the Republic of Slovenia. All railway lines linking North, South, East and West
of Slovenia pass through the Ljubljana station. Disruptions of traffic ensuing from a construction work
at the Ljubljana station have impact on traffic flow on the entire Slovenian railway network and beyond.
Additionally, disruptions affect the capacity of corridors meeting at the node (station). The planned
construction activities at the Ljubljana station will bring about traffic disruption (e.g. train delays) on the
entire railway network. A well-selected and planned construction technology and according traffic
operation technology conception during the construction works at the Ljubljana station is essential for
control and limitation of traffic disruption. Major construction works are planned at the Ljubljana
station, which will increase station and traffic flow capacities and allow implementation of
supplementary passenger services at the station area (shopping mall). The works will be phase-run,
each putting some restriction of exploitation of available station transport infrastructure; therefore it is
necessary to conceive a train operation phase-wise.
Conception of train operations during the infrastructure possessions or planned slow runs is generally
supported by several software tools. RailSys is one of them that excelled in several notable transport
studies. The tool is comprised of several modules and functions. A micro-simulation module that we
will discuss in the paper allows design and simulation-tests of train operation during restrictions
entailed by planned possessions or downtime in specific infrastructure elements in order to provide
optimal train operations in terms of set criteria. The results show level of resolving of delays and
conflicts between the train paths as well as optimal track occupancy during the construction works.
2. ELABORATE ON RAILWAY TRAFFIC OPERATIONS DURING CONSTRUCTION WORKS
Construction works on railway infrastructure under operation impacts change of regular trains’
operation. Design of trains’ operation is elaborated in the “Elaborate on railway traffic operations
during constructions works” Contents of this elaborate are governed by Slovenian legislation:
-
technical and organisational measures,
costs induced by delays of passenger and freight trains,
costs of alternative transportation,
costs of organisation of infrastructure possessions,
costs of additional man-power requirements,
other costs.
All indicated and required information can very effectively and precisely be produced using RailSys
simulation software as described in the following.
“Elaborate on railway traffic operations during constructions works” is an integral part of design and
technical documentation that is required for acquisition of building permit.
3. RAILSYS – TRAIN OPERATION SIMULATION SOFTWARE TOOL
3.1 About RailSys software
RailSys software provides integrated management of timetable paths and infrastructure data for the
entire planning and operations process. RailSys software has the following system components:
Belgrade, 2012
210
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
-
Infrastructure data management
Timetable construction/slot management
Track possession planning “run and construct”
Simulation
Print, evaluation and documentation
Timetable design and construction; Complete train patterns for entire days are easily created with the
Timetable Manager. The train routes are interactively specified within a network graph. Automatic
calculation and evaluation of running times, block occupation and resolution of conflicts with other
trains network-wide is provided as soon as a train is entered or edited.
Assessment of the operational quality; Does the timetable work in theory? No day is like another one
in real life. Small and large perturbations cause delays. The Simulation Manager simulates a variety of
operational days with realistic and individual delay characteristics. The Evaluation Manager supports
the assessment of the simulation results. Various statistics provide dependable information about
delays, resulting punctuality, or the quality of connections within the network, lines or stations.
Infrastructure planning: The Infrastructure Manager is designed for accurately capturing, editing and
managing of all infrastructures of any size. Infrastructure can be entered as a draft. The comfortable
editing functions allow easy updating. Changing of infrastructure designs are captured in multiple
variants. The variants are used for timetable construction, possession planning, simulation and
operational comparison of different planning stages with the Timetable and Simulation Manager.
Operational planning for track work: Building new or maintaining existing infrastructure often causes
deteriorated conditions for train operation. The Timetable Manager evaluates and precisely locates the
resulting conflicts. The user can interactively alter the train schedule in accordance with the track work,
or reroute trains within the network. Any time penalties as well as the remaining train path options are
displayed in tabular or graphical form for trouble-free operations planning during track work.
Optimisation of train operations due to track possessions in terms of blockage or downtime can be
planned by using two RailSys modules “Possession planning” and “Alternative tracks” – giving the
information of alternative paths in case of track blocking or downtime.
3.2 Possession planning by software RailSys
There is an increasingly common need for performing maintenance and/or retrofitting and installing
extensions 'on the fly', that is, during ongoing operations. The costs for alternative transportation or
downtimes must be kept at an absolute minimum. The purpose of possession planning is to determine
how to best ensure a timetable free of conflicts. Questions such as "When will trains be running
according to schedule again if a switch is down for several hours?", or "Is it worth implementing
additional infrastructure, because in the case of a locomotive failure the remaining traffic cannot flow
smoothly?", can be answered by putting in the rail sections that will be blocked for a specific period
into the RailSys software. [1]
We can create:
-
speed restriction or
track blocking.
Belgrade, 2012
211
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 1: Dialogue box Create temporary speed restriction – Calendar [1]
First, a name for the new temporary speed restriction or the new track blocking should be entered then
defined a time period. We must also define a maximum speed for the temporary speed restriction and
complete the information by specifying the relevance for the scheduled timetable and/or the simulation
as the reduction of speed directly affects the running time calculation.
3.3 Alternative tracks
Alternative tracks can be specified in RailSys in order to run multiple simulations. This means if the
scheduled track is occupied, the train can then switch over to a free adjacent track during the
simulation.
Alternative tracks are determined graphically by using the existing track layout (initial layout without
specified possessions). The tracks are defined in terms of train types and in terms of specified origin
(previous) and destination (next) stations – directions. The alternative tracks are used for train
dispatching in simulation process.
Figure 2: RailSys - Dialogue box “Edit alternative tracks for dispatching [1]
Belgrade, 2012
212
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
4. SIMULATION OF TRAIN OPERATIONS ON LJUBLJANA STATION DURING EXECUTION OF
CONSTRUCTION WORKS
4.1 Input of infrastructure elements to RailSys tool
Exact definition of station infrastructure and valid time-table are two pre-conditions for simulation of
train operations. Infrastructure parameters are entered via “Infrastructure Manager” module, already
described above (division. 3.1).
Station infrastructure must be defined very precisely via several data:
-
length,
track speed (up to 10 profiles),
gradient,
radius,
electrification,
loads per axle,
mileage,
super elevation,
tunnel cross section,
M/P-Signalling system with PZB 90 and overlaps,
automatic Train Control (ATC),
multiple aspect signalling,
moving block (absolute breaking distance).
The figure below depicts Ljubljana railway station area layout as produced in “Infrastructure Manager”
module.
Figure 3: Microscopic network of Ljubljana station [2]
All feasible station routes (block sections) leading to/from or through the station for all origin and
destination stations need to be defined. The next figure shows optional station routes for selected exit
signal (destination).
Belgrade, 2012
213
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 3: Block sections for the selected signal [2]
4.2 Construction (input) of timetable
Apart from having infrastructure data before running track possession simulation the timetable in force
(valid) need to be entered. RailSys uses “Timetable Manager” module for creation of the valid
timetable.
The first step is to define locomotives, railcars and train compositions in terms of tracking force
diagrams, resistance curves, train length, weight etc.
Based on a station route and regime a timetable train path is calculated for each train by the program
producing results in tabular and graphical view.
Train path needs to be defined for all trains in existing timetable. This is shown in the figure below.
Figure 3: Selected train route [2]
Belgrade, 2012
214
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 5: Timeble of a selected train (the observed and neighbouring stations) [2]
The column “Platform in the figure above lists the station tracks occupied by the respective train.
Graphical presentation of timetable of trains operating in the selected time frame is given in the next
Figure.
Figure 3: Timetable graph between 8a.m. and 10 a.m. [2]
Frames encompassing train paths depict time occupation of block sections (block occupation). In case
the frames have overlapped a conflict among train path occurs implying the timetable is not feasible
and should be changed.
4.3 Simulation of current train operations at the station
After having entered the required data to the »Infrastructure Manager« and »Timetable Manager«
modules a train operation simulation process can be started. Simulation is run in »Simulation view«
module where intermediate and final simulation results are monitored. Trains’ operation results can be
examined at predefined points on the station track layout given in »Infrastructure Manager« module.
Belgrade, 2012
215
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Each simulated train can be examined in terms of its position and current speed as depicted in the
figure below.
Figure 4: Simulation view – section of Ljubljana station [2]
4.4 Definition of station track possession
Infrastructure possession can be defined for a single station track or even track segment or linking
track (between two switches). Definition of track possession in “Infrastructure Manager” module has
been described in division 3.2 of the paper.
Figure 5: Definition of time period of track possession
Track possession should be defined exactly in terms of time the possession as well as location that
has been blocked (define tracks and track segments). This action is graphically supported; the user
just marks the possessed tracks.
Belgrade, 2012
216
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 6: Possession of Track 5 on Ljubljana station [2]
The alternative routes that have been defined at timetable construction are also assigned priorities. In
case of track possession the tool takes the alternative based on the priority list. The priorities are
assigned respectively for different types of trains as well as train directions (O-D). To give an example:
priority of station routes is set differently for passenger train arriving from Kranj (origin) to Ljubljana
station (destination) to the same passenger train type arriving to Ljubljana from Postojna direction –
we have different origins.
4.5 Simulation of station track possession
Intention of the user is to simulate train operations at the stations in case of track possessions. The
user needs to find alternative station routes to bring the train to the station where some tracks are
closed. Simulation can start after track possessions as well as alternative routes’ priorities have been
defined.
Track possession simulation can be analysed in graphs and tables:
-
track occupation diagram,
timetable chart showing delays of train paths,
tabular timetable showing calculated delays
inspection of train delays propagated on track layout
delay analysis of train types
calculation of total propulsion energy before and after track possession.
In the following some interesting results of track 5 possession simulation at Ljubljana station will be
shown.
Belgrade, 2012
217
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 6: Simulation view after track close and delay of the selected train [2]
The chart above reveals impact of station track possession to train 38022 having 15 min and train
2402 having 17 sec of delay, respectively.
The table below gives comparison of actual valid timetable and the timetable resulted due to track
possession.
Figure 7: Timetables before and after travck possession including – delays and stopovers
The second line in the table above gives run times and simulated delays at Ljubljana station showing
that stopover time should be shorter in order for the train to be dispatched from the train in time
(13:55).
Belgrade, 2012
218
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figure 8: Comparison of train paths before and after track possession (timetable chart)
The bold line in the figure depicts train path (time) before the application of track possession while the
thin one the train path after the track has been closed. The figure shows train 3112 arriving delayed to
the Ljubljana station.
5. CONCLUSIONS
Analysis of impacts traffic disruptions caused by track possessions or downtime is very important for
efficient train operation concept in order to limit unnecessary propagation of negative effects to train
schedule. The train operation concept must be developed in the “Elaborate on railway traffic
operations during constructions works”.
Correct and precise planning of railway traffic operations during track possessions or planned slow run
can be performed aided by engineering software tools that are capable of calculation transport
production parameters, as delay, line capacity, run-time etc., underlying calculation of costs resulting
from traffic disruptions.
Delays, required alternative transportations, additional operation staff that ensue from software tool
analyses make trustworthy and reliable basis to produce a sound planning and evaluation of railway
infrastructure investments.
6. REFERENCES
[1] RailSys: User Manual, May 2012, pp. 366-378
[2] Tehnologija odvijanja prometa na postaji Ljubljana v času izvajanja del v okviru projekta
Emonika, Prometni institut Ljubljana d.o.o, Ljubljana, 2012
Belgrade, 2012
219
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
RESEARCH SOME AERODYNAMICS PHENOMENON OF HIGHSPEED TRAINS IN LOW-SPEED WIND TUNNEL
Mirjana Puharić, Ph.D, Institute Kirilo Savić, , Belgrade, Serbia
Vojkan Lučanin, M.Sc., Faculty of mechanical engineering, Belgrade University, Serbia
Suzana Linić, B.Sc, Institute GOŠA, Belgrade, Serbia
Dušan Matić, B.Sc, Institute GOŠA, Belgrade, Serbia
ABSTRACT
This paper describes the use of low-speed aerodynamic tunnel testing of phenomena that occur
during movement of trains.
The first part of the study include experimental research of model trains, carried out in low speed wind
tunnel. Model train, which was made in scale 1:20, was tested. The aerodynamic pressure on the train
model, which is generated by the movement of the train, was measured. Velocity of the train has been
180 km/h. Research contains measurement of the pressure distribution on the train model using holes
for measuring pressure and pressure sensors. Pressure sensors are connected with multiplexer
pressure type Scanivalve using plastic pneumatic tubes.
The second part of this study includes numerical calculation using methods CFD - Computational Fluid
Dynamics - Fluent. The numerical calculation is based on the finite volume technique. Fluent was
used to predict the parameters of the flow field of high-speed train.
The results of the experiment and pressures predicted by CFD for the same conditions were
compared.
Keywords: high-speed train, aerodynamic, wind tunnel, Fluent, pressure scanning system, differential
pressure gauge, sensors for measuring pressure
ISTRAŽIVANJE NEKIH AERODINAMIČKIH FENOMENA VOZOVA VELIKIH BRZINA U
AERODINAMIČKOM TUNELU MALIH BRZINA
U ovom radu opisana je primena aerodinamičkih tunela malih brzina u ispitivanjima fenomena koji se
javljaju pri kretanju vozova.
Prvi deo studije obuhvata eksperimentalna istraživanja modela voza, koja su izvršena u
aerodinamičkom tunelu malih brzina. Ispitivan je model voza, izrađen u razmeri 1:20. Na modelu voza
je meren aerodinamički pritisak nastao prolaskom voza. Brzina voza je 180 km/h. Istraživanja
obuhvataju merenje raspodela pritisaka na modelu voza, pomoću rupica za merenje pritisaka i davača
pritiska. Davači pritiska su pneumatskim cevčicama povezani sa multiplekserom pritisaka tipa
Scanivalve.
Drugi deo ovog ispitivanja obuhvata numerički proračun pomoću CFD metode, kompjuterska dinamika
fluida – Fluent. Numerički proračun je zasnovan na tehnici konačnih zapremina. Fluent je korišćen za
određivanje parametara strujnog polja kod voza velikih brzina.
Rezultati eksperimenta su poređeni sa pritiscima dobijenim CFD metodom za iste uslove.
Ključne reči: vozovi velikih brzina, aerodinamika, aerotunel, Fluent, sistem za merenje pritisaka,
diferencijalni davač pritiska, senzori za merenje pritisaka
Belgrade, 2012
220
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. INTRODUCTION
The aerodynamic resistance becomes ultimate with the increase of the train speed, because it is
changed with the speed square. Aerodynamics engineers, engaged with cars, and especially with
airplanes, found themselves in an unusual situation. The first reason has been the large length of the
vehicle. The length of the car (automobile) is 2.5 to 2.7 times larger than the width. As for the railway
cars, the length and width ratio is 6 or 7, whereas with regard to longer trains, it is 50, 100, or more.
The aerodynamic drag coefficient is given based on the cross-section area of the cars or airplanes,
which would be unnatural for trains. As for the trains, this coefficient is given based on the length or
number of the cars. The trains have to move equally in both directions, which is not required for the
airplane, whereas the aerodynamic quality is not required for cars when moving in reverse direction.
The conditions are different for the aerodynamics engineers, studying the airplanes, because the train
is moving constantly in the presence of the ground, adjacent installation and persons as well as
through the tunnels.
a)
b)
Figure 1: Various train models for testing in wind tunnels [5]
One of the significant problems, which emerged with the increase of speed, is non-stationary
phenomenon related to the air pressure effect, i.e. pressure waves occurring in passing other trains on
open track and when passing through the tunnel, with or without passing by other trains. The pressure
alteration in such cases causes fatigue of window and door glass, as well as additional structural
loading. Passing trains with each other in the tunnel cause such pressure alterations, which are also
conveyed to the passenger’s eardrum, causing unpleasant feeling. Special types of the tunnels may
reduce the pressure wave power, created by the train, and therefore improve the passenger’s comfort.
As a result from the initial studies, nose shape replacement and development of the sealed vehicles
have occurred, as well as the development of fitting elements providing additional sealing for existing
passenger railroad cars. Entrance tunnel portals, adjacent installations and bodies of small
dimensions, being in the vicinity of the railway are subject to pressure wave resulting from movement
of high-speed trains [1, 2, 3, 4].
Experimental studies are used for explanation of the aerodynamic phenomenon, occurring in highspeed trains movement and verify its theoretical calculations. Figure 1 illustrates two train models,
positioned on the on the platform for ground simulation. Figure 1a) illustrates the model positioned on
the base, simulating the embankment [5].
2. EXPERIMENTAL RESEARCHES IN AERODYNAMICS OF HIGH-SPEED TRAINS
CONDUCTED LOW SPEED WIND TUNNEL T-35 IN MILITARY TECHNICAL INSTITUTE MTI
Testing of train models were performed in low speed wind tunnel T-35. T-35 is continuous, closed
circuit wind tunnel with three closed test section of octagonal cross-sections, width 4.4 m, height 3.2 m
2
and area of 11.92 m . The test section length is 9 meters, 6m with constant cross section shape.
Belgrade, 2012
221
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Mach number range is 0.1 to 0.6 with running only by fan, and 0.6 to 0.8 with fan and injector included.
Reynolds number is up to 2.3 million/m, and stagnation pressure is in range from 1.0 to 1.52 bar. Run
time is unlimited with fan power only, and up to 120s with injector system included.
The wind tunnel is equipped with: six-component external TEM balance, Multi-component internal
strain gauge balances of VTI, FFA and ABLE production, Pressure scanning system: five S3 or D9
Scanivalves (230 pressure taps), Dynamic stability derivatives rigs for pitch/yaw/roll, Air intake testing
rig, data acquisition system, Data acquisition computer, Control computer, Data reduction computer.
Main goal of testing runs is to determine the pressure distribution on the high-speed train model in the
configuration of single drive on open track.
2.1 Model description
The train model, illustrated on Figure 2, has been designed and manufactured for special purpose test
runs by means of heaving two mutually back connected locomotives. Model construction was made of
dural in 1:20 scale. Gross geometry measures are, in order: total model length 2.056m, width of 0.15m
and height 0.18m.
The holes for measurement of pressure distribution on the model should be small, with possibility to
be connected with a pressure-regulating device. The edges of the holes should be sharp, and the hole
axis should be normal to the local tangent overlay surface. Typical diameters of the holes for pressure
distribution range from 0.35 mm to 1.5 mm, and their position should be in accordance with size and
particular requirements of a given model. These requirements are most easily met using metal plugs,
as shown in Fig. 2c). They should be put into the hole that has already been bored on the model
surface, and subsequently glued with two-component glues. On cap support, metal tube should be
glued, wtubes other end is connected with a plastic pneumatic tubes connecting measuring point with
a sensor for pressure measurement. Cap-metal insert hole on surfaces should be bored vertically to
tangent line at that point.
In the train-model body, measurement points are connected with two devices for multiplexing of
pressures of Scanivalve type, at active side of a differential pressure-indicator [4].
The train model has been positioned on the support, enabling the alteration of slip angle , i.e.
simulation of speed direction alteration, at height of 40 mm from the platform, simulating the trainrelated ground effect. Two gaps (slots) have been made on the platform, perpendicular to the flow
direction, for boundary layer exhaust.
Holes for measuring pressure
distribution
a)
Belgrade, 2012
222
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
b)
c)
Figure 2: Model with holes for measuring pressure distribution a), coordinate system, position of
measuring sections and measuring points on the train model b), c) shape of the holes for measuring
pressure distribution
2.2 Testing procedure
Measurement of the pressure distribution on the train model has been done by two
scanivalves, located within the train body. The differential pressure gauges are located within them (of
Druck type), for measuring the pressure difference from active and reference side. The static pressure
from Pitot tube, fitted on the platform, was a reference pressure. Static pressure from model surface
holes is applied to the active side. Scanivalve is connected with the holes on the model using plastic
pneumatic tubes [8, 9, 10].
0
0
Testing has been made for speeds of 30, 50 and 70 m/s, for angles of slip β = -10 up to 10
0
with decrement of Δβ = 2 .
2.3. Measuring results of train model pressure distribution
Figure 3 gives the pressure distribution around front locomotive section within the horizontal
plane on the largest locomotive width. Non-dimensional pressure coefficient Cp is directly
proportionate to pressure deference p – p0 [6]:
Cp
p
p0
1 2 v 02
(1)
Figure 3. Pressure distribution around front locomotive section within the horizontal plane
on the largest locomotive width
Belgrade, 2012
223
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Figures 4 and 5 give the pressure distribution along train length, for cross-section 1 and pressure
distribution in the train’s plane of symmetry for the speed of 50 m/s.
As it can be seen from the obtained results, pressure distribution on the train cross-section is
o
symmetric related to the train’s plane of symmetry by slip angle of =0 .
Figure 5 represents the pressure distribution for the points of the front train section and top, in the
o
o
o
train’s plane of symmetry and slip angles of = -10 , 0 and 10 . The figures illustrate that the
stagnation point in the plane of symmetry is on the spot where Cp has maximum positive value. Flow
separation occurs in the spots where the curve moves away from abscissa. The figure illustrates that
this is behind the stagnation point and behind the section 6 (figure 2b) [7,8,9,10].
Figure 4: Pressure distribution along train’s cross-section 1
The stagnation point is moved from the train’s plane of symmetry to the windy lateral side, whereas
the flow speed of front top edge and front lateral edge on the windy side is increased. The curve
distance from abscissa in the zone of points 4, 5 and 6 is increased by increasing the slip angle .
That dimension represents the pressure fall on the top surface. The flow separation occurs near point
7, resulting in repeated flow approaching after that.
a)
b)
Figure 5: Pressure distribution in the train’s plane of symmetry a), and along train length b)
Belgrade, 2012
224
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
3. FLOW SIMULATIONS BY FLUENT
Flow simulations were made by use of ANSYS Fluent 12.1 software, for half-model train. Flow space
around the half-model was discredited by the tetrahedral mesh. Boundary conditions were defined
over the boundaries of the numerical flow model. In the near space all over the train body, the
appropriate mesh elements were placed in the zone of the boundary layer. Largeness of the boundary
+
layer mesh element was defined upon the condition of y = 30 for the first mesh element row close to
the train body, with adequate 20% mesh element scale increment for every other mesh element row.
Number of mesh elements for the train was 5 millions. Numerical flow simulations were performed for
train velocities of 180 km/h. Boundary conditions at the flow space input and output, in which
simulations were done, were defined by pressures at those actual positions. All other boundary
conditions were defined by the flow symmetry.
Flow around the train was simulated as steady-state flow of the viscous incompressible fluid. The k – ε
Realizable model of turbulence was applied with standard wall functions. The average number of
iterations, needed for reaching of the result convergence was about 300 [10,11].
3.1. Results derived by numerical simulation
Figures 6 give the pressure distribution on the train half-model for velocity 50m/s (180km/h). The
maximum value of pressure is at the front of the train nose, near the stagnation point. Afterwards
stagnation point, the streamlines are accelerating and thus velocity appreciation caused pressure
drop. On the left side of the figure 6, on a scale is showing that maximum value of pressure is 1520
Pa.
Figure 6: Pressure distribution on the train half-model obtained using Fluent
for the speed v=50 m/s
Measurements in wind tunnel was obtained non-dimensional pressure coefficient Cp=0,55,
which corresponds to the pressure 1680 Pa. The figures show good agreement of the results.
4. CONCLUSIONS
Testing of train models in low speed wind tunnel are giving the pressure distribution on the train model
and the pressure distribution around the train model in the configuration of single drive on open track.
The diagrams of pressure distribution for the points of the front train section and top, in the train’s
o
o
o
plane of symmetry and slip angles of = -10 , 0 and 10 , illustrate that the stagnation point in the
Belgrade, 2012
225
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
plane of symmetry is on the spot where Cp has maximum positive value. Flow separation occurs in the
spots where the curve of pressure distribution moves away from the abscissa.
Measurement results are compared with the results obtained by numerical simulation. The results
obtained by flow simulation of the train for velocity 50m/s (180 km/h) using Fluent, show good
correspondence with experimental one for scale 1:20. Fluent is advisable for use in aerodynamical
research of trains, because of its ability to decrease research costs. At the very beginning of design
process, model manufacturing costs are decreased, aerodynamical laboratory costs and human
resources costs are decreased as well as research times.
Acknowledgments
The authors would like to thank the Ministry of Science and Technological Development of Serbia for
financial support under the project number TR 35045. Scientific-technological support to enhancing
the safety of special road and rail vehicles, 2011-2014.
REFERENCES
[1] MartyP., AutruffeH., Etudes aerodynamiques instationnaires liees a la circulation des trains a
grande vitesse, Revue generale des chemins de fer, 1993.
sonic boom phanomens auf HGV-strecken,
Munchen, 1997.
[3] Anderson, J. D., FUNDAMENTALS OF AERODYNAMICS, McGraw-Hill, Inc, 1996.
[4] Puharić M., Adamović Ž., ISPITIVANJE BRZIH VLAKOVA U PODZVUČNOM AEROTUNELU,
Strojarstvo, ZX470/1339-1343, broj 3., Vol. 50, str 151-160, svibanj-lipanj 2008.
[5] LOW SPEED WIND TUNNEL TESTING, Internal edition, Military Technical Institute of Yugoslav
Army, September, 1997.
[6] Pope, A. WIND-TUNNEL TESTING, John Wiley & Sons, Inc., New York, 1954.
[7] Puharić M., Theoretical and experimental research of aerodynamics problems for high-speed
trains, M.A. paper, Mechanical Faculty, Belgrade, 2000.
[8] Mirjana Puharić, Suzana Linić, Dušan Matić, Vojkan Lučanin, DETERMINATION OF BRAKING
FORCE OF AERODYNAMIC BRAKES FOR HIGH SPEED TRAINS, Transaction of Famena,
ISSN 1333-1124, UDC 629.4.56, UDC 629.4.077, oktobar 2011.,
[9] Holmes S., Schroeder M., "Aerodynamic Effects of High-Speed Passenger Trains on Other
Trains", DOT/FRA/ORD-01/12, April 2002. Puharić M., Application of aerodynamic tunnels in
testing of high-speed trains, cum. Science Technical Inform., 2002.
[10] H.K.Veersteg, W. Malalasekera: An Introduction to computational fluid dynamics – The finite
volume method, Longman, 1995.
[11] J. Blazek: Computational Fluid Dynamics – Principles and Applications, Elsevier, 2001.
[2] Arth P., Ergebnisbericht zur Untersuchung des
Belgrade, 2012
226
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ROLLING CONTACT FATIGUE OF RAILS
Zdenka Popović, Faculty of Civil Engineering in Belgrade, Belgrade, Serbia
Vlatko Radović, Faculty of Civil Engineering in Podgorica, Podgorica, Montenegro
Abstract:
Rolling Contact Fatigue is a serious hazard to rail traffic and a major problem for railway infrastructure
managers across the world. Increased traffic density, axle loads and speed as well as lubrication of
rails are contributors to this problem. In contrast to this, correct track geometry, correct wheel/rail
contact patch geometry, improved maintenance (appropriate inspection, rail grinding) can reduce
problems due to rolling contact fatigue. This paper presents maintenance problems due to the
appearance of rail defects known as: head check, squat and belgrospi. Unfortunately, the mentioned
rail defects are not covered by Directive 339 on common criteria for control of the state line on JŽ
network, which is still in official use in the Republic of Serbia and Montenegro. The aim of this paper is
to improve maintenance of rails and to implement the conclusions in the new technical regulations for
the railway infrastructure maintenance in the Republic of Serbia and the Republic of Montenegro.
Key words : Railway infrastructure, rolling contact fatigue, head checking, squat, belgrospi.
ZAMOR ŠINSKOG ČELIKA U DODIRU SA TOČKOM
Rezime:
Širom sveta, zamor čelika u dodiru točak/šina ugrožava bezbednost železničkog saobraćaja i
predstavlja veliki problem upravljačima infrastrukture. Stvaranju ovog problema doprinose rastuće
saobraćajno i osovinsko opterećenje, porast brzina, kao i podmazivanje šina. Suprotno tome, korektna
geometrija koloseka i geometrija dodira točak/šina, zajedno sa odgovarajućim održavanjem mogu da
doprinesu redukovanju ovog problema. Ovaj rad prikazuje probleme održavanja izazvane šinskim
defektima koji su poznatim pod nazivima: head check, squat i belgrospi. Nažalost, pomenuti defekti
nisu obuhvaćeni Uputstvom 339 o o jedinstvenim kriterijumima za kontrolu stanja pruga na mreži JŽ,
koje je još uvek u zvaničnoj upotrebi u Srbiji i Crnoj Gori.Cilj rada je unapređenje održavanja šina i
primena zaključaka u novoj tehničkoj regulativi za održavanje železničke infrastrukture u Srbiji i Crnoj
Gori.
Ključne reči: Železnička infrastruktura, zamor šinskog čelika, head checking, squat, belgrospi.
Belgrade, 2012
227
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. INTRODUCTION
The rail rolling contact fatigue (RCF) phenomenon threatens the traffic safety and increases the cost
of rails maintenance across the world. This serious problem can lead to expensive rail grinding,
premature removal of rails and complete rail failure. Experience indicates that the standard life cycle of
rails can be reduced to only 2-3 years due to RCF, if the adequate effective maintenance is not taken
at the time [1, 2].
The major occurrence of the RCF rail defects are: "head checkings" (HC) and "squats", as well as
"belgrospi". Unfortunately, all three types of RCF defects can be observed on the Serbian Railways
and the Railways of Montenegro. Nevertheless, the Serbian Railways and the Railways of Montenegro
have no management strategy against RCF rail defects and technical regulations for the infrastructure
maintenance do not include the aforementioned rail defects.
The Railways of Serbia and the Montenegro railways are part of the European railway network. Two
European traffic corridors pass through the Republic of Serbia: The Danube waterway Corridor VII and
the road-railway Corridor X, as well as three European routes: the Route 4, the Route 10 and the
Route 11 (Figure 1). Also, the Route 4 and the Route 2 pass through the Republic of Montenegro
(Figure 1).
FIGURE 1. European corridors and routes in the Republic of Serbia and the Republic of
Montenegro [3]
Realization of interoperability of European railway system demands for infrastructure managers in
Serbia and Montenegro to have maintenance plans for the infrastructure subsystem for each
conventional railway line [4]. Also, this plan should include inspection and strategy against head
checking. Maintenance strategy should provide extension of rail service life, reduce in overall rail
maintenance costs and improve safety of railway traffic. This paper figures out the importance of
grinding strategy against head checking rail defect. It also points on necessity of preventive activities
(such as rail care), removal of more or less severe defects (corrective activities) and cyclical
(controlled) activities during the rail service life. Every infrastructure manager needs to adjust
maintenance strategy to local conditions in order to achieve improvement in traffic safety.
2. DEFECTS DUE TO ROLLING CONTACT FATIGUE
The term rolling contact fatigue is generic in nature and used to describe a range of defects that are
due, basically, to the development of excessive shear stresses at the wheel/rail contact interface.
Rolling contact fatigue is a process of gradual destruction due to the creation and development of an
Belgrade, 2012
228
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
initial crack, until the rail breaks under the influence of variable traffic load, which is transferred to the
rail via a small wheel/rail contact surface.
Generally, a fracture surface due to rolling contact fatigue has a characteristic figure. Two visually
different surfaces can be distinguished: fatigue area and rail break area (Figure 2).
FIGURE 2. Characteristic look of a steel surface after break caused by rolling contact fatigue
Rolling contact fatigue cracks on the rail can be classified into those that are subsurface-initiated and
surface-initiated. Subsurface-initiated cracks are normally a consequence of high vertical loading in
combination with material imperfections. The subsurface-initiated cracks occurred more frequently in
the past. The development of steel making technology has reduced rolling contact fatigue defects
associated with material imperfections (Figure 3).
FIGURE 3. Example of cracked oxide/silicate inclusion which can act as an
initiation site for shelling and transverse defects [5]
On the other hand, most surface initiated cracks are the result of wheel/rail interaction (Figure 4) and a
high load transfer over the small wheel/rail contact patch (Figure 5). The contact patch is elliptical in
Belgrade, 2012
229
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
shape and relatively small: the longer longitudinal axis may be 10-12 mm, while the shorter transverse
axis may be 5 - 8 mm. This small patch supports the whole wheel load.
FIGURE 4. Rolling contact fatigue for wheel and rail [6]
FIGURE 5. High wheel/rail contact stress (left) and the structure of the contact patch (right) [5, 7]
The major occurrence of the surface-initiated RCF rail defects are: "head checkings" (Figure 6),
"squats" (Figure 7), "belgrospis" (Figure 8) as well as shelling (Figure 9).
FIGURE 6. Typical head checkings pattern on gauge corner (railway line Beograd - Zemun, the
right track, the outer rail in a curve)
Belgrade, 2012
230
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
FIGURE 7. Typical appearance (left) and severe stage of squat (right) development on running
surface (railway line Podgorica - Bar, 2012)
FIGURE 8. Typical belgrospi pattern on running surface (railway line Podgorica - Bar, 2012)
FIGURE 9. Severe stage of shell development
Rolling contact fatigue cracks are initiated by the high shear stresses that can develop at the wheel/rail
contact region when such stresses exceed the allowable limits for the rail steel. A number of factors
can influence the high shear stresses, including:
The nominal, dynamic and impact wheel loadings (Figure 10), and the factors that influence
wheel loadings (rail cant, track geometry, rail and wheel vertical irregularities, bogie
characteristics, etc.
The radii of the wheels and rails at their contact area (Figure 11).
The radius of the wheels (smaller radius results in higher stress).
The traction/creep forces: as the traction level increases, the maximum stress also increases
and its location moves closer to the wheel/rail contact surface (Figure 12).
It is evident that at the lower values of traction coefficient (T/N up to about 0.2) the maximum shear
stresses are obtained at some depth from the rail contact surface, which corresponds to the region in
which shelling develops (Figure 12). Higher axle loads increase the normal forces N and may reduce
the T/N values, which in turn would enhance sub-surface crack initiation (Figure 9).
Belgrade, 2012
231
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
In contrast to this, the higher values of traction coefficient which are obtained in relatively sharp
curves, or relatively shallow curves and tangent track (due to adverse vehicle dynamics, such as
hunting) or at lower axle loads, lead to considerable increases in the resultant maximum shear stress
and also a shift in the location of the maximum shear stress closer to the rail surface, where the
checking cracks initiate (Figure 12).
There are differences in the general growth characteristics of the checking and shelling cracks. The
main reason for the difference is the work hardening of the rail steel which occurs due to the plastic
deformation of the rail material, particularly at the higher axle loads (Figure 13).
FIGURE 10. Influence of wheel load on contact shear stresses [5]
FIGURE 11. Influence of rail crown radius on contact shear stress [5]
Belgrade, 2012
232
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
FIGURE 12. Influence of traction on the contact shear stress [5]
(Note: T/N is the traction coefficient or the ratio of tangential to normal forces)
Figure 13 shows that the work hardened layer can be up to 8-10 mm in depth from the rail contact
surface. The plastically deformed steel in the work hardened layer exhibits high compressive residual
stresses. Such stresses inhibit fatigue crack growth, and prevent the growth of the much shallower
checking cracks (up to 8-10 mm) into the rail head. On the contrary, the deeper shelling cracks may be
able to penetrate through the compressive work hardened layer and continue growing on a transverse
plane. The shelling cracks can being developed into transverse defects by the action of other stress
environments, including rail bending, thermal stresses, and residual stresses due to rail manufacture.
FIGURE 13. Hardness distributions in standard carbon rails
in tangent track at 30 to 35 tones axle loads [5]
Also, it is possible that the checking cracks may be able to advance into the rail head. This
phenomenon occasionally leads to the unexpected rail failures under lower axle load, high speed
passenger track, since such conditions would lead to a very limited (if any) work hardened
Belgrade, 2012
233
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
compressive layer, especially in new or newer rails that are exposed to adverse wheel/rail contact
conditions by poor track geometry, wheel geometry irregularities, bogie characteristics, etc.
It is especially important to note that under poor wheel/rail contact conditions (due to excessive shear
stresses), new higher strength rails may be more susceptible to the growth of checking cracks into the
rail head. The new higher strength rails are more resistant to plastic flow and hence work hardening
and the development of a deep compressive residual stress layer. This must be taken into account
when using the new higher strength rails.
Unfortunately, the very effective lubrication of the outer rail in curves (used on railways in order to
decrease lateral rail wear of the outer rail and wheel flange wear) stimulates a growth of head
checking rail defect. Lubricant penetrates in to the fissures (together with impurities and atmospheric
water) and the pressure from the wheel on fissure walls lead to faster advancement and dilatation of
fissures (Figure 14). For example, the visual inspection on Serbian railways shows a progressive
development of HC defects due to the penetration of lubricant mixed with impurities and water in the
fissures on gauge corner. Also, lubricants have a negative influence on visual inspection, especially in
tunnels because of reduced visibility and disable the use of penetrates.
FIGURE 14. Fissure propagation due to lubricant penetration
It is of particular importance to note that some controlled rail wear is preferable to having no wear.
Consequently, the factors that reduce rail wear (reduced track curvature, very effective lubrication, higher hardness/strength steel, wheel and rail profiles designed to reduce wear) contribute to the
growth of the fatigue cracks.
3. TREATMENT OF DEFECTS DUE TO ROLLING CONTACT FATIGUE
The rail infrastructure managers have to correctly choose the quality of rail steel. A key parameter in
this selection of rail steel grades is the procurement and maintenance cost of the rails. It is important
to consider whether the higher capital costs of 350 HT, 350 LHT and 320 Cr grades are offset by
longer service life and/or lower maintenance outlay [8]. Figure 15 shows the recommendations for use
of normal and hard steel grade rails in accordance with [8].
Belgrade, 2012
234
annual tonnage in MT
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Hard rails
Normal or
hard rails
Normal
rails
curve radius in m
FIGURE 15. Recommendations for use of steel grade in accordance with [8]
Maintenance policy (rail lubrication and grinding) has a significant impact on the service life of rails. It
is important to note that local parameters influence the development of wear and rolling contact fatigue
defects. Consequently, the rail infrastructure managers should adjust the maintenance policy to the
railway local parameters, including: curve radius, tonnage carried (daily or annual mega gross tonnage
- mgt) in the zone under consideration, the impact of falling and rising gradients, speed, cant on
curves, axle load and type of rolling stock.
Lubrication and grinding help combat the wear and rolling contact fatigue phenomena and applying
these maintenance methods appropriately can reduce costs maintenance.
Regularity and precision of application of a lubricant are of paramount importance. Account must be
taken of the influence of weather conditions (e.g. temperature, humidity) on the results of lubrication.
Use of a harder steel grade does not resolve the problem of lateral rail wear if the rail is not lubricated.
At best, the use of a harder steel grade may delay the lateral rail wear. In addition, the fact that
damaged metal is removed less rapidly may cause rolling contact fatigue to develop more quickly.
It is very important to detect rail defects in a track as early as possible. The defects due to rolling
contact fatigue can mask the ultrasonic signal during routine inspection and hence prevent the
detection of larger and deeper defects that may be present within the rail head, including any such
defects that may have developed from the shallower initial cracks. In praxis, it is important to combine
several detection methods in order to increase possibility of early detection of the defect: visual
inspection, optical testing method, ultrasound testing and eddy current testing.
The removal of severe defects in rail gauge corner and running surface entails extensive and
expensive rail maintenance (grinding). The appropriate grinding may prolongs rail service life by
preventing the emergence of defects or by delaying their development. Therefore, it is important to
apply the grinding strategies against HC defects as follows: preventive activities ("rail care"), corrective
activities (the removal of more or less severe defects), and cyclical (controlled) activities during the
whole rail service life.
Belgrade, 2012
235
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Preventive grinding is designed to improve the quality of the running surface of newly-laid rails.
Unfortunately, in Serbia and in Montenegro the rail grinding is still not applied after the laying of new
rails in track before work acceptance, although the experience of others points on necessity of this
measure and confirms its cost effectiveness through extension of rail service life. Besides that, more
often is in use head-hardened rail whose consequence is longer adjustment of rail to the geometry of
wheel. Aim of preventive grinding is to provide optimal conditions in wheel-rail contact at the beginning
of exploitation, and also to remove usual irregularities that appeared during the track laying (for
example, fine unevenness on rail welds).
However, the effect of grinding is not permanent. After a while fissures due to rolling contact fatigue
occurs again and new cycle of rail grinding is necessary. Corrective grinding is designed to remove rail
defects that have already developed by reprofiling the rail to optimize wheel/rail contact.
4. CONCLUSIONS
Rolling Contact Fatigue is a serious hazard to rail traffic across the world and a major problem for
railway infrastructure managers. That hazard is more distinct on railways without adequate
maintenance strategy. Increased traffic density, axle loads and speed as well as lubrication of rails are
contributors to this problem. In contrast to this, correct track geometry, correct wheel/rail contact patch
geometry, improved maintenance (appropriate inspection and rail grinding strategy) can reduce
problems due to rolling contact fatigue.
Appropriate maintenance strategy should provide extra rail service life and should reduce overall rail
maintenance costs. Unfortunately, a visual inspections that are conducted on the Serbian Railway and
the Montenegro Railways present examples of sporadically conducted maintenance and its negative
consequence. Realization of interoperability of European railway network demands from infrastructure
managers in Serbia and Montenegro to have for each conventional line an appropriate maintenance
plan for the infrastructure subsystem in accordance with European technical regulation. Additionally,
the infrastructure managers have to adjust maintenance strategy to local conditions in order to
improve traffic safety. It is clear that this maintenance plan has to include inspection and strategy
against rail defects due to rolling contact fatigue.
This paper emphasizes the importance of grinding strategies against RCF rail defects. It also points on
the importance of preventive activities ("rail care"), removal of more or less severe defects (corrective
activities) and cyclical (controlled) activities during the whole rail service life.
Anyway, the authors recommend combining several non-destructive testing methods for efficient rail
testing: visual inspection, optical inspection by camera, ultrasound testing and eddy current testing.
Realization of the conclusions of this paper requires an urgent harmonization of technical regulations
in the field of railway infrastructure maintenance.
5. ACKNOWLEDGEMENT
This work was supported by the Ministry of Education and Science of the Republic of Serbia through
the research project No. 36012: “Research of technical-technological, staff and organisational capacity
of Serbian Railways, from the viewpoint of current and future European Union requirements”.
Belgrade, 2012
236
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
Popović, Z., Brajović, Lj., Lazarević, L., Puzavac, L.: Rail Defects Head Checking –
Phenomenon and Treatment, Proceedings EURO – ZEL, University of Žilina in collaboration
with CETRA - Centre for Transport Research, Žilina SK, 2012.
Grohmann, H.D.: Beschädigungsarten an der Schiene verursacht durch den Betrieb,
Internationales
Symposium
Schienenfehler,
Interdisziplinärer
Forschungsverbund
Bahntechnik Fachhochschule Brandenburg Technische Universität Berlin, Brandenburg,
2000.Railway applications – Electromagnetic compatibility - Part 3-1: Rolling stock - Train and
complete vehicle EN 50121-3-1:2006
Center for Strategic & International studies and Hellenic Centre for European Studies. Relinking the Western Balkans - The transportation dimension. Athens, 2010.
European Commission: Technical Specification for Interoperability – Subsystem Infrastructure,
Official Journal of the European Communities, 2011, p.68.Railway applications –
Electromagnetic compatibility - Part 4: Emission and immunity of the signalling and
telecommunications apparatus EN 50121-4:2006
Australian Rail Track Corporation: Rail Defects Handbook, Engineering Practices Manual Civil
Engineering, 2006.
European Commission: Final report on Root Causes of Problem Conditions and Priorities for
Innovation, Project no. TIP5-CT-2006-031415 INNOTRACK, 2009.
Dollevoet, R.P.B.J.: Design of an Anti Head checking profile based on stress relief, PhD
Thesis, University of Twente, 2010.
UIC - International Union of Railways: Recommendations for the use of rail steel grades – UIC
Code 721, Paris, 2005.
Belgrade, 2012
237
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
RAIL INSPECTION BY EDDY CURRENT METHOD
Popovic Zdenka, Faculty of Civil Engineering of the University in Belgrade, Belgrade, Serbia
Brajović Ljiljana, Faculty of Civil Engineering of the University in Belgrade, Belgrade, Serbia
Lazarević Luka, Faculty of Civil Engineering of the University in Belgrade, Belgrade, Serbia
Abstract
Management of rail defects includes appropriate methods for their detection and monitoring their
growth under conditions of undisturbed traffic flow.
This paper points out the importance of early detection of the rail defects for the effective rail defects
management. Early detection of rail defects can minimize track maintenance cost and improve rail
traffic safety. The extensive research and development in highly sensitive eddy current sensors and
instruments over the last sixty years indicates that eddy current testing is currently a widely used
inspection technique. This paper presents the possibility of applying the eddy current testing for the
detection of subsurface rail cracks (which are not observed by visual inspection), surface cracks and
rail roughness (which is not visually observed). In conclusion, the authors recommend combining
several non-destructive testing methods for efficient rail testing: visual inspection, ultrasound testing
and eddy current testing.
Key words : Railway, rails, rail defects, inspection, eddy current testing, maintenance.
INSPEKCIJA ŠINA METODOM VRTLOŽNIH STRUJA
Apstrakt
Upravljanje šinskim defektima uključuje odgovarajuće metode za njihovu detekciju i praćenje
napredovanja u uslovima neometanog odvijanja železničkog saobraćaja. Ovaj rad ukazuje na značaj
ranog otkrivanja defekata za efikasno upravljanje njihovim razvojem. Rano detektovanje šinskih
defekata smanjuje troškove održavanja i unapređuje bezbednost železničkog saobraćaja. Obimna
istaživanja, razvoj osetljivih senzora i uređaja za ispitivanje pomoću vrtložnih struja tokom poslednjih
šest decenija omogućila su praktičnu primenu metode ispitivanja pomoću vrtložnih struja. Ovaj rad
prikazuje mogućnosti primene metode ispitivanja šinskog čelika pomoću vrtložnih struja u detekciji
površinskih šinskih defekata. Za efikasno upravljenje šinskim defektima, u zaključku rada autori
preporučuju kombinovanje više nedestruktivnih metoda: vizuelnu inspekciju, ispitivanje ultrazvukom i
vrtložnim strujama.
Ključne reči : Železnica, šine, šinski defekti, inspekcija, vrtložne struje, održavanje.
1. UVOD
Šine su neizostavan i skup element konstrukcije koloseka. Njihova uloga je višestruka. One
obezbeđuju površ po kojoj se kotrljaju točkovi železničkog vozila, vode i usmeravaju točkove,
prihvataju i prenose opterećenja od točkova, prenose sile kočenja i pokretanja vozila, kao i podužne
sile od temperaturnih promena, provode povratne i signalne struje.
Porast brzina, osovinskog i saobraćajnog opterećenja na prugama doprinosi skraćenju životnog veka
šine u koloseku. Jedan od najčešćih uzroka skraćenja životnog veka šina je zamor šinskog čelika.
Nepravilno održavanje šina u uslovima izraženog zamora šinskog čelika može da skrati životni vek na
Belgrade, 2012
238
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
samo 2 godine u odnosu na normalno očekivani vek (10-15 godina, tj. 300-1000 miliona bruto tona
[9]). Ovo dugoročno drastično povećava troškove odžavanja, naročito u uslovima neadekvatne
primene skupog brušenja, prerane zamene šina ili ugrožene bezbednosti saobraćaja [10].
Važan preduslov za efikasno upravljanje održavanjem šina je rano otkrivanje šinskih defekata i
praćenje njihovog razvoja između uzastopnih ciklusa održavanja. Ovo ukazuje na značaj odabira
pogodne metode za detekciju šinskih defekata. Nažalost, za sada ne postoji jedinstvena metoda
nedestruktivnog ispitivanja šina u koloseku koja daje egzaktne podatke o tipu i lokaciji šinskog
defekta. Zbog toga se preporučuje kombinovanje više metoda detekcije. UIC Kod [11] preporučuje
metod inspekcije šina pomoću vrtložnih struja kao dopunu inspekcije pomoću ultrazvuka, nakon
obavljene vizuelne inspekcije u skladu sa [12].
U ovom radu se predstavljaju osnovne postavke metode ispitivanja šinskog čelika pomoću vrtložnih
struja. Ukazuje se na moguću oblast primene i ograničenja ove metode u defektoskopiji šina u
koloseku pod saobraćajem i kontroli brušenja glave šine. Cilj rada je stvaranje osnove za
harmonizaciju domaćih podzakonskih akata za oblast održavanja šina i koloseka i uvođenje metode
vrtložnih struja u održavanje šina na Železnicama Srbije u skladu sa [11, 12].
2. OSNOVNI POJMOVI O METODI ISPITIVANJA ČELIKA VRTLOŽNIM STRUJAMA
Kada se probni kalem kroz koji protiče naizmenična struja približi ili dodirne površinu metalnog
materijala (šinski čelik), menja se fluks magnetnog polja kroz površinu materijala u toku vremena i
samim tim prema zakonu elektromagnetske indukcije u materijalu se stvaraju zatvoreni tokovi
naelektrisanja, tj. električne struje koje teku po različitim zatvorenim putanjama unutar materijala i one
se nazivaju vrtložne struje. Kao posledica toka vrtložnih struja nastaje njihovo magnetno polje, koje je
suprotnog smera od polja probnog kalema i koje povratno indukuje struju u probnom kalemu. Ova
povratno indukovana struja menja induktivnost probnog kalema. Intenzitet i prostorni raspored
vrtložnih struja zavisi jako od osobina metalnog materijala, pa dobijena promena induktivnosti probnog
kalema može da se koristi za ispitivanje tog materijala.
Blok šema koja prikazuje osnovnu strukturu aparature koja se primenjuje kod metode vrtložnih struja
je prikazana na slici 1. Ona se sastoji od probnog kalema ili sonde, izvora vremenski promenljivog
napona i indikatora koji prikazuje promenu induktivnosti probnog kalema na neki način.
u
~
I
smer vekt. mag.
polja
probnog
kalema
smer vekt. mag.
polja
vrtložnih
struja
vrtložne
struje
Slika 1. Osnovna struktura aparature koja se primenjuje kod metode vrtloznih struja
Kada je sonda kroz koju protiče naizmenična struja daleko od provodnog materijala ona ima
induktivnost L0 koja zavisi od broja navoja, prečnika i dužine kalema, kao i od toga da li su navoji
namotani oko feromagnetnog ili neferomagnetnog jezgra. Kada se ista sonda nalazi u blizini
provodnog materijala usled pojave vrtložnih struja, njena induktivnost se menja i ima neku novu
Belgrade, 2012
239
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
vrednost L. Kako je sonda u obliku kalema načinjenog od metalne žice, ona pored induktivnosti ima i
svoju otpornost R koja zavisi od dužine, prečnika i specifične otpornosti namotane žice. Tako da se
sonda električno predstavlja rednom vezom kalema induktivnosti L i otpornika otpornosti R, i određuje
se njena impedansa Z koja je jednaka
Z
R2
f L) 2
(2
R2
gde je: f - frekvencija naizmenične struje kroz kalem,
otpornost ili reaktansa kalema, tj. ove sonde.
(
L) 2 R 2
( X L )2
(1)
- kružna frekvencija te struje, a XL - induktivna
Trenutne vrednosti naizmeničnih napona na ovom kalemu L i otporniku R su međusobno fazno
pomerene za /2 rad kada kroz njih protiče naizmenična struja, pri čemu je napon na otporniku R u
fazi sa strujom, a napon na kalemu joj prednjači. Zato se javlja fazna razlika
između ukupnog
napona na sondi U i struje I koja kroz nju protiče. Efektivna vrednost napona na sondi je srazmerna
efektivnoj vrednosti struje I i jednaka
U
Z I
(2)
U oblasti naizmeničnih struja naponi, struje i impedanse električnih kola se predstavljaju vektorskim ili
fazorskim dijagramima, pa se impedansa sonde predstavlja dijagramom na slici 2. Na vertikalnoj osi
se prikazuje vektor koji odgovara reaktansi XL, a na horizontalnoj osi se prikazuje vektor koji odgovara
otpornosti sonde R, a rastojanje od koordinatnog početka je jednako dužini vektora, koji odgovara
impedansi sonde Z. Ugao , koji zaklapaju vektor koji predstavlja impedansu i horizontalna osa,
predstavlja faznu razliku ukupnog napona i struje na sondi i određuje se kao
XL
R
arctan
(3)
A
XL
Z
R
Slika 2. Vektorsko predstavljanje impedanse sonde
Na osnovu dijagrama se zaključuje da se pri promeni induktivnosti sonde usled vrtložnih struja
menjaju i njena impedansa Z i fazna razlika .
Magnetno polje koje se stvara kada se kroz idealni kalem propušta naizmenična struja je najviše
skoncentrisano unutar kalema i ima pravac ose kalema, a znatno je slabije izvan kalema, (na sl.1
zelene isprekidane linije predstavljaju linije magnetnog polja kalema). Jačina vektora magnetnog polja
Hz, duž ose kalema (z-osa) na rastojanju z od centra kalema može se predstaviti izrazom
Belgrade, 2012
240
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Hz
N I r
2 (r 2
z 2 )3 / 2
(4)
gde su : r -poluprečnik kalema, N - broj navoja, I -jačina propuštene naizmenične struje kroz kalem i f frekvencija struje. Prema izrazu (4) jačina magnetnog polje znatno opada sa rastojanjem z, i jako
zavisi od dimenzija kalema. Fluks ovako nastalog magnetnog polja sonde kroz neku zamišljenu
konturu od provodnog materijala je promenljiv u vremenu i dovodi do indukovanja struje u toj konturi.
Za komad metala možemo smatrati da se sastoji od velikog broja takvih provodnih kontura, pa se u
njemu javljaju vrtložne struje, čiji su tokovi predstavljeni crvenim krugovima na sl.1. Gustina ovih
struja, u slučaju kalema čija je osa normalna na površinu, je najveća ispod namotaja kalema, a opada
prema oblasti ispod centra kalema i izvan površine navoja. Takodje, vrtložne struje su najgušće na
površini i neposredno ispod površine provodnog materijala, pa je samo u tim oblastima moguća
njihova primena za ispitivanje materijala. Naime, gustina vrtložnih struja po dubini materijala zavisi od
frekvencije pobudne struje f, kao i od specifične otpornosti i permeabilnosti ispitivanog materijala.
Ako je frekvencija veća, dubina na kojoj se prostiru vrtložne struje je manja. Ova pojava je poznata
kao skin, ili površinski efekat. Standardna dubina prodiranja, tj. dubina na kojoj je gustina vrtložnih
struja opala na 1/e ili na 36,8% u odnosu na njihovu površinsku gustinu je data izrazom
f
(5)
i služi za određivanje optimalne frekvencije pri merenju.
Za detekciju defekata u materijalu pomoću vrtložnih struja je idealno da njihov tok pri ispitivanju bude
normalan na pravac prostiranja defekta, tj. da defekti presecaju (prekidaju) tok vrložnih struja i menjaju
oblik njihovih putanja. Na slici 3 a) prikazana su tri karakteristična položaja defekta. Ako je kraća
pukotina direktno ispod centra navoja sonde, ona ne remeti tok vrtložnih struja, a i ako je pukotina
približno paralelna toku vrtložnih struja, ona ih neznatno remeti, pa se ovi defekti praktično ne mogu
detektovati. U slučaju da je pukotina normalna na pravac prostiranja vrtložnih struja, ona znatno
remeti njihov tok i slabi ih i tada je osetljivost detekcije značajna. Kako površina navoja sonde
određuje i površinu na kojoj se javljaju vrtložne struje ispod nje, na osetljivost detekcije značajno utiče
i odnos dužine defekta i površine navoja sonde. Na slici 3 b) je prikazano da ako je defekt po
dimenzijama približan prečniku sonde, tada je osetljivost detekcije mnogo veća, nego u slučaju da je
znatno manja od njega.
Slika 3. Uticaj: a) orijentacije i položaja pukotine na osetljivost detekcije,
b) dužine defekta i dimenzija sonde na osetljivost detekcije
Belgrade, 2012
241
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Indukovane vrtložne struje stvaraju magnetno polje po pravcu normalno na ravan njihovog prostiranja,
čija jačina zavisi od gustine i oblika putanja vrtložnih struja, kao i od permeabilnosti ispitivanog
materijala. Smer ovog polja je supotan smeru prvobitnog polja sonde, što menja ukupni magnetni fluks
kroz sondu i menja njenu induktivnost i impedansu. Kod feromagnetnih materijala (čelik) zbog njihove
visoke permeabilnosti fluks magnetske indukcije vrtložnih struja je veći od početnog fluksa sonde, pa
dolazi do povećanja induktivnosti sonde kada se približi feromagnetnom materijalu, dok je kod
neferomagnetnih obrnuto.
Na prostiranje vrtložnih struja u materijalu i na njihovu detekciju utiče veliki broj faktora: provodnost i
permeabilnost materijala koji se ispituje, frekvencija naizmenične pobudne struje, rastojanje probne
sonde od površine materijala, geometrija sonde i ispitivanog materijala, rukovanje sondom i vrsta i
raspored defekata u materijalu.
Da bi se ovaj metod koristio za detekciju defekata potrebno je da se prvih šest faktora ne menjaju ili
da se neznatno i po mogućstvu kontrolisano menjaju.
Uređaji za ispitivanje materijala na bazi vrtložnih struja vrše detekciju promene induktivnosti sonde na
neki način i to prikazuju u obliku koji je pogodan za tumačenje rezultata. Jednostavno određivanje
promene impedanse sonde merenjem promene njenog napona (izraz 2) nije dovoljno osetljivo, već se
sonda mora vezivati u merni most tipa naizmeničnog Vitstonovog mosta čija je jedna varijanta
prikazana na slici 4.
Z1(R1)
U ~
Z2(R2)
I
A
R5
B
Z
3(R3)
R
merna sonda
impedanse Z
C
L
Slika 4. Merni most za određivanje promene induktivnosti sonde
Sonda koja ima impedansu Z se vezuje u jednu granu mosta koji se napaja naizmeničnim naponom
efektivne vrednosti U. U ostalim granama nalaze se električne komponente koje imaju impedanse Z1,
Z2 i Z3 i koje mogu da se sastoje od kalemova, kondenzatora i otpornika u opštem slučaju. Njihove
impedanse mogu da se menjaju najčešće promenom otpornosti u granama, ali i drugih elemenata u
zavisnosti od složenosti mosta. Pre početka merenja sonda se postavi na površinu, ili na malo
rastojanje iznad materijala koji se ispituje, ali na mesto koje nema defekte i promenom impedansi u
granama mosta, on se dovede u ravnotežu, tj. podesi se da napon u dijagonali mosta (grana AB na
slici 4) bude jednak nuli 0. Tada su impedanse u pojedinim granama povezane izrazom
Z
Z3
Belgrade, 2012
Z2
Z1
(5)
242
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
pri čemu se ova jednakost ostvaruje izjednačavanjem i otpornih i reaktivnih delova impedansi grana.
Na ovaj način se pre merenja eliminišu parametri koji utiču na impedansu sonde, a koji se ne menjaju
tokom merenja kao što je provodnost i permeabilnost materijala, rastojanje sonde od podloge i slično.
Kada se posle uravnoteženja mosta sonda koristi za detekciju defekata, dolazi do pojave napona u
dijagonali mosta kao posledice promene induktivnosti sonde usled nailaska na defekt. Kako bi se
povećala osetljivost detekcije, sonda je nekad povezana sa kondenzatorom promenljive kapacitivnosti
C, čija je uloga da se most podesi da radi na rezonantnoj učestanosti i da je izuzetno osetljiv na
promenu induktivnosti.
Amplituda dobijenog napona u dijagonali mosta, njegovo fazno kašnjenje u odnosu na struju i u
odnosu na napon napajanja mosta zavise od karakteristika defekta. Ovako dobijeni napon se dodatno
pojačava i obrađuje kako bi bio pogodno prikazan na izlazu mernog uređaja, a radi što bolje
identifikacije defekta.
Kod ručne i pojedinačne identifikacije defekata koristi se impedansni način prikazivanja izlaznog
signala, a kod automatizovanog merenja najčešće se neke od ovako dobijenih komponenti napona
prate u vremenu, vrši se njihova akvizicija i naknadna obrada.
2.1 Impedansni metod prikazivanja promene induktivnosti sonde
Na ekranu uređaja se u ovom slučaju prikazuju naponi srazmerni reaktansi i otpornosti sonde u obliku
vektorskog dijagrama sa slike 2, tj. na y-osi se predstavlja vrednost reaktanse sonde, a na x-osi
otpornost sonde. Kada se sonda nalazi u vazduhu, daleko od površine ispitivanog materijala, ona ima
reaktansu L0 i neku otpornost R i na dijagramu se to predstavlja tačkom A, kako je prikazano na slici
5 levo. Položaj ove tačke ne zavisi od osobina materijala već samo od karakteristika kalema i
frekvencije napona napajanja, pa tačka A predstavlja referentnu tačku za dati kalem. Kada se isti
kalem približava površini feromagnetnog provodnog materijala, tačka na dijagramu se pomera po liniji
A-B (na slici 5 levo) i tačka B odgovara postavljanju sonde na površinu tog feromagnetnog materijala
kada on nema defekata. Položaj tačke B kao i oblik putanje A-B zavise od provodnosti materijala,
njegove permeabilnosti i frekvencije napona napajanja, kao i od dimenzija i debljine uzorka od tog
materijala.
C
XL
pukotina
XL
C1
B
A
približavanje
površini
materijala
R
C2
A
B
R
Slika 5. Karakteristične krive na ekranu pri impedansnom načinu predstavljanja
Na slici 5 (levo) kriva AB predstavlja približavanje sonde materijalu, a BC nailazak na pukotinu kod
feromagnetnih materijala. Na slici 5 (desno) predstavljen je isti dijagram kome su ose normalizovane i
zarotirane da bi kriva AB bila približno horizontalna.
Putanja A-B pokazuje kako bi se menjala induktivnost sonde, kao i fazno kašnjenje , ako se sonda
odiže od površine, ili joj se približava i vidi se da je ovaj uticaj na promenu induktivnosti (eng. lift-off)
vrlo značajan i neophodno je da se pri ispitivanju sonda drži na konstantnom rastojanju od površine
uzorka. Ako se ista sonda koja je na površini uzorka pomera i naiđe na pukotinu, tačka na djagramu bi
se u zavisnosti od veličine i položaja pukotine kretala po nekoj putanji tipa B-C. Izmedju krivih AB i BC
Belgrade, 2012
243
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
postoji fazni ugao i on zavisi od veličine i dubine defekta. Da bi se na dijagramu što osetljivije prikazale
promene u materijalu, ovaj dijagram se pri praktičnom prikazivanju rotira i normira tako da kriva AB
bude približno paralelna x-osi i predstavlja referentnu krivu, kako je prikazano na slici 5 desno. Krive
BC1 i BC2 na slici 5 desno kvalitativno predstavljaju kretanja tačke na dijagramu pri nailasku na
pukotinu manje i veće dubine.
Postupak pri ovakvom načinu prikazivanja i karakterizacije defekata je da se prvo podizanjem i
približavanjem sonde ispitivanom materijalu formira putanja AB, referentna za neoštećeni materijal i
sondu i podesi se njen željeni položaj na ekranu. Da bi se kvantitativno odredila dubina defekta,
njegova dužina, nagib i sl. potrebno je ispitivanje vršiti prvo na standardu od istog materijala na kome
su napravljeni defekti poznatih dubina, nagiba, dužina i sl. i na osnovu toga podesiti pojačanje u
mostu, da bi se dobila što bolja rezolucija i utvrdili kakva promena impedanse i ugla odgovara kojoj
vrsti defekta. Na slici 6 je prikazan dijagram koji se dobija kada se sonda kreće na standardnom
čeličnom uzorku koji ima tri vertikalne pukotine različite dubine.
Slika 6. Merenje na standardnom čeličnom uzorku: urezani uski žlebovi naznačenih dubina (levo),
prikaz na ekranu mernog uređaja (desno)
Krive koje se dobijaju prevlačenjem sonde preko defekata imaju različite visine što je posledica i
dužine i dubine defekta, ali i različite nagibe, koji su vezani za različite dubine defekata. Naime, uticaj
vrtložnih struja sa neke dubine ispod površine materijala se javlja sa vremenskim zakašnjenjem u
odnosu na uticaj onih koje su na površini (eng. phase lag), pa se ovo javlja kao dodatna promena faze
između struje i napona na sondi i koristi za procenu dubine defekta. U slučaju da se mali defekt nalazi
0
na dubini od jedne standardne dubine na ekranu bi kriva zaklapala ugao od 114 u odnosu na istu
krivu koja bi se dobila za isti defekt na površini materijala. Ako se pukotina prostire od površine do
neke dubine uticaji presečenih vrtložnih struja nisu istovremeni pa to utiče na nagib krive na
dijagramu, ali ne sa podjednakom težinom jer je gustina vrtložnih struja ispod površine manja.
0
Poseban problem predstavljaju pukotine koje su pod nekim nagibom manjim od 90 stepeni u odnosu
na površinu uzorka pa one presecaju vrtložne struje na različitim mestima i različitim dubinama, i čak
se dobijaju različite putanje na dijagramu ako se ide u smeru povećavanja dubine ili smanjenja dubine.
Zato procena dubine defekta preko nagiba nije previše precizna, ali može da posluži kao relativni
pokazatelj pri poređenju više defekata.
Ovaj metod prikazivanja i tumačenja defekata, uz korišćenje odgovarajućih standarda za ispitivani
materijal i uvežbanost i veliko iskustvo osobe koja vrši ispitivanje omogućava dobru karakterizaciju
defekta. Promenom frekvencije pobudnog napona i dimenzija sonde može se postići optimalan
kompromis između osetljivosti, rezolucije merenja i dubine prodiranja vrtložnih struja.
Na isti način rade uređaji na dve frekvencije kod kojih se sonda pobuđuje istovremeno na dve
frekvencije i na ekranu se istovremeno prikazuju dva dijagrama za isti defekt i zahvaljujući tome on se
preciznije karakteriše.
Belgrade, 2012
244
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
2.2 Sistemi za automatsko snimanje vremenske zavisnosti signala i njihovu obradu
U slučaju ispitivanja predmeta velikih dimenzija, kao što su šine, manuelan način ispitivanja je veoma
dugotrajan, pa se sonda najčešće montira na neki nosač koji se pomera poznatom brzinom po
površini ispitivanog materijala. Pri tome se prate promene napona u dijagonali mernog mosta u koji je
povezana sonda u toku vremena, kao i fazno kašnjenje signala u odnosu na napon napajanja. Tokom
merenja vrši se analogno-digitalna (A/D) konverzija signala, njegova akvizicija i dodatna obrada.
Dobijeni signali imaju određeno kašnjenje u odnosu na nailazak sonde na defekt, zbog konačnog
vremena prelaska sonde preko njega, pa frekvencija odabiranja mora biti dovoljno velika da se
detektuju svi defeki, ali ne i prevelika, jer bi to zahtevalo ogromnu memoriju uređaja. Ova pojava
ograničava i brzinu kretanja sonde tj. vozila koje je nosi. U daljoj obradi signala veoma važnu ulogu
ima njegovo filtriranje. Pošto se parametri koji utiču na vrtložne struje stalno lokalno menjaju, signal sa
sonde koja se kreće konstantnom brzinom po površini bez defekata ima fluktuacije, jer se lokalno
menja provodnost i permeabilnost materijala usled naprezanja i temperature, jer se menja rastojanje
sonde od površine zbog neravnina površine i vibracija sonde na nosaču, jer dolazi do indukovanje
struja u sondi koje su drugog porekla, itd. Sve ove promene imaju neku karakterističnu vremensku, ili
prostornu periodičnost, tj. karakteristične frekvente opsege i daju lažne skokove ili padove signala koji
se prati. Zbog toga se signali filtriraju nisko i visoko frekventnim filtrima, kako bi se ove komponente
eliminisale. Radi lakšeg eliminisanja ovih neželjenih fluktuacija, sonde se često napajaju naponima
impulsnog umesto prostoperiodičnog oblika.
Softver za obradu signala, naročito sa više postavljenih sondi koje se snimaju simultano je veoma
bitan i zahteva složeno povezivanje intenziteta, faznog kašnjenja, vremena odziva sonde, lociranja
mesta defekta i sl. Zbog mnogostrukih uticaja parametara materijala i sondi na pojavu i promenu
gustine i rasporeda vrtložnih struja ova metoda pokazuje različitu osetljivost detekicije u zavisnosti od
vrste defekata.
Ovakav sistem pored detekcije vrši i dalje procesiranje signala da bi se pamtila mesta i procena
veličine defekta i upoređivala sa prethodnim stanjem materijala.
3. PRIMENA METODE VRTLOŽNIH STRUJA U ODRŽAVANJU ŠINA
Metod vrtložnih strula primenjuje se u inspekciji šina prema [11] i kontroli rada brusnih vozova. Za
detekciju površinskih šinskih defekata primenom vrtložnih struja koriste se različite vrste šinskih
inspekcijskih vozila (slika 7, levo) i ručnih uređaja za ispitivanje (slika 7, desno) [13-15]. Pored toga,
uređaj za inspekciju šina vrtložnim strujama integriše se u brusne vozove (slika 7, sredina) kao
kontrolni uređaj kojim se na probnoj deonici utvrđuje očekivani broj prolaza brusnog voza i kojim se
nakon svakog prolaza dokazuje učinak izvršenog brušenja.
Šinska inspekcijska vozila su opremljena osmokanalnim uređajima za ispitivanje šina u koloseku
pomoću vrtložnih struja. To znači da se u istom poprečnom preseku pomoću četiri sonde na levoj i
četiri sonde na desnoj šini (slika 8) vrši defektoskopija pomoću vrtložnih struja u zoni očekivane pojave
defekata usled zamora šinskog čelika, koja se nalazi na 25-35 mm u odnosu na osu simetrije
poprečnog preseka spoljašnje nadvišene šine, odnosno na -5 mm do +10 mm u odnosu na osu
simetrije poprečnog preseka unutrašnje šine.
Sonde ne dodiruju hrapavu površ glave šine, već se nalaze na bezbednoj udaljenosti. Slika 10
prikazuje nemačko rešenje vođenja sonde na konstantnom rastojanju 0,5 mm od vozne ivice šine
kako bi se sačuvala sonda od oštećenja [15]. Držač sonde se pneumatski podiže u zonama skretnica
gde postoji opasnost oštećenja sonde.
Belgrade, 2012
245
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 7. Inspekcijsko vozilo (levo), brusni voz (sredina), ručni WPG uređaj sa integrisanim
uređajem za ispitivanje vrtložnim strujama (desno)
Slika 8 . Raspored sondi na glavi šine i dijagrami odgovarajućih signala [13]
Slika 9. Zona zamora materijala na glavi šine u koloseku
Slika 10. Princip vođenja sonde na konstantnom odstojanju u odnosu na voznu ivicu šine
4. KLASIFIKACIJA ŠINSKIH DEFEKATA POMOĆU METODE VRTLOŽNIH STRUJA
Analiza oblika izlaznih signala četiri sonde za ispitivanje vrtložnim strujama, koje su postavljene prema
rasporedu prikazanom na slici 8, može da ukaže na tip defekta na površini glave šine.
4.1 Karakteristike signala za detektovanje šinskog defekta tipa head checking
Head checking (HC) je vodeći tip defekta u svetu, koji nastaje usled zamora šinskog čelika i ugrožava
bezbednost saobraćaja, ukoliko se njime ne upravlja na adekvatan način. Ovaj defekt se javlja na
spoljašnjoj šini u krivinama radijusa do 3000 m, a najčešće pri radijusima krivina do 1500 m, isključivo
na kolosecima sa definisanim smerom vožnje. Defekat ima kodnu oznaku 2223 prema [12].
Belgrade, 2012
246
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Vizuelna inspekcija, koja je obavljena tokom jeseni 2011. godine na magistralnim prugama
Beogradskog čvora ukazala je, nažalost, na obimnu pojavu ovog defekta. Inače, defekt HC nije
obuhvaćen klasifikacijom defekata koja se primenjuje na ŽS i ne postoji strategija upravljanja razvojem
ovog opasnog defekta.
Na slici 11 prikazan je karakteristični izgled HC na voznoj ivici i u poprečnom preseku, kao i oblik
signala pri ispitivanju vrtložnim strujama prema [13]. Prema očekivanjima, signali na sondi 3 i 4 su
gotovo ravni. Signali na sondama 1 i 2 imaju fino raspoređene amplitude sa neravnomernim
"pikovima". Analizom signala moguće je odrediti mesto i broj HC prslina i proceniti dubinu defekta.
Slika 11. Karakteristična pojava i oblik izlaznih signala za defekt head checking
4.2 Karakteristike signala za detektovanje defekta tipa squat
Na slici 12 prikazan je karakteristični izgled defekta tipa squat, kao i oblik signala pri ispitivanju
vrtložnim strujama prema [13]. Prema očekivanjima, signal na voznoj ivici na sondi 1 je gotovo ravan.
Signali na sondama 2 i 3 imaju diskretno raspoređene amplitude sa karakterističnim višestrukim blisko
postavljenim "pikovima". Analizom signala moguće je odrediti mesto i broj squat defekata.
Slika 12. Karakteristična pojava i oblik izlaznih signala za defekt squat
Belgrade, 2012
247
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Ovaj defekt je vidljiv na glavi šine kao proširenje i kao lokalna depresija, praćen je tamnom mrljom
usled korozije i lučnom prslinom ili prslinom u obliku slova „v“. Prslina se javlja u glavi šine u početku
pod malim uglom. Kad dostigne dubinu od 3 mm do 5 mm povija se u poprečnom pravcu i može da
dovede do loma šine. Defekt ima kodnu oznaku 227 prema [12]. Ovi defekti se višestruko uočavaju na
prugama Železnice Srbije.
4.3 Karakteristike signala za detektovanje defekta usled utiskivanja stranih tela
Oštećenja vozne površi na glavi šine mogu da nastanu usled utiskivanja stranih tela pod točkom vozila
(kodna oznaka 301). Česta su oštećenja usled utiskivanja zrna tucanika ili metalnih delova. Ukoliko se
strano telo koje se utiskuje u šinu nalazi na točku, onda se oštećenja vozne površi šine raspoređuju
periodično na dužini obima točka.
Na slici 13 prikazan je karakteristični izgled defekta usled utiskivanja stranog tela u voznu površ šine,
kao i oblik signala pri ispitivanju vrtložnim strujama prema [13].
Slika 13. Karakteristična pojava i oblik izlaznih signala za defekt usled utiskivanja stranog tela
Analizom signala moguće je odrediti mesto i broj defekta. Ukoliko se na dijagramu uočava
periodičnost, onda se radi o utiskivanju stranog tela koje se nalazi na točku vozila.
Na mestima defekata usled utiskivanja stranog tela u voznu površ šine signal ima lokalni vrh, koji
može biti usmeren nagore ili nadole, što zavisi od provodljivosti utisnutog stranog tela. Ukoliko je u
voznu površ šine utisnuto telo sa većom provodljivošću, onda je vrh signala okrenut nadole na mestu
defekta, kao što to prikazuje dijagram na slici 13.
4.4 Karakteristike signala za detektovanje talasastog habanja unutrašnje šine u krivini
Izgled defekta i oblik signala prikazuje slika 14.
Belgrade, 2012
248
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 14. Izgled defekta i oblik signala za detektovanje talasastog habanja unutrašnje šine u krivini
Ovaj defekt nosi kodnu oznaku 2202 i ispoljava se na voznoj površini unutrašnje šine u krivinama
malog radijusa usled proklizavanja unutrašnjih točkova osovinskih sklopova. Defekt predstavlja
naboranost dugačkih talasa, dužina talasa varira od 8-30 cm. Kod ove vrste naboranosti ne postoji
razlika u izgledu ispupčenja i ulegnuća. Defekt doprinosi uvećanju dinamičkog opterećenja i emisije
buke, kao i smanjenju komfora vožnje.
Oblik signala koji se u ovom slučaju očitava na kanalima 2-4 je razvučen sa malim amplitudama koje
pokazuju izvesnu periodičnost. Na osnovu signala moguće je utvrditi mesto i broj vršnih mesta
naboranosti (tzv. grbine). Na osnovu oblika signala nije moguće utvrditi obim oštećenja.
4.5 Karakteristike signala za detektovanje naboranosti kratkih talasa na površi glave šine
Naboranost kratkih talasa se odlikuje gotovo pravilno naizmenično raspoređenim sjajnim ispupčenjima
i tamnim ulegnućima na gornjoj površini glave šine. Dužina talasa u opštem slučaju iznosi između 3 i 8
cm. Ovakva naboranost se može uočiti na šinama u pravcu i krivinama velikog radijusa. Smatra se da
usled oscilacija točka i šine nastaju promene u strukturi čelika, tako da se na tvrđim mestima formiraju
sjajna ispupčenja. Ova pojava utiče na povećanje buke i do 10 dB(A) i povećava dinamičko
opterećenje koloseka
Slika 15 pokazuje karakterističan pravilan signal na sondi 4. Amplitude su male. Signal ima izrazitu
periodičnost. Vrhovi (pikovi) signala odgovaraju pojavi sjajnih ispupčenja na voznoj površi. Analizom
signala utvrđuje se mesto, broj i periodičnost talasa naboranosti na glavi šine.
Slika 15. Karakteristična pojava i oblik izlaznih signala za naboranost kratkih talasa
Belgrade, 2012
249
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
4.6 Karakteristike signala za detektovanje šinskih defekata na mestima kočenja i ubrzavanja
vozila
Na mestima kočenja, pokretanja i ubrzavanja dolazi do povećanog angažovanja pogonskih osovina
vučnih vozila. Ovo pored ostalog ima za posledicu otvrdnjavanje, pomeranje materijala u gornjem
sloju vozne površine i ugibanje. Kao posledica se javljaju defekti na voznoj površini. Napredovanje
defekta može da dovede do loma šine. Slika 16 prikazuje izgled defekta i signala.
Ovaj defekt se uvek javlja na obe šine u koloseku, tako da je oblik signala za levu i desnu šinu uvek
sličan. Karakterističan signal se javlja sa sonde 4. Signal ima široki "breg" sa nizom malih vrhova.
Analizom oblika signala utvrđuje se mesto pojave i dužina ovog defekta, ali ne može se utvrditi dubina
oštećenja.
Slika 16. Karakteristična pojava i oblik izlaznih signala za defekt na mestima pokretanja,
ubrzavanja i kočenja vozila
5. ZAKLJUČAK
Cena šine u odnosu na cenu gornjeg stroja sa kolosekom u zastoru od tucanika iznosi oko 30%,
odnosno oko 20% u odnosu na cenu koloseka na čvstoj podlozi. Pored toga, troškovi održavanja šina
čine dobar deo troškova održavanja železničkih pruga.
Životni vek šine u koloseku nekada je bio ograničen vertikalnim i bočnim habanjem. Današnja
osovinska i saobraćajna opterećenja, kao i brzine na prugama čine da je uzrok zamene šine zamor
šinskog čelika. Zamor šinskog čelika može da ograniči vek šine na samo par godina. Jedan od načina
da se produži životni vek šine u koloseku je rana detekcija defekata usled zamora šinskog čelika.
U radu je prikazana mogućnost primene metode vrtložnih struja za detekciju površinskih defekata
usled zamora. Ovaj metod detekcije najbolje rezultate daje u otkrivanju defekata tipa head checking.
Na osnovu oblika signala sa četiri sonde može se odrediti mesto i broj defekata HC i proceniti dubina
defekta.
Pomoću metode vrtložnih struja mogu se utvrditi sa velikom verovatnoćom defekti tipa squat, defekti
usled utiskivanja stranih tela, naboranost kratkih talasa i defekti na mestima pokretanja, ubrzanja i
kočenja pogonskih vozila. Kod nabrojanih defekata ne može se metodom vrtložnih struja odrediti
dubina oštećenja.
Belgrade, 2012
250
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Defekt belgrospi se ne detektuje ovom metodom. Takođe, defekt dugačke naboranosti unutarnje šine
u krivinama malog radijusa se teže detektuje ovom metodom.
Za efikasno upravljenje šinskim defektima na ŽS, autori ovog rada preporučuju kombinovanje više
nedestruktivnih metoda: vizuelnu inspekciju, ispitivanje ultrazvukom i vrtložnim strujama. U tom smislu,
neophodna je hitna dopuna podzakonskih akata i edukacija stručnog kadra u oblasti održavanja
železničke infrastrukture.
ZAHVALNICA
Ovaj rad je rezultat istraživanja na Tehnološkom projektu br. 36012 "Istraživanje tehničko-tehnološke,
kadrovske i organizacione osposobljenosti Železnice Srbije sa aspekta sadašnjih i budućih zahteva
Evropske unije", koje je finansirano od strane Ministarstva za prosvetu i nauku Republike Srbije.
LITERATURA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
Schöch, W.: Entwicklung von Schleifstrategien gegen Rollkontaktermüdung - Ein internationaler
Überblick, ZEVrail Glasers Annalen. 132, (2008), S. 2-10.
Popović, Z., Puzavac, L., Lazarević, L.: Rail Defects due to Rolling Contact Fatigue, Building
Materials and Structures. 54, 2(2011), pp. 17-30,
Grassie, S., Nilsson, P., Bjurstrom, K., Frick, A., Hansson, L. G.: Alleviation of rolling contact
fatigue on Sweden’s heavy haul railway, Wear. 253 (2002), pp. 42-53.
Cannon, D.F., Pradier, H.: Rail rolling contact fatigue Research by the European Rail Research
Institute, Wear. 191 (1996), pp. 1-13.
Heyder, R., Girsch, G.: Testing of HSH rails in high-speed tracks to minimise rail damage,
Wear. 258 (2005), pp. 1014-1021
Vitez, I., Oruč, M., Krumes, D., Kladarić, I.: Damage to Railway Rails Caused by Exploitation,
Metalurgija. 46 (2) (2007), pp. 123-128.
Stock, R., Pippan, R.: RCF and wear in theory and practice – The influence of rail grade on
wear and RCF, Wear. 271 (2011), pp. 125 -133.
Donzella, G., Faccoli, M., Ghidini, A., Mazzu, A., Roberti, R.: The competitive role of wear and
RCF in a rail steel. // Engineering Fracture Mechanics. 72 (2005), pp. 287-308.
Lichtberger, B.: Das System Gleis und seine Instandhaltung, EI – Eisenbahningenieur (58)
1/2007, S. 10-19.
Popović, Z., Lazarević, L., Brajović, LJ., Puzavac, L.: Rail Defects Head Checking –
Phenomenon and Treatment, 20th International Symposium EURO – ZEL 2012, 5th – 6th June
2012, Žilina SK, 2012, pp. 202-209.
UIC International Union of Railways: UIC Code 725 Treatment of rail defects, Paris, 2007.
UIC International Union of Railways: UIC Code 712 Rail Defects, Paris, 2002.
DEY, A., CASPERSON, R., POHL, R., THOMAS, H. M.: Die Klassifizierung von
Oberflächenfehlern in Schienen mit der Wirbelstromprüfung, DGZfP-Jahrestagung, Münster,
2009, S. 9
Pohl, R., Krull, R.: A new Eddy Current Instrument in a Grinding Train, ECNDT 2006, Poster
178, Genf, Switzerland, 2006.
Krull, R., Hintze, H., Thomas, H.: Moderne Methoden der zerstörungsfreien Werkstoffprüfung im
Oberbau, Internationales Symposium Schienenfehler, Brandenburg, Brandenburg, 2000, S.3954.
Belgrade, 2012
251
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
NOISE REDUCTION IN RAILWAY INFRASTRUCTURE
Zdenka Popović, University of Belgrade, Faculty of Civil Engineering, Belgrade, Serbia
Leposava Milosavljević, University of Belgrade, Faculty of Civil Engineering, Belgrade, Serbia
Luka Lazarević, University of Belgrade, Faculty of Civil Engineering, Belgrade, Serbia
Abstract:
The tendency of applying urban rail systems for passenger transport grows in the urban environment,
due to their advantage regarding direct and indirect ecological effects in comparison to other modes of
transport. In this sense, the increase of railway transport will affect on reduction of air pollution, but at
the same time it will increase noise level. This paper analyzes and suggests necessary measures for
managing railway noise in planning, design, construction and maintenance of the railway
infrastructure. It emphasizes the influence of separation of passenger and freight transport
subsystems in the railway junction, rail routing with respect to terrain, track alignment design
parameters and superstructure and substructure design. It is pointed out that efficient solution of the
noise problem requires joint strategy of managing noise from vehicles and infrastructure. Efficient
noise control is based on clearly defined legal regulations and technical standards.
Key words: Serbian Railways, noise, infrastructure, environment, legislation
ULOGA INFRASTRUKTURE U REDUKCIJI BUKE OD ŽELEZNIČKOG SAOBRAĆAJA
Apstract:
U urbanom okruženju raste tendencija primene šinskih sistema za prevoz putnika, zbog njihove
prednosti u pogledu direktnih i indirektnih efekata u odnosu na druge vidove prevoza. U skladu sa
time, očekivano povećanje obima železničkog saobraćaja uticaće na smanjenje zagađenja vazduha,
ali u isto vreme i na povećanje nivoa buke. Ovaj rad analizira i predlaže potrebne mere za upravljanje
bukom od železničkog saobraćaja na nivou planiranja, projektovanja, građenja i održavanja železničke
infrastrukture. On ukazuje na značaj razdvajanja pitničkog i terenog saobraćajnog podzistema u
železničkom čvoru, vođenja trasa železničke pruge u odnosu na teren, izbora elemenata situacionog
plana, kao i konstrukcije gornjeg i donjeg stroja na smanjenje emisije buke. U radu se ističe da
efikasno rešenje problema buke zahteva zajedničku strategiju upravljanja bukom od vozila i
infrastrukture. Efikasna kontrola buke se zasniva na jasno definisanim zakonskim propisima i
tehničkim standardima.
Ključne reči: Železnice Srbije, buka, infrastruktura, životna sredina, regulativa
1. INTRODUCTION
The countries that were signatories of the Protocol adopted in Kyoto on December 12th, 1997
committed to reduce the emission of harmful gases. Achieving the target of the reduction of emission
of harmful gases requires the reduction of the influence of transport on the environment and reestablishing the balance between different modes of transport. Thus the relative competitiveness of
railway transport compared to other modes of transport becomes quite significant (European
Commission, 2011).
European traffic policy expects a tripling of freight transport on rail by 2020, which will affect on
reduction of air pollution and increase of road traffic safety (European Commission, 2011). By the
assessments, consequences of this policy will be increase of noise from railway traffic by 5 dB(A).
Control of railway noise has very significant part in the traffic policy of the EU. Considering an
organization policy of railway traffic in Europe, main cause of night-time noise is traffic of freight trains.
Daily noise level of railway traffic is determined by high speed trains traffic, conventional speed trains
traffic and urban rail transit.
This increase of noise will significantly reduce the quality of life of citizens. Enhanced noise firstly
causes uneasiness, then irritability, tendency towards depression, insomnia, digestive problems, even
Belgrade, 2012
252
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
cardio-vascular disease and deafness. That’s why utilizing methodical measures for noise reduction is
expected from the railway.
Unfortunately, noise control is often incorrectly implemented only in the maintenance phase. This
paper points out that noise control begins already in the phase of planning and design and continues
in the phase of construction and maintenance of the railway infrastructure. It means that application of
indirect measures for noise protection (screening with conventional or low sound barriers next to track,
installing the soundproof windows on nearby buildings) only have sense after applying all possible
measures in railway planning and design.
The paper analyzes concrete measures in planning, design, construction and maintenance of the
railway infrastructure which influence the level of the railway noise.
2. STRUCTURE OF RAILWAY NOISE
Railway noise is an unwanted, unpleasant and disturbing sound, which emerges as a time variable
mechanical deformation in the elastic environment. During sound transmission, oscillating change of
pressure over time, p(t), appears in the air, and the human ear registers it.
The source of exterior force which is causing mechanical deformations by taking small parts of the
matter out of balance and stimulating them to move around their position of equilibrium is considered
to be the source of noise. The main sources of the railway noise are engine of vehicles, wheels rolling
on the rail and air resistance (Hecht, 2003).
Definitions of measurands that are used in measurement of noise emitted by rail bound vehicles are
given in the EN standard : EN ISO 3095:2005 Railway applications – Acoustics – Measurement of
noise emitted by rail bound vehicles (ISO 3095:2005). The methodology of measurement of noise
inside rail bound vehicles is given in the EN standard: EN ISO 3381:2005 Railway applications –
Acoustics – Measurement of noise inside rail bound vehicles (ISO 3095:2005). Test method and limit
values are prescribed by the TSI (European Commission, 2006). TSI application is obligatory for all
member countries of the EU, while EN standards are obligatory only in the case of bringing
subordinate acts to a certain standard.
By analyzing the structure of noise emission, it is determined that noise in the wheel/rail contact point
is the major problem in the widest domain of velocities (Figure 1). In the domain of small velocities, the
authoritative noise is coming from vehicle engine and auxiliary devices (locomotive engine, air
conditioning devices, breaks and similar). In the domain of high velocities the railway noise largely
depends on acoustic noise caused by turbulent airflow over the surface of a train body.
FIG. 1. Level and sources of railway noise depending on the vehicle speed
The dominant influence of noise generated at the wheel/rail contact point, confirms the importance of
maintenance of both vehicles and track geometry.
Belgrade, 2012
253
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Masses of small parts of the matter which oscillate and interior forces which tend to restore them to
the state of equilibrium are major contributors of unwanted noise during the rolling of wheels on the rail
(Figure 2). The rolling of wheels on the rail causes noise due to the following:
geometrical shape of the wheel and surface of the rail head in the area of their contact,
abrupt changes of stiffness in track with discrete rail support,
influence of rail joints (mechanical with fishplates, isolated, welded)
bumping and friction of flange of the outer wheel on the inner side of the head of the outer rail
in the curve.
FIG. 2. The oscillation principle of the "wheel-rail-rail bed" system
(Hohnecker, 2004)
Noise control in the wheel/rail contact point requires application of corresponding measures in design
and maintenance of the vehicle, track and track bed.
3. NOISE CONTROL IN THE PHASES OF PLANNING, DESIGN, CONSTRUCTION AND
MAINTENANCE OF THE RAILWAY INFRASTRUCTURE
The policy of modern European railway development assumes control of the possible harmful
influences on the environment in the phases of planning, design, construction and maintenance of the
railway infrastructure.
Relocation of freight transport subsystem (railways and stations for freight traffic) outside of urban area
of the railway junction gives the greatest contribution to reducing the negative impact of railway noise
on the population.
The tendency of applying urban rail systems (trams, light rail systems, metro, urban and suburban
railway) for passenger transportation grows in the urban environment, due to their advantage
regarding direct and indirect ecological effects in comparison to other modes of transport.
It can be concluded that the environmental impact of rail systems in the urban environment, from the
standpoint of infrastructure, is primarily defined by:
- separation of passenger and freight transport subsystem in the area of traffic junction,
- rail routing with respect to terrain,
- track alignment design parameters (spatial track macro-geometry),
- choice of the railway superstructure and substructure,
Belgrade, 2012
254
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
- choice of construction technology and organization (only during construction in an urban
environment),
- concept of maintaining the railway infrastructure (track micro-geometry).
Introduction of modern railway terminals in the central zones of the city requires minimizing ecological
influences from the railway traffic to the urban environment. The difference between noise emission of
freight car and modern bi-level rail car of Intercity train is about 20 dB(A) (which is same as the
difference between noise from rock concert and from chamber concert. It is therefore necessary to
plan and design railway junctions with a clear separation of passenger and freight transport subsystem
in the area of traffic junction. Figure 3 shows the current reconstruction of the Belgrade railroad
junction, which should enable separation of the passenger and freight transportation, as well as the
relocation of the main passenger rail station.
FIG. 3. Passenger and freight subsystem of the Belgrade railroad junction
In the general, the following positions of railway route with respect to terrain are possible: below
ground surface (deep or shallow laid tunnel, cut), on the surface, above the ground (embankment,
bridge). The principle of railway noise transmission to the surrounding objects is shown in Figure 4.
FIG. 4. The principle of railway noise transmission to the surrounding objects
Belgrade, 2012
255
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
By choosing the elements of geometry in the layout plan (radii of horizontal circular curves, shape and
length of transition curves, the length of tangent sections) and longitudinal profile (gradient slope, the
shape of the superelevation ramps, the position of gradient change point, radii of vertical curves) the
expected scope and types of activities, as well as maintenance costs during exploitation are defined.
This is important because each irregularity of track micro-geometry increases the emission of noise
during the passage of rail vehicles.
After determining the spatial position and track alignment design parameters, the design of
superstructure and substructure defines the level of ecological influence on the environment.
The expected calculated railway noise level emitted in the environment must be in accordance with
legal guidelines. Otherwise, the design determines additional noise protection measures such as low
and high noise protection walls, embankments, plantings, installation of special windows in nearby
buildings and other appropriate measures, in order to harmonize the expected noise levels with the
statutory provisions.
FIG. 5. Noise and vibrations control during planning, design, construction and exploitation
The expected calculated railway noise level emitted in the environment must be in accordance with
legal guidelines. Otherwise, the design determines additional noise protection measures such as low
and high noise protection walls, embankments, plantings, installation of special windows in nearby
buildings and other appropriate measures, in order to harmonize the expected noise levels with the
statutory provisions.
During the track exploitation, vibrations and noise level emitted into the environment must be
maintained according to calculated guidelines. In order to achieve that, the track maintenance and
noise level monitoring are mandatory. Modern maintenance compulsorily includes rail care, inspection,
regular and corrective maintenance of track elements and geometry (Figure 5).
4. INFLUENCE OF THE SUPERSTRUCTURE DESIGN ON THE NOISE EMISSION
Design of the superstructure generally must fulfil the usual requests of the convenient transmission of
the static and dynamic load based on the principle of stress reduction, starting from the rail towards
Belgrade, 2012
256
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
the substructure, as well as requests for safe guidance and directing of the rail vehicle. Also,
superstructure design must fulfil the request for comfort for the passengers who sit or stand in the
vehicle, with minimum disturbance, and if possible, improvement of ecological relations in the
environment.
In urban environment, the influence of superstructure design on the noise and vibrations emission is of
particular importance. In addition, these structures must meet the esthetical requirements, accessibility
requirements, as well as specific conditions for construction and maintenance in urban environment.
4.1
Specificity of use of ballasted track in an urban environment
Generally, good sides of the classical superstructure solution with ballast are :
- better acoustic properties in comparison to a solution without ballast,
- developed domestic production of the majority of the structure elements,
- application of the usual technology and mechanization for construction and maintenance,
- available qualified and competent domestic staff,
- acceptable price for the meter of the track.
Bad sides of this solution are also very well known:
- inevitable change of track geometry (longitudinal level and alignment) during exploitation,
expressed as deviation from designed geometry, which leads to reduction of drive comfort and
increase of emission of noise and vibration,
- necessity of track geometry correction,
- inevitable pollution of ballast by crushing grains, sand, dust and plant seeds deposited by
wind, which requires regular vegetation control, cleaning and adding of ballast material (noisy
machine cleaning with addition of new ballast material),
- deposition of solid and liquid waste on ballast, which creates a hygienic and esthetical
problem,
- ballast creates favourable environment for rodents (especially in the tunnels) and reptiles.
Generally, correcting the stated defects requires free access of mechanization at the place of
intervention, necessary space for storage and maintenance of mechanization, as well as the space for
residence of personnel, necessary regular pauses in the timetable for rail-care and current
maintenance, alternative transport solutions in case of inevitable closure of the track, ensuring
sufficient track length where some of the corrective maintenance measures should be performed in
order to make the maintenance possible, safe, efficient and economical.
The application of mechanization in ballasted track maintenance is favourable because of its efficiency
and extremely unfavourable because of the noise. It is extremely difficult to implement the conditions
for mechanization work during the heavy traffic, insufficient work space (tracks between platforms,
high cable density, equipment and devices built into the track). The consequence is frequent inability
to apply mechanized track maintenance and to engage unreliable, long-term and inhumane manual
work.
Ballast track maintenance works become a real problem during the heavy daily traffic. The solution is
mainly sought in applying maintenance activities during the night. This often creates the problem of
insufficient time for maintenance activities when the noise level is limited during the night (according to
the national legal regulations).
Reduced emission of noise and vibration is achieved by applying elastic rail fastening systems (CEN,
2006), reducing the distance between sleepers (not over 60 cm), installation of elastic elements
beneath the concrete sleepers (under sleeper pads) and elastic mats beneath the ballast (ballast
mats) (Figure 6).
Belgrade, 2012
257
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
FIG. 6. Possible positions of the elastic elements in the ballasted track
4.2
Specificity of use of ballastless track in an urban environment
Generally, the level of noise emitted while the vehicle is passing through on the ballastless track
(without additional noise protection measures) is greater than 5 dB(A) relative to ballasted track
(Buchman, 2006). In spite of that, minimal maintenance expenses, which were reduced to rail-care
and inspection, as well as long service life, give this solution an advantage in urban environment
(Darr, 2006).
What principally secludes ballastless track with respect to ballasted track is long service life and stable
track geometry with minimum activity and maintenance expenses during at least 60 years. One of the
prerequisites for fulfilment of this request is quality track geometry, according to the design, while
respecting set tolerances for track geometry accuracy.
Ballastless track geometry corrections are limited to interventions within elastic fastening system
capacities (CEN, 2002; Darr, 2006). Thus, the track is laid out only on the stable multilayered solid
bed.
Leaving ballast out requires the application of appropriately dimensioned elastic elements in
ballastless track. Elastic elements are most frequently placed within the fastening system, but they can
be found within or beneath sleepers, as well as beneath concrete slabs (Figure 7).
FIG. 7. Possible positions of the elastic elements in the ballastless track
Belgrade, 2012
258
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Ballastless tracks with continually elastically supported rails have relatively less noise emission
compared to tracks with discretely elastically supported rails.
Ballast spreading over the ballastless track, implantation of prefabricated noise absorption elements
(Figure 8) or grass cladding is applied in addition to standard noise protection measures (Figure 9).
FIG. 8. Ballast spreading over the asphalt slab (middle) and built-in noise-absorbing elements (right) in
the track type FFBS ATS SATO (left) on the railway between stations Mannheim and Karlsruhe in
1996 (Mailänder Ingenieur Consult, 1996)
FIG. 9. Track type "Rasengleis" for long-distance traffic on the test section between stations
Mannheim and Karlsruhe before (left) and after installation of noise protection elements (right)
(Mailänder Ingenieur Consult, 1996)
5. WHEEL/RAIL NOISE CONTROL MEASURES
By analyzing equation (1) for calculating noise level according to (Die Deutsche Bundesbahn, 2006), it
can be concluded that wheel/rail noise control must include strategy and measures in design and
maintenance of both vehicles and track, as well as measures in the organization of transport.
LmE
10 lg 10 0.1(51
DFz DD D1 DV )
DFb
DBr D Bue DRa
(1)
where:
51 dB is the basic value of noise emission level,
DFz is the influence of vehicle type,
DD is the influence of brake type,
D1 is the influence of vehicle length,
DV is the influence of vehicle speed,
DFb is the influence of track type and state,
DBr is the influence of bridges,
DBue is the influence of level crossings,
and DRa is the influence of track curvature.
Belgrade, 2012
259
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
5.1
Maintenance of the upper part of the rail head
Corrugation of the upper part of the rail head is the common cause of the roughness of the rail head
running surface (Figure 10). The phenomenon is observed as a periodical sequence of bright ridges
and dark hollows on the running surface (International Union of Railways, 2002).
Constructive measures for corrugation reduction are continual rail support or decrease of space
between discrete rail supports (space between sleepers 60 cm, which increases rail bending
stiffness) and decrease of direct fastening system stiffness (recommended value of static stiffness of
rail pads is up to 200 kN/cm). Experience showed that corrugation doesn’t occur in the case of
continually supported rails, or it occurs with time delay with respect to discretely supported rails.
FIG. 10. Rail head slip waves - code number 2202 (photos taken on the New Belgrade – Zemun
section, 28 July 2004)
To eliminate rail head corrugation, grinding is applied (International Union of Railways, 2007). Today,
grinding (along with lubrication of outer rail in curve) is a part of the routine rail-care. Timely grinding of
surface roughness prevents its further development. The grinding effect is not permanent. After some
time, corrugation reoccurs.
It is considered that the noise decrease potential, based on the rail-care, is from 15 to 20 dB(A) with
respect to the track condition without rail-care (Schöch, 2008).
The objective of grinding strategy is rail life extension, reduction of total track and vehicle maintenance
costs, and reduction of railway traffic vibration and noise level. Preventive, corrective and cyclic
activities make the grinding strategy.
Preventive activities are undertaken before the defects are noted in the zones where their occurrence
is empirically expected. Preventive grinding is applied after laying new rails on the track before
acceptance of works. If the rail has to be replaced on the existing track, new rails can be grinded right
away or a few weeks after the assembly.
The target of corrective grinding is re-establishing regular longitudinal rail profile by removing
corrugation. Different railway managements set different limit values of corrugation depth for
application of corrective grinding. In spite of diversity of corrugation grinding strategies, it is generally
accepted in Europe that removing corrugation is essential and worthwhile.
Depending on the depth of the rail head damage, material is removed from the surface of the head in
order to allow the wheels to roll on the undamaged steel surface. By removing the material by
grinding, rail cross profile has to be maintained, so that the wheel/rail contact stresses are maintained
within acceptable limits and a stable ride quality is provided.
Sometimes corrugation appears combined with squats (Figure 11, right) mainly on straight lines and
curves of radius R ≥ 3000 m with high shear stresses, especially zones where accelerations and
breaking occurs (Schöch, 2008). If the defect is noticed in the initial stadium, it can be removed by
grinding and thus the rail replacement can be deferred. Only in some cases welding can repair this
defect. Rail replacement most frequently solves the problem, though.
Belgrade, 2012
260
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
FIG. 11. Head checking (left) and squat rail defect (right) caused by rolling contact fatigue (photos
taken on the Belgrade Centre – New Belgrade section)
Special attention during maintenance should be paid to the condition of rail joints, tracks in the curve
(Dollevoet, 2010), as well as the tracks in the turnout zone, crossings and expansion devices. Every
noise increase on such sections points to irregularity of the track geometry, including the occurrence
of rail defects.
5.2
Maintenance of the wheel/rail contact surface
Testing shows that finer treatment of the wheel rolling surfaces can reduce noise emission in the
environment for 3 dB(A).
A frequent cause of unevenness on the wheel rims are damages occurring due to influence of the
brakes on the wheel. The level of damage is directly connected to the brake design, which is covered
by the expression (1). Disc brakes don’t damage the wheel rim, and thus they contribute to noise level
decrease of up to 11 dB(A) compared to the cast iron brake shoe. By discarding the additional shoe
brake, which was the cause of roughness of the wheel rim, TGV-Atlantic reduced noise in the
environment for 6 dB(A) with respect to TGV Sud-Est (Chiaramella, 1995). Similarly, but in respect to
freight cars, Swiss Railway expects to reduce the environmental noise pollution by 5 to 8 dB by
replacing shoe brakes affecting the wheel.
FIG. 13. Wheel tread surface condition: cast iron block brake (left), composite block
brake (center), disc brake (right)
5.3
Relation of the wheel and rail maintenance strategies
At even rail and wheel noise emission levels, total noise from both elements increases for 10log2=3.01
dB. Also, if noise induced by wheel and rail are the same, then reduction of noise emission on either
wheel or rail by 10 dB(A) will decrease total wheel/rail noise by only 2.6 dB(A) (Figure 12).
Belgrade, 2012
261
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
To simplify the calculus, decrease or increase of rail or wheel noise influence for 10 dB is used in the
numerical example. Still, in practical terms, it corresponds to an increase or decrease of noise at
emphasized corrugation or roughness of the wheel rim.
FIG. 12. Total noise level in case of various noises induced by wheel and rail
If the noise that one of the elements is creating is greater, then greater effects in total noise reduction
are achieved by intervention on the element that is greater source of noise. This can be illustrated with
a simple numerical example. Let’s suppose that one of the elements (wheel or rail) emits the noise of
the level “A” expressed in dB, and another of the level “B”. If the intervention reduces the noise level of
one element by, for example, 10 dB, simple mathematical analysis (2) can prove that total noise level
is less if noise reduction measures are applied precisely on the element which emits greater noise:
10 log(10
10
A
10
10
A 10
10
B
10
10 ) 10 log(10
A
10
10
B
10
B 10
10
)
(2)
A B
10 10
A B
This proves that efficient noise control must contain design and maintenance measures of both
elements, so it can be intervened in time on the element which emits greater levels of noise.
6. CONCLUSION
Railway infrastructure investments have to be planned in a way that maximises positive impact on
economic growth and minimises negative impact on the environment.
The efficient solution for noise emission requires the cooperation and common maintenance strategy
of both, vehicle and infrastructure owners. This is a serious task because of possible negative effects
of noise on human health, life quality and productivity. This problem cannot be solved by appealing to
conscience and responsibility of infrastructure owners and vehicle owners. The way to solve this
problem is to define legal and technical regulations in the field of railway noise control.
In this sense, it is necessary to harmonize national legal and technical regulations with EU regulations
in the area "Railway applications". Harmonization of regulations is a process that must include
education of professionals for railway infrastructure and rolling stock in the area of actual application of
regulations on railway. This is a necessary condition for the realization of the idea of interoperability of
railway systems across Europe and beyond.
Belgrade, 2012
262
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
The Technical Specification of Interoperability relating to the trans-European conventional rail system Subsystem Infrastructure covers the conventional railway system maintenance from the aspect of
safety, reliability and availability, health, environmental protection and technical compatibility of the
maintenance installations for conventional rolling stock (European Commission, 2011).
The Infrastructure Manager has to define, for each conventional rail line, a maintenance plan
according to (European Commission, 2011). The plan defines types of inspection and testing and their
frequency, professional competences of staff, measuring methods and necessary procedures.
It should be emphasized that from the railway infrastructure aspect, the railway noise control is not
realized only in the area of maintenance. Noise control begins already in the phase of planning and
design of the railway and continues in the phase of construction and maintenance of the railway
infrastructure.
Since the rolling of the wheel on the rail is the primary source of noise in the widest range of velocities
on the conventional railway network, special attention must be directed to the design and maintenance
of the track and vehicles.
Application of indirect measures for noise protection only have sense after applying all possible
measures in railway planning and design, as well as measures in design and maintenance of vehicles
and track. Decision on the application of passive measures of protection must be based on the
corresponding calculations which justify their application.
Railway noise and vibration control lasts throughout the entire service life of the track by coordinating
and performing railway infrastructure and vehicle maintenance activities.
ACKNOWLEDGEMENT
This work was supported by the Ministry of Education and Science of the Republic of Serbia through
the research project No. 36012: “Research of technical-technological, staff and organisational capacity
of Serbian Railways, from the viewpoint of current and future European Union requirements” and joint
Slovak - Serbian project “Reconstruction and revitalization of railway infrastructure in accordance with
regional development” (No. 680-00-140/2012-09/10).
REFERENCES
[1] BUCHMAN, A. (2006), 'Feste Fahrbahn und Lärm - Gibt es hier Lösungen?' (lecture), Institut
für
Straßenund
Eisenbahnwesen,
Universität
Karlsruhe
(TH)
http://www.dlr.de/fs/Portaldata/16/Resources/dokumente/vk/Vortrag_Buchmann_051006.pdf
(accessed 25 January 2012).
[2] CEN (European Committee for Standardization) (2006), EN 13481-2/A1:2006 Railway
applications - Track - Performance requirements for fastening systems - Part 2: Fastening
systems for concrete sleepers.
[3] CEN (European Committee for Standardization) (2002), EN 13481-5:2002 Railway
applications - Track - Performance requirements for fastening systems - Part 5: Fastening
systems for slab track.
[4] CHIARAMELLA G. (1995), 'La SNCF soigne son environnment sonore', La Vie du Rail, 2518,
12-13.
[5] DARR, E. and FIEBIG W. (2006), Feste Fahrbahn: Konstruktion und Bauarten für Eisenbahn
ud Strassenbahn, Eurailpress.
[6] DIE DEUTSCHE BUNDESBAHN (2006), Schall 03, Richtlinie zur Berechnung der
Schallimmissionen von Schienenwegen.
[7] DOLLEVOET, R.P.B.J. (2010), Design of an Anti Head Check profile based on stress relief,
PhD Thesis, University of Twente.
[8] EUROPEAN COMMISSION (2011), Technical specification for interoperability relating to the
‘infrastructure’ subsystem of the trans-European conventional rail system, Brussels.
[9] EUROPEAN COMMISSION (2006), TSI Subsystem ‘rolling stock - noise’ of the transEuropean conventional rail, Official Journal of the European Union.
Belgrade, 2012
263
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
[10] EUROPEAN COMMISSION (2011), White Paper, Roadmap to a Single European Transport
Area - Towards a competitive and resource efficient transport system, Brussels.
[11] HECHT, M. (2003), 'Lärmbelastung durch Schienengüterverkehr' (lecture), TU Berlin,
http://www.laermorama.ch/m5_krachmacher/pdf/schienengueterverkehr.pdf (accessed 10
February 2012).
[12] HOHNECKER, E. (2004), 'Schienenfahrweg für das 21 Jahrhundert - Teil I Lärmreduktion
beim Fahren auf kontinuierlich gelagerter Schiene System INFUNDO' (final report), Karlsruhe.
[13] UIC (International Union of Railways) (2002), UIC Code 712 Rail Defects.
[14] UIC (International Union of Railways) (2007), UIC Code 725 Treatment of rail defects.
[15] MAILÄNDER INGENIEUR CONSULT (1996), Optimierte Feste Fahrbahn, Einbau von sieben
verschiedenen neuen Bauerten zwischen Mannheim und Karlsruhe, Movie Klip.
[16] SCHÖCH, W. (2008), 'Entwicklung von Schleifstrategien gegen Rollkontaktermüdung - Ein
internationaler Überblick', ZEVrail Glasers Annalen 132, 2-10.
Belgrade, 2012
264
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ELECTROMAGNETIC FIELD UNDER THE ELECTRIC OVERHEAD
SYSTEM 25 KV, 50 HZ OF SERBIAN RAILWAYS
Gavrilovic S. Branislav, Railway College of Vocational Studies Belgrade, Serbia
Popovic Zdenka, Faculty of Civil Engineering in Belgrade, Serbia
Bundalo Zoran, Railway College of Vocational Studies Belgrade, Serbia
Abstract
Basic design of railway overhead system is represented with overall geometry and the results are
obtained by three-dimensional analysis. Results of analysis are compared with the values in
regulation to assess the impact of electric and magnetic fields to environment.
Railway network section switchgear and rolling conductors of overhead system as an element of
railway traction system 25 kV, 50 Hz, are a stationary source of electromagnetic fields for which
legislation provides mandatory control of field's level. Function of railway network section
switchgears is partition of railway network in sections which are loaded from different traction
substation.
In this paper, protective legislation is described including marginal levels of electric and magnetic
field in vicinity of electro energetic facilities. In order to estimate if the values of fields in the
environment exceed the prescribed limits of Regulation, it is necessary to calculate the value of the
field. For that purpose software EFC-400 Release V5.3 is used.
Basic design of railway overhead system is represented with overall geometry and the results are
obtained by three-dimensional analysis. Results of analysis are compared with the values in
regulation to assess the impact of electric and magnetic fields to environment
Key words: Serbian Railways, electric overhead traction system, electromagnetic field, environment,
legislation
ELEKTROMAGNETNO POLJE U PROSTORU OKO VOZNIH VODOVA I POSTROJENJA ZA
SEKCIONISANJE KONTAKTNE MREŽE 25 kV, 50 Hz “ŽELEZNICE SRBIJE”
Rezime - U radu je definisano električno i magnetno polja u prostoru oko stabilnih postrojenja
električne vuče “Železnice Srbije”. Navedene su propisane granične vrednosti polja u ovom prostoru.
Uopšteno je opisan elektrovučni sistem 25 kV, 50 Hz “Železnice Srbije” sa svim bitnim delovima:
elektrovučnim podstanicama, kontaktnom mrežom, postrojenjima za sekcionisanje i železničkim
šinama kao povratnim vodom kontaktne mreže. Prezentovan je model za proračun električnog i
magnetnog polja na jednokolosiječnoj otvorenoj pruzi i u neposrednoj blizini stabilnih postrojenja
električne vuče. Iz tog modela su dobijene vrednosti jačine polja u karakterističnim tačkama i
upoređene su sa dozvoljenim vrednostima. Uporednom analizom dobijenih rezultata ustanovljeno je
da su maksimalne moguće vrednosti intenziteta električnog polja i intenziteta magnetne indukcije u
prostoru oko voznih vodova postrojenja za sekcionisanje kontaktne mreže manje od referentnih nivoa
prema ICNIRP preporukama. Kako još uvek nisu istraženi svi biološki mehanizmi uticaja
elektromagnetnog polja na povećanje rizika od nastanka obolenja ljudskog organizma, važno je da
buduća istraživanja ograniče dozvoljenu dužinu vremena izloženosti železničkih radnika ovim poljima.
Ključne reči - Elektovučni sistem “Železnice Srbije”, elektromagnetno polje, životna sredina.
Belgrade, 2012
265
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. UVOD
U ovom radu je analiziran elektrovučni sistem 25 kV, 50 Hz “Železnice Srbije” kao izvor
elektromagnetnog polja. Cilj rada je uspostavljanje matematičkog modela za izračunavanje nivoa
elektromagnetnog polja u karakterističnim tačkama sistema, kako bi se sračunate vrednosti uporedile
sa dozvoljenim, kao i sa već postojećim izmerenim vrednostima. Cilj rada proističe iz činjenice da se
mogući nivoi elektromagnetnog polja u razmatranom elektrovučnom sistemu nisu mogli izmeriti zbog
složenosti problema. Takođe, neka dosadašnja merenja su ukazivala na nedozvoljeno visoke
vrednosti elektromagnetnog polja propisane u Republici Srbiji i prostoru EU [1, 2, 3, 4, 5, 6].
2. OSNOVNI POJMOVI O ELEKTROMAGNETNOM POLJU
Uobičajeno je da se elektromagnetno polje definiše preko svoje posledice, tj. sile kojom deluje na
naelektrisanja. Dakle, u nekom prostoru postoji elektromagnetno polje, ako na malu naelektrisanu
česticu, naelektrisanja ΔQ , koja se u tom prostoru kreće brzinom v deluje tzv. Lorencova sila:
F
Q E
Q v B
(1)
Naelektrisanje ΔQ u ovom slučaju, ne mora da postoji da bi postojalo polje. Ono služi samo za
detekciju polja. Polje, prouzrokovano nekim drugim izvorom, postoji nezavisno od tog naelektrisanja.
Izraz (1) je istovremeno i osnovni izraz za silu kojom elektromagnetno polje deluje na neko
naelektrisanje. Iz izraza (1) se vidi da električno polje deluje i na nepokretna i na pokretna
naelektrisanja, dok magnetno polje deluje samo na pokretna naelektrisanja. Vidi se i da je sila kojom
E,
električno polje deluje na česticu u smeru vektora
što znači da električno polje dodaje
naelektrisanju kinetičku energiju, ubrzava ga. Magnetna sila je normalna na vektor
može da ubrzava naelektrisanje, već samo teži da promeni pravac njegovog kretanja.
Vektor jačine električnog polja E [V/m] i vektor magnetne indukcije
kvantitativno opisuju bilo koje elektromagnetsko polje.
B [T]
Da li postoji samo električno polje, definisano vektorom jačine električnog polja
polje, definisano vektorom magnetske indukcije
B
B,
tako da ne
su osnovni vektori koji
E , ili samo magnetno
ili oba, zavisi od izvora koji stvaraju to polje.
Ako su poznati izvori elektromagnetnog polja, zapreminska gustina naelektrisanja, ρ i vektor gustine
struje, J , sa oznakama kao na slici 1, vektor jačine električnog polja i vektor magnetne indukcije, u
vakuumu, dati su sledećim izrazima:
r ', t
E
E r, t
R
c0
1
4
0 V'
R
c0
R3
r r'
J r ', t
dv'
Belgrade, 2012
0
t4
V'
R
R
c0
dv'
(2)
266
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
J r ', t
B r, t
R
c0
0
4
V'
R
c0
R
r r'
3
(3)
dv'
U izrazima (2) i (3) korišćene su sledeće oznakeje:
0
0
c0
c0
permitivnost (dielektrična konstanta) vakuuma, koja iznosi: 0
permeabilnost vakuuma, koja iznosi:
4
0
F
8,85419 0,00002 10 12 ,
m
H
10 7 ,
m
brzina prostiranja svetlosti u vakuumu, koja iznosi:
1
0
2,997924
0,000003 10 8
0
m
.
s
Slika 1: Položaj izvora i položaj tačke u kojoj se određuje elektromagnetno polje
Iz izraza (2) i (3) može da se uoči još jedna, vrlo značajna pojava, koja se naziva efekat kašnjenja.
Zbog konačne brzine uspostavljanja elektromagnetnog polja, iz prethodnih izraza se vidi da su vektori
polja definisani u tački P, u nekom trenutku t, prouzrokovani delovanjem izvora u tački P’ ne u tom
trenutku, već u nekom ranijem trenutku, t
R
.
c0
Kao i ostale pojave u prirodi, elektromagnetna polja mogu da budu vremenski konstantna, ili
vremenski promenljiva. Proučavanje jednih i drugih se bitno razlikuje.
Ako se izvori koji stvaraju elektromagnetno polje ne menjaju u vremenu, govorimo o vremenski
konstantnim poljima. Karakteristično za sva vremenski konstantna elektromagnetna polja je da, u svim
slučajevima, može posebno da se posmatra električno, a posebno magnetno polje. U slučaju kada se
makroskopska naelektrisanja ne kreću, ona stvaraju elektrostatičko polje, pri čemu magnetno polje ne
postoji. Kada se makroskopska naelektrisanja uniformno kreću, formirajući vremenski konstantnu
struju, na osnovu prirodnih konstanti može da se pokaže da je uticaj magnetnog polja (drugi sabirak
Belgrade, 2012
267
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Lorencove sile) mnogo manji od uticaja električnog polja (prvi sabirak Lorencove sile), na osnovu čega
može da se zanemari uticaj vremenski konstanog magnetnog polja na raspodelu vremenski
konstantne struje. Iz toga sledi da i u tom slučaju električno polje može da se posmatra nezavisno od
magnetnog polja. Vremenski konstanto električno polje je uvek konzervativno, potencijalno, odnosno:
E dl
0
(4)
C
Sasvim druga situacija je kada se izvori menjaju u vremenu. Zbog pojave elektromagnetske indukcije,
vektor E dobija i vrtložnu komponentu, prouzrokovanu vremenski promenljivim magnetnim poljem, a
i magnetno polje može da nastane kao posledica vremenski promenljivog električnog polja. Zbog toga
električno i magnetno polje ne mogu da se posmatraju nezavisno jedno od drugog i predstavljaju
samo komponentne jedinstvenog elektromagnetskog polja. Kaže se da je vremenski promenljivo
električno polje uvek praćeno vremenski promenljivim magnetnim polje i obrnuto.
Uobičajeno je da se vremenski promenljivo elektromagnetsko polje deli na dve podgrupe, u zavisnosti
od toga da li već pomenuto kašnjenje elektromagnetnog polja može, ili ne može da se zanemari. Ako
kašnjenje može da se zanemari, govori se o sporopromenljivom elektromagnetnom polju,
kvazistatičnom ili kvazistacionarnom elektromagnetskom polju, dok se u drugom slučaju definiše
brzopromenljivo elektromagnetsko polje, odnosno, elektromagnetski talasi.
Elektromagnetna polja u elektrovučnom sistemu 25 kV, 50 Hz se mogu smatrati da su
kvazistacionarna elektromagnetna polja, odnosno kvazistacionarni talasi koji se nalaze
u
megametarskom talasnom opsegu (50 do 300 Hz). Ova konstatacija posledica je činjenica što su
izvori elektromagnetnog polja zapravo struje u elektro vučnom sistemu (struja vuče) koje su po pravilu
složeno periodične veličine. Složeno periodična struja vuče u elektrovučnom sistemu "Železnice
Srbije” sa elektrovučnim vozilima (ŽS 441, ŽS 444, ŽS 461, I EMV ŽS 412/416) pored osnovnog
harmonika (50 Hz) sadrži i više uticajne harmonike koji ne prelaze navedeni frekventni opseg [7].
Zbog mogućnosti zanemarenja efekta kašnjenja u generisanju elektromagnetnog polja u
elektrovučnom sistemu 25 kV, 50 Hz “Železnice Srbije” u daljem tekstu analiziraće se električno i
magnetno polje nezavisno jedno od drugog.
2.1. Električno polje
Električno se polje kroz strujne provodnike se često računa kao negativni gradijent skalarnog
potencijala
Er
x, y, z
[8]:
r
(5)
gde je:
x
(6)
y
z
Belgrade, 2012
268
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Tako na primer, potencijal u proizvoljnoj tački
P xP , y P , z P
koji potiče od ukupnog linijskog
naelektrisanja Qi smešten na dužini provodnika Li duž x-ose može se odrediti iz sledećeg izraza:
x P , y P, z P , t
Qi
4
xP
ln
0
xP
Li
x P2
xP
y P2
Li
z 2p
2
y P2
(7)
z P2
gde je:
Qi - ukupna količina naelektrisanja na posmatranoj dužini provodnika,
Li - dužina provodnika,
0 - dielektrična konstanta vakuuma.
Definisanjem potencijala u svim tačkama prostora oko strujnog provodnika na osnovu izraza (7),
električno polje se se lako određuje primenom izraza (5).
Na osnovu opisanog matematičkog modela pristupilo se proračunu električnog polja na
jednokolosečnoj pruzi u prostoru oko voznog voda u četri raspona kontaktne mreže BzII (slika 2) i u
neposrednoj blizini postrojenja za sekcionisanje sa neutralnim vodom – PSN košutnjak (slika 3).
Slika 2: Poprečni presek u prostoru oko voznog voda jednokolosečne otvorene pruge
Belgrade, 2012
269
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 3: Postrojenje za sekcionisanje sa neutralnim vodom (PSN) Košutnjak,
a) izgled, b) principijelna šema, c) 3D prikaz d) 2D prikaz spojnih vodova
Kako bi se sproveo proračun električnog polja u analiziranom prostoru bilo je nužno utrvrditi naponske
i strujne prilike voznog voda kontaktne mreže prema geometriskom rasporedu kao na slici 2, kao i
prilike spojnih vodova za konkretnu konfiguraciju postrojenja za sekcionisanje (PSN). U ovom radu
analizirana je konfiguracija terena i raspored spojnih vodova PSN Košutnjak koji, se nalazi u
Beogradskom železničkom čvoru. Na slici 3 vidi se da u postrojenje PSN Košutnjak ulazi šest spojnih
vodova. Koordinate početaka i završetaka spojnih vodova kod ovog PSN date su u tabeli 1.
Tabela1: Položaj spojnih vodova u PSN Košutnjak
m
vod
xp
yp
zp
xk
yk
zk
1
-10
4,5
7
-3
4,5
6
2
-10
3,5
7
-3
3,7
6
3
-10
2,5
7
-3
1,3
6
4
-10
0,5
7
-3
0,5
6
5
3
4.5
6
10
4,5
7
6
3
3,7
6
10
3,5
7
Naponske prilike na voznom vodu kontaktne mreže i spojnih vodova EVP su relativno stabilne. Naime,
za kretanje elektrovučnih vozila potrebno je osigurati napajanje naponom koji neće znatno odstupati
od nazivne vrednosti. U elektrovučnom sistemu 25 kV, 50 Hz dopušteni pogonski napon je 19 kV, dok
napon ni u jednom trenutku ne sme pasti ispod 17.5 kV [9] Sa druge strane, kako bi se osigurale što
bolje naponske prilike, odnosno smanjio uticaj pada napona na kontaktnom vodu, napon na
sabirnicama u elektrovučnim podstanicama je nešto viši od nazivnog. U cilju dobijanja mogućih
ekstremnih vrednosti električnog polja u analiziranom prostoru, u ovome radu pretpostavljen je napon
voznog voda od U=26,5 kV.
Belgrade, 2012
270
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Električna struja kroz vozni vod kontaktne mreže i spojnih vodova EVP nije stalna. Čak šta više,
njezina vrednost se menja iz trenutka u trenutak u zavisnosti od broja i trenutnog položaja vozova u
odnosu na elektrovučnu podstanicu. Pri izračunavanju ekstremnih vrednosti električnog polja od
posebnog interesa je bilo odrediti maksimalnu vrednost struje vuče kroz vozni vod kontaktne mreže. S
obzirom da je vozni vod kontaktne mreže obrazovan od bakarnog kontaktnog provodnika (preseka
2
2
100 mm ) i nosivog užeta (preseka 65,8 mm ), a na osnovu njihovih poznatih impedansi pristupilo se
definisanju maksimalnih vrednosti kroz ove provodnike. Naime, na osnovu poznatih impedansi
kontaktnog provodnika i nosivog užeta proizlazi da 60 % struje prolazi kroz kontaktni provodnik, a 40%
kroz nosivo uže. Budući da je za bakarne provodnike voznog voda kod maksimalne radne
2
temperature od 80 °C dopušteno strujno opterećenje 4 A/mm , usvojene su za proračun u ovom radu
nazivne struje kontaktnog provodnika i nosivog užeta od 400 A odnosno 260 A respektivno [10]. Treba
napomenuti da iako su moguće ovako velike vrednosti struje kroz vozni vod iste se jako retko postižu.
Na osnovu opisanog matematičkog modela i uz primenu programskog paketa EFC-400 Releaze V5.3.
dobijena je raspodela električnog polja u prostoru oko voznog voda kontaktne mreže na
jednokolosečnoj pruzi kao na slici 4 [11]. Sa slike 4 se može uočiti da najviša vrijednost električnog
polja u blizini voznog voda ne prelazi vrednost 2 kV/m. Na visini 1.5 m iznad ravni gornje ivice šina
električno polje ne prelazi vrednost 1.5 kV/m, a kritičnu vjednost od 2 kV/m dostiže na visini 4.35 m.
Slika 4: Raspodela električnog polja oko voznog voda na jednokolosečnoj pruzi
Električno polje u prostoru oko PSN Košutnjak izračunato je na visini 1 m i 2 m iznad ravni gornje ivice
šina. Prva visina je odabrana kao standardna za proračune ovog tipa, dok je druga odabrana kao
predpostavka najveće visine gde bi mogli boraviti ljudi. Rezultati su predstavljeni na slici 5.
Najveća proračunata vrednost električnog polja 1 m iznad ravni gornje ivice šina je oko 0,9 kV/m i
postiže se u prostoru na krajevima konzole i nosača konzole. Ono je rezultat međudelovanja metalnih
masa i linija sila električnog polja. Međutim ovo područije je prostorno veoma ograničeno i nalazi se
uz same železničke šine. Jačina električnog polja 2m iznad površine zemlje dostiže vrednost 1,2 kV/m
i javlja se na uskom prostoru oko nosećeg stuba preko čijih konzola su kontaktni vodovi povezani sa
postrojenjem za sekcionisanje. Kako je zgrada PSN Košutnjak obložena metalom u njoj nema
delovanja električnog polja.
Belgrade, 2012
271
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Na visini 1 m iznad ravni gornje ivice šina
Na visini 2 m iznad ravni gornje ivice šina
Slika 5: Jačina električnog polja iznad ravni gornje ivice šina kod PSN Košutnjak
2.2. Magnetno polje
Magnetno polje u prostoru oko voznog i povratnog voda kontaktne mreže kroz koje protiče struja vuče
može se izračunati na osnovu Bio - Savarovog zakona i metode superpozicije doprinosa svih delova
na koji su podeljeni posmatrani vodovi (slika 6). Svaki infinitezimalni deo doprinosi ukupnom polju u
proizvoljnoj tački P prema izrazu:
dB
4
0 I t
dl r
3
(8)
r
gde je:
I (t )
dl
r
struja koja prolazi kroz kroz elementarnu dužinu provodnika,
vektor dužine elementarne dužine provodnika,
vektor položaja posmatrane tačke P.
Ako se predpostavi da je pravoliniski provodnik dužine
doprinos magnetnom polju u tački
Bi t
0
It
4
Li
Li
P xP , y P , z P
xP
xP
2
xP
r
2
x P2
Li
u pravcu i smeru x-ose, tada je njegov
:
(9)
r
2
Sa komponetama:
Belgrade, 2012
272
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
B xi t
0 B yi t
zP
y
2
P
z
2
P
Bi t
Bzi t
yP
y
2
P
z P2
Bi t
(10)
Слика 6: Мagnetna indukcija u prostoru oko strujnog provodnika
Na osnovu izraza (9) i (10) može se zapaziti da je zavisnost od veličine struje vuče, koja se stalno
menja, čini proračun magnetne indukcije složenijim od proračuna električnog polja. Na slici 7
prikazana je raspodela magnetne indukcije u okolini kontaktne mreže na otvorenoj jednokolosečnoj
pruzi za struju vuče od 600 A. Ta vrednosti struja vuče izabrana je kao maksimalno dozvoljena
vrednost struje u voznom vodu. Na visini 1.5 m iznad ravni gornje ivice šina u osi koloseka vrednost
magnetne indukcije iznosi 59.96 μT.
Slika 7: Raspodela magnetne indukcije oko voznog voda kontaktne mreže na jednokolosečnoj pruzi
pri struji vuče od 600 A
Promena magnetne indukcija za različite vrednosti struja vuče na visini 1.5 m iznad ravni gornje ivice
šina u pružnom pojasu do 6 m od ose koloseka grafički je prikazana na slici 8. Na slici 8 se može
uočiti da je vrednost magnetne indukcije direktno proporcionalna jačini struje vuče i da opada sa
udaljenošću od ose koloseka. Kada voznim vodom teče struja od 600 A na udaljenosti manjoj od 2 m
od ose koloseka, postiže se vrednost magnetne indukcije od 40 μT.
Belgrade, 2012
273
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Slika 8: Promena magnetne indukcije na visini 1.5 m iznad ravni gornje ivice šina u pružnom pojasu
do 6 m od ose koloseka
Kada je reč o magnetnom polju u prostoru oko PSN Lastra, treba istaći da u redovnom pogonu kroz
spojne vodove ne teče struja, pa prema tome nema ni magnetnog polja. Ipak, u spojnim vodovima
može teći struja i ako se računa da je ona 600 A, prostorna raspodela magnetne indukcije na visini
iznad ravni gornje ivice šina od 1 m i 2 m prikazana je na slici 10.
Na osnovu rezultata sa slike 9 uočava se da je magnetno polje na visini 1.5 m iznad ravni gornje ivice
šina u pružnom pojasu do 6 m od ose koloseka manje od 75 μT, a da se ova vrednost kreće u vrlo
uskom područiju u kome ne borave ljudi. Vrednosti magnetne indukcije od 100 μT na 2 m iznad ravni
gornje ivice šina postižu se za struje od 800 A u svim spojnim vodovima. Ovako velika struja se po
pravilu ne pojavljuje, pogotovo ne u svim spojnim vodovima.
Raspodela magnetne indukcije na visini 1m
iznad ravni gornje ivice šina
Raspodela magnetne indukcije na visini 2m
iznad ravni gornje ivice šina
Slika 9: Raspodela magnetne indukcije oko EVP Lastra pri struji vuče od 600 A
2.3. Provera dobijenih rezultata
Na elektrificiranim prugama ŽS do sada nisu izvršena odgovarajuća merenja električnog i magnetnog
polja na jednokolosečnim prugama. Međutim, “Hrvatske železnice” na svojim elektrificiranim prugama
su obavila neka merenja [12]. Kako se radi o istoj konfiguraciji i tehničkim karakteristikama kontaktne
mreže (slika 2), merenja električnog i magnetnog polja koja su izvršena na mestima prikazanim na
Belgrade, 2012
274
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
slici 10 prema IEC 61786 standardu (tačke A,B,C, D i E), mogu služiti i za donošenje zaključaka i za
izračunate elektromagnetne prilike na jednokolosečnim prugama ŽS.
U tabeli 2 dati su rezultati merenja električnog i magnetnog polja koji su izvšeni u tačkama A,B,C, D i
E kontaktne mreže na jednokolosečnoj pruzi kao na sl.11 [12].
Upoređujući vrednosti izmerenog električnog polja iz tabele 2 sa slikom 4, možemo zaključiti da se
izmerene i proračunate vrednosti električnog polja u posmatranim tačkama podudaraju.
Da bi se uporedile vrednosti magnetnog polja, potrebno je izračunati vrednosti magnetne indukcije za
svaku od struja iz tabele 1. Rezultati izmerenih i izračunatih vrednosti magnetnog polja za ove struje
date su u tabeli 3.
Slika 10: Položaj mernih tačaka električnog i magnetnog polja
Analizirajući vrednosti iz tabele 2, može se uočiti da se izmerene i izračunate vrednosti u tri slučaja
gotovo potpuno podudaraju, dok se dve vrijednosti nešto razlikuju (u tačkama C i D). Razlika je
posljedica nepreciznosti merenja struje vuče i činjenice da su ove struje složeno periodična funkcija
vremena, pa je izmerena magnetna indukcija sastavljena i od komponenata višeg reda, dok se
proračunom dobija samo magnetna indukcija osnovne frekvencije [7]. Može se smatrati da rezultati
opisanog proračuna daju zadovoljavajuću tačnost.
Tabela 2: Električno i magnetno polje na jednokolosečnoj elektrificiranoj pruzi 25 kV, 50 Hz
Tačka
Nazivni napon [kV]
Električno polje [kV/m]
Struja vuče [A]
Magnetna indukcija [ T]
A
25
1,27
200
12,0
B
25
1,55
60
5,9
C
25
1,70
95
6,3
D
25
0,80
100
5,1
E
25
1,02
220
7,2
Belgrade, 2012
275
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Tabela 3: Izmjerene i izračunate vrijednosti magnetske indukcije
Tačka
I [A]
B [ T]- izmereno -
B [ T]- izračunato
A
200
12,0
13,2
B
60
5,9
6,3
C
95
6,3
9,5
D
100
5,1
5,0
E
220
7,2
11,5
2.4. Granične vrednosti električnog i magnetnog polja
Kako bi se izbegli eventualni negativni efekti pri izlaganju živih bića poljima u elektrovučnom sistemu,
na nivou Evropske unije donešena je preporuka 1999/519/EC o graničnim vrednostima
elektromagnetnog polja (0 Hz -300 Hz). Granične vrednosti su preporučene po frekvencijskim
opsezima. U tabeli 3 prikazan je izvod iz preporuka za frekvencije do 0.8 kHz [13,14].
Tabela 4: Izvod iz tablice graničnih vrijednosti [13,14]
Frekvencijski opseg
Električno polje [kV/m]
Jačina magnetnog polja [A/m]
0-1 Hz
-
3,2 10
1-8 Hz
10000
3,2 10 /f
8-25 Hz
10000
0,025-0,8 KHz
250/f
4
Magnetna indukcija [ T]
4 10
4
4 2
4/f
5/f
Iz tabele 4 se može uočiti da su za pogonsku frekvencija f=50 Hz preporučene granične vrednosti: E =
5 kV /m , H = 80 A/ m i B = 100 μT .
Međunarodna Komisija za zaštitu od nejonizujućeg zračenja (ICNIRP) definiše dva područija
izloženosti elektromagnetnim poljima: područije profesionalne izloženosti poljima pogonske frekvencije
od 50 Hz i tzv. područje povećane osjetljivosti [15]. Za područje profesionalne izloženosti poljima
pogonske frekvencije od 50 Hz granične vrednosti su: E = 5 kV / m , H = 80 A/ m te B = 100 μT ,
odnosno E = 2 kV /m, H = 32 A / m te B = 40 μT za područje povećane osjetljivosti. Nacrtom zakona o
zaštiti od nejonizujućih zračenja, Ministarstvo nauke i zaštite životne sredine R. Srbije, u novembru
2005. Godine, je prihvatilo navedene vrednosti kao granično dozvoljene [16].
Analizom dobijenih rezultata u tačkama 2.1 i 2.2 ovog rada o jačini električnog i magnetnog polja u
prostoru oko voznih vodova kontaktne mreže i prostoru u neposrednoj blizini PSN može se
konstatovati da su sve izračunate i izmerene vrednosti jačine električnog i magnetnog polja niže od
gore nevedenih vrednosti iz tabele 4 i da nema štetnog uticaja na žive organizme.
Međutim, i pored svega navedenog, savremena istraživanja danas beleže brojne primere štetnog
uticaja elektromagnetnog polja na železničke radnike [17, 18]. Zbog toga je potrebno pored graničnih
vrednosti jačine električnog i magnetnog polja sagledati i druge uticajne parametre.
Belgrade, 2012
276
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Da bi se svi uticajni parametri što bolje sagledali obično se polazi od modela po kome se živi
organizam u električnom polju predstavlja kao provodno telo određenog oblika, najčešče kao obrtni
elipsoid (telo nastalo obrtanjem elipse oko duže ose koja je postavljena vertikalno u odnosu na
horizontalnu ravnu površ zemlje).
b)
c)
a)
Slika 11: a) Model čovekovog tela u električnom polju
b) Ekvivalentna šema za objašnjenje uzroka proticanja struje kroz organizam
c) Tumačenje nastanka indukovane struje u organizmu usled delovanja magnetnog polja
Unošenjem provodnog tela u električno polje dolazi do indukovanja električnih opterećenja na površi
tela što dovodi do izobličenja spoljašnjeg električnog polja. U trenutku unošenja provodnog tela u
električno polje dolazi do proticanja struje kroz telo. Ukoliko je električno polje promenljivo u vremenu,
dolazi do stalnog proticanja struje kroz provodno telo. Pri delovanju naizmeničnog elektrinog polja kroz
provodno telo protiče indukovana naizmenična struja, čiji se nastanak može objasniti prema slici 11b.
U slučaju organizma, proticanje struje kroz telo zbog uticaja električnog polja se može objasniti
kretanjem pozitivnih i negativnih jona u elektrolitu unutar tela.
Za proračun gustine struje kroz ljusko telo koje se nalazi u uniformnom električnom polju poznate
vrednosti E inc često se koristi sledeći aproksimativan izraz [15]:
Jd
0,275 10 6 1,73 Einc
gde je: 1,73 0,275 10
6
A
m
Za
E
1700
2
(11)
dozvoljena gustina struje po 1
V
na 50 Hz.
m
V
(koliko iznosi maksimalno električno polje u osi koloseka ispod voznog voda
m
kontaktne mreže), maksimalna gustina struje kroz ljusko telo iznosi:
Belgrade, 2012
277
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
0,275 10 6 1,73 1700
Jd
0,809
mA
m2
(12)
U prostoru oko EVP Lastra maksimalna vrednost jačine električnog polja 2m iznad ravni gornje ivice
šina iznosi 1,2 kV/m. Moguća maksimalna vrednosti struje kroz ljudsko telo je još manja i iznosi:
0,275 10 6 1,73 1200
Jd
0,571
mA
m2
(13)
Vrednosti gustine struje, date izrazima (11) i (12), takođe su znatno niže od dozvoljenih vrednosti koje
su propisane s obzirom na centralni nervni sistem živih bića. Naime, dozvoljena vrednost gustine
2
2
struje za područije profesionalne izloženosti je 10 mA/m , a za područje povećane osjetljivosti 2mA/m
[15, 16].
Magnetna indukcija, koja je posledica proticanja struje kroz vozne vodove kontaktne mreže i spojne
vodove kod PSN, takođe izaziva pojavu struja u organizmu (slika 11 c).
Može se uočiti da kao posledica dejstva magnetnog polja usled naizmenične struje kroz vozni vod
kontaktne mreže i spojne vodove PSN dolazi do pojave indukovanih elektromotornih sila u organizmu
koje prouzrokuju struje, što je prikazano na pravougaonoj konturi unutar elipsoida na slici 14. Na
osnovu Faradejevog zakona gustina indukovane struje kroz provodni obrtni ellipsoid kojim je
predstavljeno čovečije telo je:
J ind
1
r
2
dB
dt
(13)
Za sinusoidalnu promenu magnetnog polja:
J ind
r f Bind
(14)
gde je:
r
radijus krivine obrtnog elipsoida,
S
električna provodnost tela (obrtnog elipsoida),
Bind - magnetna indukcija kroz obrtni ellipsoid
f - frekvencija struja kroz nadzemne vodove kontaktne mreže.
Belgrade, 2012
278
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Ako se uzmu preporučene vrednosti iz literature [15] za gore navedene parametre tj.:
S
0,2
S
, f
m
50 Hz
r 0,2 m
,
za maksimalnu vrednost magnetne indukcije od 59.96 μT koja se postiže
na visini 1.5 m iznad šine i u osi koloseka ispod voznog voda kontaktne mreže dobija se:
J ind max
0,2
0,2 50 59,96
0,376
mA
m2
(12)
2
I ova vrednosti gustine struje je niža od 2mA/m , koliko se dozvoljava s obzirom na centralni nervni
sistem živih bića i za područje povećane osjetljivosti [15, 16].
Dakle, pojedinačno posmatrane indukovane struje usled elektičnog i magnetnog uticaja vodova
kontaktne mreže imaju male efektivne vrednosti i to daleko manje od dozvoljenih vrednosti i praga
nadražaja mišićnih i nervnih ćelija (čak za nekoliko redova veličina). Zbog toga boravak u prostoru u
kome deluju električno i magnetno polje nema nikakvo dejstvo koje bi čovek mogao da oseti svojim
čulima.
Problem, međutim, predstavlja činjenica što do sada nisu u potpunosti poznati efekti dugotrajnog
proticanja gore navedenih indukovanih struja kroz organizam. Zbog toga se danas vrše istraživanja u
laboratorijama i na terenu u cilju dolaženja do saznanja da li postoje i koji efekti na organizam usled
dugotrajnog boravka u prostoru u kome postoje električna i magnetna polja frekvencije 50 Hz. S
obzirom na to da do sada nije bio poznat biološki mehanizam po kome elektromagnetno polje utiče na
povećanje rizika od nastanka obolenja i negativnih zdravstvenih efekata, ne može se definisati ni
jedna relevanta veličina koja karakteriše izloženost osobe. Ako bi takva veličina bila poznata, to bi
značilo da su bitni aspekti mehanizma delovanja poznati i da štetni efekat postoji. Takođe, nije
poznata ni dužina vremena izloženosti koja bi se mogla smatrati potencijalno opasnom. Trenutno je u
svetu malo istraživanja na ovu temu.
3. ZAKLJUČAK
Nacrt Zakona o zaštiti od nejonizujućih zračenja [16] u Republici Srbiji predviđa korišćenje peporuka
Saveta Evrope [13]. U preporuci [13] su navedeni dozvoljeni bezbedni referentni nivoi za intenzitete
električnog i magnetnog polja, odnosno magnetne indukcije kako za područije profesionalne
izloženosti, tako i za područije povećane osjetljivosti. Za područje profesionalne izloženosti poljima
pogonske frekvencije od 50 Hz granične vrednosti su: E = 5 kV / m, H = 80 A/ m te B = 100 μT ,
odnosno E = 2 kV /m, H = 32 A / m te B = 40 μT za područje povećane osjetljivosti. Date vrednosti se
slažu sa vrednostima predstavljenim u [17].
Uporednom analizom, proračunom i odgovarajućim merenjima dobijenih rezultata može se zaključiti
da su maksimalne moguće vrednosti intenziteta električnog polja i intenziteta magnetne indukcije u
prostoru oko voznog voda i postrojenja za sekcionisanje kontaktne mreže manje od referentnih nivoa
prema ICNIRP preporukama.
Bez obzira na prethodni zaključak, a s obzirom na činjenicu da do sada nisu dovoljno istraženi svi
biološki mehanizmi uticaja elektromagnetnog polja na zdravlje železničkih radnika, potrebno je iste
ispitati i definisati. Od izuzetog značaja je definisati i zakonski propisati dužinu vremena izloženosti
Belgrade, 2012
279
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
železničkih radnika uočenim intenzitetom elektromagnetnog polja, koja bi se smatrala potencijalno
opasnom po njihovo zdravlje.
LITERATURA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
Railway applications – Electromagnetic compatibility - Part 1: General EN 50121-1:2006
Railway applications – Electromagnetic compatibility - Part 2: Emission of the whole railway
system to the outside world EN 50121-2:2006
Railway applications – Electromagnetic compatibility - Part 3-1: Rolling stock - Train and
complete vehicle EN 50121-3-1:2006
Railway applications – Electromagnetic compatibility - Part 3-2: Rolling stock - Apparatus EN
50121-3-2:2006
Railway applications – Electromagnetic compatibility - Part 4: Emission and immunity of the
signalling and telecommunications apparatus EN 50121-4:2006
Railway applications – Electromagnetic compatibility - Part 5: Emission and immunity of fixed
power supply installations and apparatus EN 50121-5:2006
Gavrilovic S.Branislav: „Modelling the Harmonic Components of Voltage and Current in
Electric Traction Supply System of the “Serbian Railways”, Journal of Electrical and
Electronics Engineering, Academy of Romanian Scientists University of Oradea, Faculty of
Electrical Engineering and Information Technology, pp 77-83, Volume 3, Number 1, ISSN
18446035,http://electroinf.uoradea.ro/reviste%20EEE/volumes/JEEE_Vol_3_No_1_May_2010
.pdf), 2010, Romania.
Z. Haznadar, Ž. Štih, Elektromagnetizam I i II, Školska knjiga, Zagreb, 1997.
IEC 60850 Railway applications - Supply voltages of traction systems, 2007.
D. Jergović, Raspodjela struja izmenu kontaktnog vodiča i nosivog užeta, stručni članak,
1992.
EFC-400 uputstvo za korišćenje, Narda, Berlin, 2004.
HŽ: “Izveštaj sa izvršenog merenja električnog i magnetnog polja sprovedena na deonici
pruge Dugo Selo-Križevci na stajaližtu Repnice prema IEC 61786”, jul, 2000. g., Zagreb.
1999/519/EC, Council recomandation on the limitation of exposure of the general public to
electromagnetic fields (0 Hz to 300 GHz), Officle Journal of the European Union, 1999.
Directive 2004/40/EC of the European Parlament and of the Council on minimum health and
safety requirements regarding the exposure of workers to the risks arising from physical
agents (electromagnetic fields), Officle Journal of the European Union, 2004.
ICNIRP Review of Static and Low Frequency EMF and Health (0-100 kHz), ISBN 3-93499403-2
Nacrt Zakona o zaštiti od nejonizujućih zračenja, Ministarstvo nauke i zaštite životne sredine
Republike Srbije, novembar 2005.
NHMRC (National Health and Medical Research Council, Australia) Interim guidelines on
limits of exposure to 50/60 Hz electric and magnetic fields (1989), ARPANSA Radiation health
series No.30.
David A. Savitz: “Electromagnetic Fields and Cancer in Railway Workers “ , American Journal
of Epidemiology, Copyright © 2001 by The Johns Hopkins University School of Hygiene and
Public Health, All rights reserved, Vol. 153, No. 9, Printed in U.S.A.
B. Milošević, A. Pavić, I. Periša, D. Hrkec: “Postrojenje za sekcionisanje Željezničke 25 kV, 50
Hz mreže kao izvor elektromagnetskih polja, Hrvatski ogranak međunarodne
elektrodistribucijske konferencije, SO1-28 2.(8.) savetovanje, Umag, 16.-19. Svibanj. 2010.
Belgrade, 2012
280
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
DISMANTLING OF VESSELS AS A SUSTAINABLE PROCESS
Vladanka Presburger Ulniković, Faculty of Ecology and Environmental Protection, University "Union
- Nikola Tesla", Belgrade, Serbia
Abstract:
The Danube as the largest and most important waterway in Serbia, also represents the waterway
corridor VII, which is the only waterway from the ten pan-European corridors. Bearing in mind the
international importance of the European waterway, modernization and renewal of vessels navigating
the Danube are necessary. This necessarily entails dismantling a number of vessels. Dismantling of
vessels considered as a sustainable process can be a significant source of recyclable waste, as a
base for the renewal material resources. This is very important for a developing country such as
Serbia, from economic aspects, particularly from the aspect of environmental protection. The benefits
of dismantling of vessels are numerous: with very small investment it brings a monetary profit from
recycling material and employment of local population as an additional benefit, while from the
standpoint of environmental protection it contributes to the renewal of material resources and prevents
environmental pollution, especially territorial waters, which further contributes to protection of human
health and flora and fauna. Furthermore, the process of dismantling of vessels must be approached as
a sustainable process in compliance with local legal regulations, and also with European Union laws.
Key words: dismantling, vessel, sustainable process, corridor VII, recycling, waste, environmental
protection
Demontaža plovnih objekata kao održiv proces
Apstrakt
Dunav kao najveći i najznačajniji plovni put u Srbiji, ujedno predstavlja i plovni koridor VII, koji je jedini
plovni put od svih deset panevropskih koridora. Imajući u vidu međunarodni značaj ovog evropskog
plovnog puta, neophodna je modernizacija i obnavljanje plovnih objekata koji plove Dunavom. To
neminovno za sobom povlači demontažu većeg broja plovnih objekata. Demontaža plovnih objekata
posmatrana kao održiv proces, može da predstavlja bitan izvor reciklabilnog otpada, kao baze za
obnovu materijalnih resursa. Ovo je jako značajno za zemlju u razvoju kakva je Srbija, sa ekonomskog
aspekta i naročito sa aspekta zaštite životne sredine. Koristi od demontaže plovnih objekata su
višestruke: donosi novčanu dobit od materijalne reciklaže, uz veoma male investicije i zapošljavanje
lokalnog stanovništva kao dodatnu korist, dok sa stanovišta zaštite životne sredine doprinosi obnovi
materijalnih resursa i sprečava zagađenje životne sredine, pre svega akvatorije, čime dalje doprinosi
zaštiti zdravlja ljudi i biljnog i životinjskog sveta. Sem toga, procesu demontaže plovnih objekata
neophodno je pristupiti kao održivom procesu i u smislu poštovanja, kako domaće zakonske
regulative, tako i zakona Evropske unije.
Ključne reči: demontaža, plovni objekat, održiv proces, koridor VII, reciklaža, otpad, zaštita životne
sredine
Belgrade, 2012
281
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. INTRODUCTION
The Danube as the largest and most important waterway in Serbia, also represents the waterway
corridor VII, which is the only waterway from the ten pan-European corridors. Bearing in mind the
international importance of the European waterway, modernization and renewal of vessels navigating
the Danube is necessary. This necessarily entails dismantling a number of vessels. Dismantling of
vessels considered as a sustainable process can be a significant source of recyclable waste, as a
base for the renewal material resources. This is very important for a developing country such as
Serbia, from economic aspects, particularly from the aspect of environmental protection.
Dismantling of vessels through the shipbreaking industry, from the point of ship owners, should
provide a cash flow for the renewal of fleet, by dispensing aged or irreparably damaged ships or
vessels that cannot be used further due to the changing international legislation. From the point of
view of world’s environment, re-use of scrap iron and steel, which is the main output of the
shipbreaking industry, is an environment-friendly activity since it reduces the need for mining and
production of raw metal, mainly, pig iron, which is the main input of steel industry. When looked on the
micro-scale, scrapping of old vessels is a serious challenge for the local environment and sometimes a
challenge for the health of workers. [1]
Until 1970s, shipbreaking was a common industrial activity both in the United States of America and in
Europe. Specialized salvage docks, equipped with cranes and other heavy equipment, were used to
scrap the ships, providing material for the steel industry. Obtained scrap metal was sold in countries
with few natural metal resources, at a high profit [2].
In the western world, shipbreaking is an area that is viewed with suspicion due to the high level of
environmental awareness. The same environmental awareness has been reflected to both national
and international authorities who adopted preventative measures against the unsafe, primitive
conditions of scrapping yards in developing countries in order to maintain the industry at a sustainable
level.
Within the 1992-1999 period, between 2% and 4% of the world fleet was scrapped annually. The
world’s demand for shipbreaking is predicted in a report prepared by Baltic and International Maritime
Council (BIMCO): a scenario predicts that in 2016, the annual amount of ships that will be
decommissioned (vessels greater than 2000 gross tonnes) will range from 6 to 8 million light
displacement tonnes (LDT) [3].
The shipbreaking industry is important for a number of groups: vessel owners who are in need of
converting their aged or non-usable vessels into money for the maintenance of their fleets, developing
countries where shipbreaking is an important industry for the country’s economy and steel industry
who are dependent on this vast source of raw material. These groups have the tendency to ignore
negative environmental effects, conditions related to labour safety and occupational health issues.
Apart from steel, other scrap metals and alloys such as copper, bronze, brass and aluminium are also
obtained, as well as certain outfit and machinery from vessels that are re-used by the maritime
industry.
Vessel may be inspected for a hazardous waste inventory and as much equipment and loose outfit are
removed from superstructures. This also allows the yard owners to minimize the time the vessel
spends in the shipbreaking yard.
Legislation
In Serbia there is no specific legislation dealing with waste from dismantling of vessels, not even the
waste from vessels at all. For these reasons it can not be given a summary of the current shipbreaking
regulations, existing legislation and rules related to shipbreaking in Serbia. For these reasons
following regulations can be considered relevant:
 Rulebook on the content of documents to be submitted with the application for a license to
import, export and transit of waste ("RS Official Gazette", No. 60/09 and 101/10), this is
instead of old federal regulations ("RS Official Gazette", No. 69/99)
 Law on Waste Management ("RS Official Gazette", No. 36/09 and 88/10)
Belgrade, 2012
282
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
 The Waste Catalogue, Republic of Serbia, Ministry of Environment and Physical Planning, the
Agency for Environmental Protection, Belgrade, 2010
 The National Environmental Action Plan (NEAP) as an objective in the transport sector have
reduce pollution from vessels in navigable waters
 Rulebook on conditions and classification, packaging and storage of raw materials ("RS
Official Gazette", No. 55/01)
 Rulebook on Hazardous Substances in Water ("RS Official Gazette", No. 31/82 )
 Rulebook on categories, testing and classification of waste ("RS Official Gazette", No. 56/10)
 Rulebook on the form of the issuance of permits for the storage, treatment and disposal ("RS
Official Gazette", No. 72/09)
 Rulebook on form of documents on the movement of hazardous wastes and instructions for its
completion ("RS Official Gazette", No. 72/09)
 Rulebook on the Handling of Waste with Hazardous Substances ("RS Official Gazette", No.
12/95)
 Regulation lists the transboundary movements of waste ("RS Official Gazette", No. 60/09);
(The Basel Convention is automatically taken from the former SRJ, as well as other
regulations. Now, these regulations are valid)
 Rulebook on the content of documents to be submitted with the application for a license to
import, export and transit of waste ("RS Official Gazette", No. 60/09 and 101/10).
All mentioned, a number of regulations of Serbia may be relevant to the field of waste management
and waste oil from vessels, including the vessels’ waste generated due to dismantling in shipbreaking
industry. At the same time bearing in mind the general rules in the field of environmental protection as
a basis for a general framework for the regulation of specific issues of waste oils, and certain special
rules governing the field of waste management [4].
Strategic and other documents relevant to the management of waste oils are mostly made in the past
5 years [4]:
Rulebook on the conditions, manner and procedure of waste oils;
Waste Management Strategy for the period 2010-2019. The;
Law on Ratification of the Basel Convention on the Control of Transboundary Movements of
Hazardous Wastes and their Disposal;
National Environment Protection Program;
A report on the environmental situation in the Republic of Serbia for 2007. year.
Wastes from vessels dismantling
Waste from dismantling of vessels, i.e. a list of hazardous waste and materials that are obtained in the
process of vessels’ dismantling, included the Basel Convention on the transboundary movement of
hazardous waste and its disposition [5]. This Convention also provided provisions for the proper
removal and disposal of hazardous substances, and for the collection, sorting and recycling of waste
in an environmentally friendly way (the list of hazardous wastes and materials, health and safety of
workers, steel re-rolling, partial disassembly; scope of the guidelines; contingency plan).
Recommendation for cleaner dismantling of vessels
Some impact to the environment is unavoidable as long as the vessel under recycling is not separated
from the waterbody. The ultimate solution is dry docking as proposed in the Basel Convention document
[5].
‘‘Green’’ shipbreaking may soon become a priority, conventional single-hull tankers, which are prone
to spilling their cargo at collisions, will not be able to sail at international waters after 2016 and shall be
scrapped. This is expected to become a main activity for ship breakers worldwide. A decision taken on
the meeting of the Basel Convention on 29th October 2004, in Geneve, Switzerland has declared that
old ships should be considered as toxic wastes. Therefore, it is resolved that ships are required to be
cleaned from their toxic contents. This decision, if properly applied, is considered to be a very
important step towards having cleaner seas and coastlines. It requires a control system around the
sea and land borders of shipbreaking yards. Apart from the shipbreaking, the yards should also have
certified personnel to be specifically employed for firefighting, removal of insulating layer, cutting and
Belgrade, 2012
283
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
welding, crane operation and material handling. OSHA [6] has been insisting on mandatory training for
safer working environments, with regards to the following:
provision of adequate worker training;
use of proper personnel protective equipment;
obedience to fire protection measures; and
arrangements for appropriate emergency action teams such as firefighting, rescue, first aid,
pollution prevention and other services.
The combustible wastes obtained from scrapped vessels are regarded as an alternative fuel, and can
be used as a fuel by proper gasification or incineration with proper pollution protective measures. The
energy obtained can be used for power generation.
2. DISMANTLING STAGES
Decommissioning for disposal is a step by step process (illustrated in Scheme 1):
Decommissioning and sale
The dismantling process
Inventory of onboard
hazardous/ polluting wastes
(Inventory of onboard
hazardous/ polluting wastes)
• (Removal/ cleaning – liquids,
including fuels and oils)
• Securing
• Removal/ cleaning– liquids,
including fuels and oils
• Securing
Sorting for reuse,
recycling and disposal
Removal of equipment
(Removal of equipment)
Removal of
hazardous/polluting
substances
Dismantling
Storage, recycling and
disposal
Storage, recycling and
disposal
Scheme 1. Block diagram of decommissioning and dismantling stages
Basic rules and labor safety and occupational health during dismantling of vessels
Shipbreaking is one of the most hazardous activities of shipping industry. This is due to the structural
complexity of the ships and due to the possible exposures to asbestos, polychlorinated biphenyls
(PCBs), lead, hazardous materials and chemicals, as well as excess noise and fire and explosions. A
report prepared by the U.S. Department of Labor Occupational Safety and Health Administration for a
national program on reduction of workplace hazards for shipbreaking operations, hazardous activities
related to shipbreaking are listed as follows [6]:
Entry into confined, enclosed and other dangerous atmospheres
Paint removal
Metal cutting and disposing
Powered industrial truck operations
Working on elevated surfaces
Bilge and ballast water removal
Oil and fuel removal and tank cleaning
Removal and disposal of ship’s machinery
Operations involving cranes, gear, and material handling equipment
Cutting and welding operations and use of compressed gas and
Activities involving scaffolds, ladders and working services.
Belgrade, 2012
284
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
There is more activities to be undertaken during dismantling of ships, in order to environmental
protection:
Physical identification and labeling of hazardous materials on board
Adequate transfer operations facilities
Impermeable floors wherever hazardous materials and wastes are handled
Spill containment boom. Adequate draining and pumping equipment
Use solvents to dissolve heavyweight sludge so that most oil and sludge can be pumped out
Minimize use of manual labour inside the tanks for removal operations (use of pumps)
Provide adequate treatment/disposal facilities for different hazardous materials
Ventilate compartments/tanks continuously
Provide adequate storm water discharge facilities, to avoid contamination of storm water
runoff
Spill cleanup equipment
Introduce a hot work certification system
Create an enclosed chamber in the ship where asbestos has been identified. Limit access.
Filter air emissions
Create a separate area for paint removal operations, with impermeable floor. Cover and install
air filtration
Test compartments for presence of flammable vapors before hot work
Create dedicated area for asbestos removal. Limit access
Create a dedicated area for segregation of hazardous materials (e.g. PCBs)
Provide adequate storage facilities for hazardous wastes
Collect and contain all wastes resulting from asbestos removal processes. Pack asbestos in
approved packaging system. Decontaminate workers when leaving the asbestos removal area
Complete containment/impermeable floors
Test compartments for presence of toxins, corrosives, irritants before entrance (manual
cleaning)
Identify and remove toxic or flammable paint prior to metal cutting
Collect and contain all wastes resulting from paint removal processes
Collected wastes have been contained in sewage wells.
Contamination between wastes and the soil
Spill cleanup and notification procedures
Always wear rigid helmets, hard-toed shoes and gloves, as well as personnel protective
equipment for eyes, face and skin
Use appropriate protective equipment against respiratory hazards
Keep fire extinguishing equipment immediately available
Implement appropriate asbestos management procedures in accordance with ILO code of
practice
Work with asbestos should be carried out by trained personnel only
Determine pollutant concentrations prior to the removal of bilge and ballast water.
Removal and disposal of PCB-containing material in a controlled manner [7].
Solid wastes
Solid wastes produced by shipbreaking can be subclassified into 16 groups according to their
composition: paper, metals, glass and ceramics, plastics, leather, textiles, wood, rubber, food waste,
chemicals, ash, paint scrap, thermocol, oiled sponge, oily solid waste, miscellaneous combustibles
and noncombustibles [8].
In some cases vessels still carry residual cargo in their holds or tanks, and those cargoes are usually
not well identified, and sometimes can even be expired chemicals. Especially, obsolete vessels from
some Eastern European countries are suspected of carrying more hazardous materials than other
vessels and also command lower prices in comparison with average world prices.
Today, procedures are available that allow asbestos to be identified and removed from vessels by a
specialised team and disposed in a licensed hazardous waste facility. Asbestos is a material that is a
serious health threat to workers and its usage was reduced since 1970s [1]. However, asbestos is still
found on many vessels, in particular on old ships and fishing vessels. Removed asbestos should be
Belgrade, 2012
285
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
periodically taken by a specialised waste-treatment team and disposed. Glass fibres and styrophore
material that are used for insulation purposes can be recycled by removing them safely and reselling
them to various users. Others such as chemicals, paints and oil-mixed sludges are collected by the by
authorized organizations’ hazardous waste management unit and stored in a specialised storage area.
Liquid wastes
Liquid wastes are generally bilge and ballast waters contaminated by oil and various chemicals. Bilgewater in engine rooms can be further mixed with fuel and oil. They belong to the category of oily
waste, often contaminated with oil and cargo residues together with other pollutants, such as inorganic salts, metals, such as arsenic, copper, chromium, lead and mercury [9-11]. The composition
of the water can be very different, depending on the type of vessel from which comes. Occasionally,
oily waste is spilled into the aquatic environment during the scrapping process and the water around
the yards may be polluted.
The collected oily wastes are carried to certificated reprocessing companies or to a specialised facility
for disposal and the domestic wastes of the vessels are collected in the cesspools of the shipbreaking
yards, and later are transported to the sewage treatment plants.
Atmospheric pollutants
The most important atmospheric pollutant of shipbreaking activities is the asbestos. If not properly
disposed, it can form a cancerogenic powder. The usual way is to disassemble asbestos linings by
wetting and removing them in bulk. Present asbestos removal facility and team for the removal of this
material have greatly reduced the risk of this mode of pollution. Disassembling of air conditioning and
refrigeration systems can also result in the release of refrigerant chloro-fluoro carbon series chemicals
that are hazardous to the ozone layer. Some shipboard fire extinguishing systems can also be the
source of such gases. The availability of licensed companies for this activity implies an improved
capacity for this hazardous waste in the local area. Another source of atmospheric pollutants is the
practice of stripping the electrical cables off their insulation by burning: plastic material used for
insulation is a source of highly toxic gases such as dioxins, polychromatic hydrocarbons, etc. [12].
Apart from the atmospheric pollution, flammable gases from fuel or oil tank residues become highly
explosive if mixed with air in certain proportions. Therefore, proper gas freeing and gas monitoring
procedures have to be followed before a ship is broken. Greenpeace has reported several fatal
accidents in the past [12].
Heavy metal pollution of water area
Data from various sources show a high concentration of heavy metals at the site of vessels'
dismantling. For example, a study has also been carried out at a similar shipbreaking location at
Alang, India. It has been reported that at a near shore station near Alang, concentrations of Fe, Mn,
Co, Cu, Zn, Pb, Cd, Ni and Hg are 25-15, 500% higher when compared to another control station at
the surroundings [13].
The group of marine ecologists and chemists from the Dokuz Eylul University Institute of Marine
Sciences and Technology in Turkey conducted a study by taking samples from the location close to
the shipbreaking yards. Results of this study showed that Al and Fe are above their normal levels due
to the existence of shipbreaking and steel industry ashore. Also Cd, Ni and Zn at the surface water
were found to be higher than the normal levels [14].
3. DISPOSAL AND RECYCLING
The waste/material stream following demolition is distributed and transported out of the dismantling
site to local enterprises for re-sale, re-manufacturing or recycling. These enterprises are usually
located within the vicinity of the dismantling facility and are often under the same or related ownership.
Re-sale:
The trade of recovered usable items may be found in the vicinity of the scrapping facilities or items
may be transported to central areas (main cities) for re-sale. The individual trade facilities tend to
Belgrade, 2012
286
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
specialize according to item type. The following is a listing of item-groups typically offered for direct resale (no reprocessing/ re-manufacturing) [5]:
Pumps, valves, motors, machines, navigational equipment, life-saving equipment (rafts,
lifebuoys, life-vests, survival suits, etc);
Personal protective equipment (helmets, workboots, gloves, goggles, overalls, etc.)
Chemicals and paints
Steel components (anchors, chains, ventilation components, pipework, etc.)
Sanitary equipment (toilets, sinks, bath tubs, and so on)
Furniture
Electrical cabling (intact) and batteries
Insulation material
Oil products (to manufacturing industries).
Re-manufacturing/ re-processing:
A comprehensive proportion of the waste stream is re-processed or re-manufactured rather than
recycled prior to sale. The following illustrate this [5]:
Steel re-manufacturing: Not all extracted steelwork is characterised as scrap. “Undamaged”
plating is re-manufactured by cutting, grinding and hot-work. Anchors, chains, engine
structures, and so on may also be re-manufactured by undergoing similar treatments.
Oil re-manufacturing: Used (dirty) oils (lubricating oils) are re-processed and offered for sale.
Mineral re-processing: Insulation material (asbestos) is in some facilities reprocessed by
manual crushing and sold to manufacturing industries.
Copper reclaim: Damaged cabling or non-saleable cabling is stripped for insulation either by
burning or by mechanical stripping (sometimes also carried out at the scrapping site).
Recycling:
Real recycling in the sense of waste being used as a raw material in the production chain is first and
foremost represented by scrap steel. This is the raw material for steel works and for cold-rolling
facilities [5]. The quality of the end product is a function of the quality of the available scrap, the
sorting and the recycling process.
Recommendation for cleaner dismantling of vessels
Some impact to the environment is unavoidable as long as the vessel under recycling is not separated
from the waterbody. The ultimate solution is dry docking as proposed in the Basel Convention document
[5].
‘‘Green’’ shipbreaking may soon become a priority, conventional single-hull tankers, which are prone
to spilling their cargo at collisions, will not be able to sail at international waters after 2016 and shall be
scrapped. This is expected to become a main activity for vessel breakers worldwide. A decision taken
on the meeting of the Basel Convention on 29th October 2004, in Geneve, Switzerland has declared
that old vessels should be considered as toxic wastes. Therefore, it is resolved that vessels are
required to be cleaned from their toxic contents. This decision, if properly applied, is considered to be
a very important step towards having cleaner seas and coastlines. It requires a control system around
the sea and land borders of shipbreaking yards. Apart from the shipbreaking, the yards should also
have certified personnel to be specifically employed for firefighting, removal of insulating layer, cutting
and welding, crane operation and material handling. OSHA [6] has been insisting on mandatory
training for safer working environments, with regards to the following:
Provision of adequate worker training
Use of proper personnel protective equipment
Undertaken of fire protection measures and
Arrangements for appropriate emergency action teams such as firefighting, rescue, first aid,
pollution prevention and other services.
The combustible wastes obtained from scrapped ships are regarded as an alternative fuel, and can be
used as a fuel by proper gasification or incineration with proper pollution protective measures. The
energy obtained can be used for power generation [15].
Belgrade, 2012
287
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Fundamental Principles of dismantling of vessels
Fundamental Principles of dismantling of ships through the ‘‘Green’’ shipbreaking comprise first of all:
1. Life-cycle approach: Safe and environmentally sound ship recycling requires appropriate
infrastructure not only within, but also beyond the yard.
2. Inclusion: Inclusion of ship recycling in national development, and poverty reduction,
strategies is essential to the creation of sustainable ship recycling industries.
3. Collaboration: Collaboration with a variety of stakeholders, including representatives of
governments, ship recycling associations, workers and non-governmental organizations
(NGO) of the ship recycling countries, donors.
4. Continuity: Building upon work already done, and putting in place processes and procedures
for the long-term [7].
4. CONCLUSIONS
Dismantling of vessels is sustainable process since it reduces the need for the highly polluting mining,
mine-enrichment and pig iron production industries. Dismantling of vessels provides raw material for
the steel and other metallurgical industries from the used production equipment of the transport sector.
Due to the nature of the vessels and highly polluting materials they carry, it may harm not only
worker’s health but also the coastal zone environment if preventive measures are not taken.
However, the contribution of ship recycling is more comprehensive and is reflected in the following:
Provides tremendous amount of steel
Provides employment to workers
Provides high annual revenue
Forest conservation
Efficient use of recovered materials reduces environmental pollution
Reuse of empty equipment such as transformers, engines, batteries etc.
Reuse of different rubber material.
ACKNOWLEDGMENTS
The authors are grateful to the Ministry of Education, Science and Technological Development of the
Republic of Serbia, for the financial support (project TR 36012).
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
Neser, G., Unsalan, D., Tekogul, N., Stuer-Lauridsen, F. (2008) The shipbreaking industry in
Turkey: environmental, safety and health issues, Journal of Cleaner Production, 16, 350-358
Langewiesche, W. The shipbreakers. Atlantic Monthly 2000; August, 34-49
Neser, G. (1998) Present situation of the shipbreaking industry in Turkey and some proposals for
its improvement. In: Ozhan E, editor. Proceedings of the second national conference on the
coastal and marine zones of Turkey, Ankara, Turkey, p. 439-446
Presburger Ulniković, V., (2012) Integrated model of vessel-produced waste material
management in regular and emergency situations, Doctoral Dissertation, University of Belgrade,
Belgrade
United Nations Environment Programme (2002) Consideration of the implementation of the Basel
convention – Technical guidelines for the environmentally sound management of the full and
partial dismantling of ships, Conference of the parties to the Basel convention on the control of
transboundary movements of hazardous wastes and their disposal, Sixth meeting,
UNEP/CHW.6/23, Geneva
U.S. Department of Labor Occupational Safety and Health Administration (2002) Reducing
shipbreaking hazard. Job Safety and Health Quarterly, 13(3)
Rugarabamu, D. (2008) Secretariat of the Basel Convention (UNEP), Inaugural Discussions on
the
Global
Programme
on
Sustainable
Ship
Recycling,
Dhaka,
Bangladesh
[http://archive.basel.int/ships/gpssr/index.html]
Reddy, M.S., Basha, S., Kumar, V.G.S., Joshi, H.V., Ghosh, P.K. (2003) Quantification and
classification of ship scraping waste at Alange-Sosiya, India. Marine Pollution Bulletin, 46, 16091614
Belgrade, 2012
288
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
[9]
[10]
[11]
[12]
[13]
[14]
[15]
Presburger Ulniković, V. (2010) Savremeni postupci tretmana kaljužnih voda (zauljenih drenažnih
otpadnih voda) sa brodova, Bilten Srpskog društva za zaštitu voda No 155-156 Vol.XLIII, s. 13-20
Presburger Ulniković, V. (2010) Biodisperzijа kаo sаvremeno rešenje tretmаnа kаljužnih vodа sа
brodovа, Zbornik rаdovа “Otpаdne vode, komunаlni čvrsti otpаd i opаsаn otpаd”, Suboticа, s.
132-136
Guidelines for oil spill waste minimization and management (2004) Internat. Petroleum Industry
Environmental Conservation Association, Vol. 12
Ships for scrap - steel and toxic wastes for Asia e Greenpeace report on environmental, health
and safety conditions in Aliaga shipbreakingyards (2005) Izmir, Turkey
Tewari, A, Joshi, H.V., Tirvedi, R.H., Sravankumar, V.G., Raghunathan, C., Khambhaty Y. et al.
(2001) The effect of ship scrapping industry and its associated wastes on the biomass production
and biodiversity of biota in situ condition at Alang. Marine Pollution Bulletin, 1(6) 462-469
The analysis of seawater using in the cooling system of a power plant in the industrial zone of
Aliaga (2000) Report DBTE-127. DEU Institute of Marine Sciences and Technology
Reddy, M.S., Basha, S., Kumar, V.G.S., Joshi, H.V., Ramachandraiah, G. (2004) Distribution,
enrichment and accumulation of heavy metals in costal sediments of Alange-Sosiya ship
scrapping yard, India. Marine Pollution Bulletin, 48, 1055-1059
Belgrade, 2012
289
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
REVIEW OF THE TRACK CHARACTERISTICS ON THE CORRIDOR
10 TRACKLINE SEGMENT
Milutin Krivokapić, Kirilo Savic Institute, Belgrade, Serbia
Marija Vukšić Popović, Kirilo Savic Institute, Belgrade, Serbia
Saša Radulović, Kirilo Savic Institute, Belgrade, Serbia
Borisav Bogdanović, Kirilo Savic Institute, Belgrade, Serbia
Abstract
In this paper the suitability of serbian tracklines on selected section of the corridor 10 for dynamic
testing of railway vehicles was analysed. As most adequate section for this purpose, the section
Vrtište – Vitkovac on the railway: Trupale (near city of Niš) – Djunis, was chosen. The analysis was
carried out in relation to the requirements of the standard: EN 14363 as to leaflet UIC 518 as well as to
methods, that is used by Serbian Railways (ŽS). Particular emphasis was given to the track geometry
quality comparative analysis, considering testing of running safety and dynamic behaviour of railway
vehicles.
Key words : corridor 10, track geometry quality, testing of running safety of railway vehicles
PRIKAZ KARAKTERISTIKA KOLOSEKA NA SEGMENTU PRUGE KORIDORA 10
Rezime:
U ovom radu je analizirana podobnost srpskih pruga na izabranoj deonici koridora X za dinamička
ispitivanja železničkih vozila. Kao najprikladnija za tu svrhu je izabrana donica Vrtište – Vitkovac na
pruzi Trupale (kod Niša) – Đunis. Analiza je sprovedena u odnosu na zahteve standarda: EN 14363
odnosno objave UIC 518 kao i metode, koje koriste Železnice Srbije (ŽS). Poseban naglasak je
stavljen na uporednu analizu geometrijskog kvaliteta koloska s obzirom na ispitivanje bezbednosti
vožnje i dinamičkog ponašanja železničkih vozila.
Ključne reči – koridor 10, geometrijski kvalitet koloseka, ispitivanje bezbednosti trčanja železničkih
vozila.
1. UVOD
Institut ''Kirilo Savić'' iz Beograda, je izvršio analizu dela pruge koridora 10 sa stanovišta njegove
podobnosti za vozno tehnička ispitivanja železničkih vozila. Da bi neki segment pruge bio odabran za
ispitivanje bezbednosti vožnje i dinamičkog ponašanja železničkih vozila, on treba da zadovolji
nekoliko kriterijuma. Ti kriterijumi su: odgovarajući sastava koloseka, geometrijski kvalitet koloseka i
nedostatak nadvišenja. Geometrijski kvalitet koloseka se prema propisima Železnica Srbije – ŽS [1],
ocenjuje na osnovu nekoloko parametara, kao što su: stabilnost leve i desne šine, smer leve i desne
šine, otstupanje širine koloseka, nadvišenje spoljašnje šine u krivini i izvitoperenje koloseka na
dužinskoj bazi od 3,5m. Dobar geometrijski kvalitet koloseka je bitan kako prvenstveno zbog
bezbednosti i kvaliteta odvijanja železničkog saobraćaja, tako i zbog ispitivanja vozno tehničkih
karakteristika železničkih vozila.
Prema standardu EN 14363 [2] i objavi UIC 518 [3], geometrijski kvalitet koloseka se ocenjuje na
osnovu dva parametra: neravnine profila šina u vertikalnoj ravni i odstupanja po pravcu u horizontalnoj
ravni. Analiza je sprovedena na deonici: Vrtište – Vitkovac na levom koloseku pruge Trupale (kod
Niša) – Đunis, kao delu pruge na koridoru H sa najboljim geometrijskim kvalitetom.
Belgrade, 2012
290
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
2
PARAMETRI KVALITETA KOLOSEKA
2.1 OCENA GEOMETRIJSKOG KVALITETA KOLOSEKA PREMA DOMAĆIM PROPISIMA
Ocena geometrijskog kvaliteta koloseka se daje da osnovu poređenja snimljenih parametatra
koloseka sa graničnim vrednostima. Ovi parametri se snimaju pomoću mernih kola. Železnice Srbije
(ŽS) za premeravanje kvaliteta koloseka, koriste merna kola austrijske proizvodnje: Plasser & Theurer
tipa EM – 80 L. Parametri od značaja za ocenu geometrijskog kvaliteta koloseka prema Uputstvu 339
[1] su sledeći: Stabilnost koloseka, koja se definiše kao stanje sastava leve i desne šine za mernu
bazu od 5 m i meri se kao odstupanja od nulte linije u razmeri 1:1 u prenosnom sistemu gore
navedenih mernih kola. Smer leve i desne šine se definiše kao odstupanje od nulte linije u
horizontalnoj ravni i meri se u razmeri 1:4 za mernu bazu (tetivu) od 10 m. Širina koloseka se
registruje kao odstupanje od normalne širine 1435 mm u smislu proširenja ili suženja i meri se kao
odstupanje od nulte linije u razmeri 1:1. Nadvišenje koloseka registruje visinski odnos šina u razmeri
1:5, a veličine se mere od nulte linije. Izvitoperenje koloseka registruje se za mernu bazu od 3,50 m u
razmeri 1:1, a mere se kao odstupanja od nulte linije.
Premeravanje pruga na koridoru 10, vrši se dva puta godišnje s jeseni i s proleća. Kao rezultat
premeravanja mernim kolima, nastaju pojedinačni i zbirni izveštaji. Zbirni izveštaj prikazuje dužinu
koloseka u okviru posmatranog odseka pruge određene dužine (1 km) na kojoj su prekoračene
granične vrednosti jednog ili više parametara za zadatu kategoriju pruge.
Na kraju izveštaja sumarno su prikazani broj grešaka i dužine na kojima se javljaju po parametrima,
kao i ukupan broj grešaka i dužina pruge s greškama za sve parametre po klasama A, B i C za celu
mernu deonicu.
Geometrijski kvalitet koloseka sa stanovišta kriterijuma održavanja je na infrastrukturi Železnica Srbije,
definisan u tri nivoa kvaliteta ili klasa:
A
Vrednost po parametrima do kojih nije potrebno planirati i izvoditi radove.
B
Greške zbog kojih treba planirati radove za njihovo otklanjanje.
C
Greške koje su iznad eksploatacionih granica i koje zahtevaju hitno otklanjanje ili
smanjenje brzina.
Stanje koloseka ocenjuje se na osnovu ukupne dužine grešaka u grupama V i S na dužini od jednog
kilometra.
Ocena geometrijskog kvaliteta koloseka prema Uputstvu 339, vrši se tako što se uzima u obzir ukupna
dužina svih grešaka u dve klase kvaliteta: B i C na dužini od 1 km. Postoje ukupno 4 ocene
geometrijskog kvaliteta koloseka: vlo dobro, dobro, zadovoljavajuće i nezadovoljavajuće u zavisnosti
od ukupne dužine grešaka u metrima. U tabeli 1 dat je prikaz kriterijuma za ocenu kvaliteta koloseka
prema Uputstvu 339 [1].
Belgrade, 2012
291
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Tabela 1. Kriterijumi za ocenu kvaliteta koloseka prema Uputstvu 339
Ocena
Vrlo dobro
Dobro
Zadovoljavajuće
Nezadovoljavajuće
Ukupan broj grešaka
u klasama
B/C
≤ 10/0
≤ 50/10
≤ 250/25
> 250/25
2.2 OCENA GEOMETRIJSKOG KVALITETA KOLOSEKA PREMA EVROPSKIM PROPISIMA
Za potrebe vozno tehničkih ispitivanja bezbednosti trčanja, opterećenja koloseka na smicanje i
dinamičkog ponašanja železničkih vozila pri maksimalnoj brzini na određenim delovima pruge, ocena
geometrijskog kvalitetea koloseka, kao ispitne deonice, definisana je standardom: EN 14363 [2] i
objavom: UIC 518 [3]. Prema ovim propisima parametri: neravnine po profilu i odstupanja po pravcu
su dovoljni za ocenu geometrijskog kvaliteta koloseka radi ove vrste ispitivanja. Neravnine po profilu
predstavlja grešku geometrije koloseka u vertikalnoj ravni, izražena kao rastojanje između tačke na
kotrljajućoj površini šine i podužne ose idealnog profila. Odstupanje po pravcu je greška geometrije
koloseka u horizonalnom poprečnom pravcu, izražena kao rastojanje između jedne tačke na
kotrljajućoj površini šine, na visini od 15 mm ispod gornje ivice šine (GIŠ) i ose idealne trase u ravni.
Geometrijski kvalitet koloseka sa stanovišta kriterijuma održavanja je prema popisima [2] i [3] takođe
okarakterisan pomoću tri nivoa: QN1, QN2 i QN3. Ovi nivoi kvaliteta su definisani na sledeći način:
QN 1
Vrednost, koja proizilazi iz nadzora koloseka ili iz mera održavanja u okviru normalnog
planiranja poslova održavanja koloseka.
QN 2
Vrednost, koja proizilazi iz kratkoročnih mera održavanja koloseka.
QN 3
Vrednost, pri čijem prekoračenju se posmatrani odsečak isključuje iz ispitivanja, jer
geometrijski kvalitet koloseka nije više tipičan za uobičajeni kvalitet koloseka. Ova
vrednost još uvek ne odgovara najnepovoljnijem stanju, ali je još uvek dozvoljena sa
aspekta održavanja.
U ovim evropskim propisima [2] i [3] se koriste standardna odstupanja ova dva parametra, koja
odgovaraju stabilnosti i smeru po domaćem propisu [1], dok se maksimalne pojedinačne vrednosti
prikazuju samo informativno.
3
ODNOSI PARAMETRI KVALITETA KOLOSEKA PREMA RAZLIČITIM REFERENTNIM
SISTEMIMA
U domaćem propisu: Uputstvu 339 [1], geometrijski kvalitet koloseka se ocenjuje na osnovu grešaka
parametara koloseka, koje su izražene kao maksimalna odstupanja od nominalne vrednosti. U
evropskim propisima [2] i [3], geometrijski kvalitet koloseka se ocenjuje na osnovu standardnih
Belgrade, 2012
292
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
odstupanja neravnina po profilu i odstupanja po pravcu, dok se maksimalne pojedinačne vrednosti
prikazuju samo informativno. U referentnom sistemu [1] parametar stabilnost (STAB) odgovara
parametru neravnina po profilu po [2] i [3], dok parametar smer (SMER) po [1] odgovara parametru
odstupanja po pravcu prema [2] i [3]. Granične vrednosti neravnina za ocenu kvaliteta koloseka zavise
od maksimalne konstruktivne brzine ispitivanog vozila Vmax. Na pravcu i u krivinama velikog
poluprečnika je za ocenu kvaliteta koloseka merodavna brzina Vmax + 10 km/h. U krivinama malog
poluprečnika (R≤600m), merodavna je brzina 80 km/h < V ≤ 120 km/h. U tabeli 2 dat je uporedni
prikaz graničnih vrednosti maksimalnih vrednosti dva relevantna parametra za kategorije pruga po EN
14363 i brzinskih kategorije pruga I i II na infrastrukturi ŽS.
Tabela 2. Uporedni prikaz kriterijuma EN 14363 i ŽS
Granice za kvalitet
koloseka u krivinama
malog radijusa
80 < V ≤ 120 km/h
Parametri koloseka
po EN 14363 i UIC 518
QN1
[mm]
Najveće pojedinačno
odstupanje po profilu,
neravnine: Zmax
Najveće pojedinačno
odstupanje po pravcu: Ymax
8,0
12,0
QN3
[mm]
15,6
8,0
10,0
13,0
Kategorija pruge II
80 < V ≤ 100 km/h
A
B
C
[mm]
[mm]
[mm]
4
8
15
5
10
20
Parametri koloseka
na ŽS
Stabilnost
Smer
QN2
[mm]
(STAB)
(SMER)
Granice za kvalitet
koloseka u krivinama
velikog radijusa i na
pravcu
120 < V ≤ 160 km/h
QN1
QN2
QN3
[mm]
[mm]
[mm]
6,0
10
13,0
6,0
8,0
10,4
Kategorija pruge I
V > 100 km/h
A
B
C
[mm]
[mm]
[mm]
2
5
10
2
5
10
Odnos dva kriterijuma je sledeći: kod neravnina kriterijum po Uputstvu 339 ŽS je stroži od kriterijuma u
propisima EN 14363/UIC 518, kod odstupanja po pravcu samo je za klasu ''C'' kriterijum blaži nego u
propisima EN 14363/UIC 518 za kategoriju pruge II, dok je za kategoriju pruge I kriterijum stroži od
kriterijuma u propisima EN 14363/ UIC 518. Ovi nivoi geometrijskog kvaliteta koloseka stoje u
sledećim odnosima:
Za odstupanja po profilu (STAB):
A < QN1; B < QN2 i C < QN3
Za odstupanja po pravcu (SMER):
A < QN1; B ≤ QN2 i C ≥ QN3
4
ZAHTEVI KVALITETA KOLOSEKA U POGLEDU ISPITIVANJA ŽELEZNIČKIH VOZILA
Da bi neke deonice koloseka bile odabrane kao ispitni koloseci za ispitivanje vozno tehničkih
svojstava železničkih vozila, traba da ispune nekoliko kriterijuma. To su kriterijum sastava koloseka,
kriterijum geometrijskog kvaliteta koloseka i kriterijum nedovoljnog nadvišenja.
Kriterijum sastava koloseka se odnosi na određen procenat i dužine deonica sa: pravcima i krivinama
veoma velikog poluprečnika sa R > 2500 m, deonice sa krivinama sa velikim poluprečnikom 600 m <
R ≤ 2500 m, deonice sa krivinama sa malim poluprečnikom 400 m ≤ R ≤ 600 m i deonice sa
krivinama sa veoma malim poluprečnikom 250 m ≤ R < 400 m.
Belgrade, 2012
293
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Kriterijum nedovoljnog nadvišenja određuje se na osnovu referentnog nedostatka nadvišenja – Nn,doz ,
koji zavisi od vrste voza i/ili vozila i brzina vožnje kroz krivine. U tabeli 3, prikazan je referentni
nedostatak nadvišenja.
Tabela 3. Referentne vrednosti nedostatka nadvišenja
Vrsta voza
Ia – Teretni voz (vagoni klasične gradnje)
Ib – Teretni voz (vagoni prilagođene gradnje)
Ic – Teretna kola (vagoni prilagođene gradnje) i dozvoljeni
za korišćenje trase putničkog voza
II – Klasični putnički vozovi
III – Motorni vozovi i motorna kola bez
Postojeće
naginjanja kolskog sanduka sa
deonice
naročitim karakteristikama (npr.
Deonice velikih
nisko težište malo osovinsko
brzina
opterećenje...)
IV – Motorni vozovi ili vozila sa naginjanjem
kolskog sanduka
V
[km/h]
V ≤ 120
120 < V ≤ 140
140 < V ≤ 160
Nndoz
[mm]
130
130
150
V ≤ 230
0 < V ≤ 160
150
165
160 < V ≤ 230
150
200 < V ≤ 250
150
250 < V ≤ 300
130
0 < V ≤ 300
X
Na osnovu ovog referentnog nedostaka nadvišenja određuje se dijapazon nedostatka nadvišenja, koji
treba da bude postignut tokom vožnje kroz krivine ispitnog koloseka, na sledeći način:
0,75xNn,doz ≤ Nn ≤ 1,10xNn,doz
(1)
Nedostatak nadvišenja predstavlja razliku između idealnog, teretskog, nadvišenja spoljašnje šine u
krivini, koje je neophodno za potpunu kompenzaciju centrifugalnog ubrzanja i izvedenog,
projektovanog nadvišenja [5]. Nedostatak nadvišenja se određuje iz veze sa neponištenim bočnim
ubrzanjem prema [6]:
Nn
an
gde su:
2b0
g
[mm]
(2)
an – neponišteno bočno ubrzanje
2b0 – nominalno rastojanje krugova kotrljanja osoviskog sklopa. Za osovinske sklopove za
normalni kolosek ova vrednost iznosi 1500 mm.
g – ubrzanje sile zemljine teže
Neponišteno bočno ubrzanje, u ravni paralelnoj ravni GIŠ-a, predstavlja ubrzanje nekompenzovano
nadvišenjem spoljašnje šine, odnosno odgovarajućom komponentom ubrzanja zemljine teže pri
prolasku vozila kroz krivinu i određuje se iz sledećeg izraza prema [5]:
Belgrade, 2012
294
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
V2
R
an
g
h
2b0
2
[m/s ]
(3)
gde su: V – brzina vožnje kroz krivinu
R – poluprečnik krivine
h – nadvišenje spoljašnje šine u krivini
U pogledu geometrijskog kvaliteta koloseka, prema EN14363 i UIC 518, kvalitet koloseka za
ispitivanje se ocenjuje preko standardnog odstupanja neravnina leve i desne šine po profilu (vertikalna
odstupanja – σz) i odstupanja po pravcu (bočna odstupanja – σy). Da bi se dobijo statistički uzorak,
celokupna pruga za ispitivanje se deli na elementarne otsečke dužine: 250, 100 ili 70 m, zavisno od
toga da li je u pitanju pravac ili određena kategorija krivina [4].
Preporuka je po EN14363 i UIC 518, da ispitni kolosek obuhvata sledeći sastav u pogledu kvaliteta:
-
50% odsečaka kvaliteta boljeg ili jednakog QN1, što uslovno odgovara oceni: vrlo dobro po
kriterijumu na ŽS
40% odsečaka kvaliteta između QN1 i QN2, što uslovno odgovara oceni: dobro
10% odsečaka kvaliteta između QN2 i QN3, što uslovno odgovara oceni: zadovoljavajuće
Otsečci u kojima se prekorače maksimalna pojedinačna odstupanja koja odgovaraju granici kvaliteta
QN3, ne uzimaju se u obzir pri oceni rezultata. Kao granica QN3 se uzima vrednost 1,3h QN2, što
uslovno odgovara oceni nezadovoljavajuće prema [1]. Dato je uslovno poređenje sa sistemom za
ocenu prema domaćem propisu, jer nije moguće uspostaviti direktnu korelaciju sa metodom ocene,
koju predviđa standard EN 14363 odnosno UIC 518 iz izveštaja o snimanju koloseka mernim kolima,
koje koriste srpske železnice.
5
SEGMENTI ISPITNOG KOLOSEKA NA KORIDORU 10
Na koridoru 10 postoje pojedini segmenti, koji se mogu iskoristiti kao ispitni koloseci za vozno tehničko
ispitivanje bezbednosti trčanja i dinamičkog ponašanja železničkih vozila. Pošto su zahtevi za odabir
ispitnih segmenata i odsečaka dosta rigorozni, kako u pogledu sastava, tako i u pogledu
geometrijskog kvaliteta koloseka i nedostatka nadvišenja. Kao ilustracija podobnosti pojedinih
segmenata koridora 10 za dinamičkog ponašanja šinskih vozila prikazan je segment na deonici:
Vrtište – Vitkovac, koji leži između stanica Trupale kod Niša i Đunisa. Ovaj segment pruge na levom
koloseku je odabran jer sadrži i pravce i krivine velikog poluprečnika, a i geometrijski kvalitet koloseka
je prilično dobar, što će se u daljem tekstu podrobnije analizirati.
5.1 KARAKTERISTIKE ISPITNOG SEGMENATA U POGLEDU SASTAVA
Segment obuhvata odabranu deonicu: Vrtište – Vitkovac na pruzi Trupale – Đunis, levi kolosek od
232.286 km do 199.005 km. Na ovoj deonici preovlađuje ispitno područje 2 prema [2] tj. krivine velikog
radijusa: 600 m < R ≤ 2500 m. Takođe zastupljeno je i u značajnoj meri ispitno područje 1 odnosno
prave deonice. Ukupna dužina deonice je 33. 281 km.
5.2 KARAKTERISTIKE ISPITNOG SEGMENATA U POGLEDU NEDOSTATKA
NADVIŠENJA
Na ovom segmentu dominiraju krivine velikog poluprečnika, tako da se može analizirati kriterijum
nedostatka nadvišenja. Prilikom ispitivanja vozno tehničkih karakteristika novog Dizelmotornog voza
ŽS serije 711 na ovoj deonici, dobijena je raspodela brzina po odsečcima, koja je prikazana na slici 1.
Belgrade, 2012
295
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
120
110
100
90
V [km/h]
80
70
60
50
40
30
20
10
0
1
3
5
7
9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
N
Slika 1. Histogram raspodele brzine na segmentu Vrtište – Vitkovac
Maksimalno postignuta brzina na segmentu pruge je Vmax = 101,2 km/h, dok je srednja brzina na
segmentu Vsr = 99,3 km/h. Na slici 2 prikazan je histogram raspodele poluprečnika krivine po ispitnim
odsečcima, a na slici 3 raspodela nedovoljnog nadvišenja na ovom segmentu.
200
2500
180
160
2000
140
R [m]
nn [mm]
1500
120
100
80
1000
60
40
500
20
0
0
1
3
5
7
9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
1
3
5
7
9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
N
N
Slika 2. Histogram raspodele poluprečnika krivine
Slika 3. Histogram raspodele nedostatka nadvišenja
Poluprečnici krivine se kreće u dijapazonu od Rmin= 700 m do Rmax= 2000 m, srednji poluprečnik
krivine je Rsr = 1300 m. Iznos nedovoljnog nadvišenja se kreće u dijapazonu: Nn,min= 12 mm do
Nn,max= 80 mm. Referentni nedostatak nadvišenja za dizelmotorni voz za brzine V ≤ 160 km/h je 165
mm. Dijapazon potrebnog nedostatka nadvišenja se kreće prema (1):
123,75 ≤ Nn ≤ 181,5 mm.
Ovaj dijapzon nedostatka nadvišenja nije mogao da bude postignut, zbog poštovanja maksimalno
dozvoljene brzine iz reda vožnje na prugama ŽS na ovom segmentu ispitnog koloseka.
Belgrade, 2012
296
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
5.3 KARAKTERISTIKE ISPITNOG SEGMENATA U POGLEDU GEOMETRIJSKOG
KVALITETA KOLOSEKA
U tabeli 4, dat je prikaz geometrijskog kvaliteta koloseka za ispitnu deonicu: Vrtište – Vitkovac, za
najnovija snimanja mernih kola, koja su obavljena u aprilu 2011.
Tabela 4. Ocena kvaliteta koloseka na segmentu: Vitkovac – Vrtište, levi kolosek (199.0 – 233.0) km
Broj
Km.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Stacionaža
[km/m]
199.0 – 200.0
200.0 – 201.0
201.0 – 202.0
202.0 – 203.0
203.0 – 204.0
204.0 – 205.0
205.0 – 206.0
206.0 – 207.0
207.0 – 208.0
208.0 – 209.0
211.0 – 212.0
212.0 – 213.0
213.0 – 214.0
214.0 – 215.0
215.0 – 216.0
216.0 – 217.0
217.0 – 218.0
218.0 – 219.0
219.0 – 220.0
220.0 – 221.0
221.0 – 222.0
222.0 – 223.0
223.0 – 224.0
224.0 – 225.0
225.0 – 226.0
226.0 – 227.0
227.0 – 228.0
228.0 – 229.0
229.0 – 230.0
230.0 – 231.0
231.0 – 232.0
232.0 – 233.0
Stanice
Stanje
(B/C)
Vitkovac
Donji Ljubeš
172/7
244/24
63/0
347/8
182/12
53/0
75/0
59/3
37/4
32/0
10/0
15/0
42/3
84/0
9/0
12/0
20/0
8/0
17/0
22/0
52/8
13/0
7/0
50/0
37/2
19/0
64/5
42/2
33/0
21/0
7/0
45/0
Gornji Ljubeš
Korman
Trnjani
Adrovac
Aleksinac
Nozrina
Lužine
Tešica
Grejač
Supov. Most
Mezgraja
Vrtište
Granične
vrdnosti
(B/C)lim
≤250/25
≤250/25
≤250/25
>250/25
≤250/25
≤250/25
≤250/25
≤250/25
≤50/10
≤50/10
≤10/0
≤50/10
≤50/10
≤250/25
≤10/0
≤50/10
≤50/10
≤10/0
≤50/10
≤50/10
≤250/25
≤50/10
≤10/0
≤50/10
≤50/10
≤50/10
≤250/25
≤50/10
≤50/10
≤50/10
≤10/0
≤50/10
Ocena po
Uputstvu
339
zadovoljavajuće
zadovoljavajuće
zadovoljavajuće
nezadovoljavajuće
zadovoljavajuće
zadovoljavajuće
zadovoljavajuće
zadovoljavajuće
dobro
dobro
vrlo dobro
dobro
dobro
zadovoljavajuće
vrlo dobro
dobro
dobro
vrlo dobro
dobro
dobro
zadovoljavajuće
dobro
vrlo dobro
dobro
dobro
dobro
zadovoljavajuće
dobro
dobro
dobro
vrlo dobro
dobro
Uslovna ocena po
evropskim
propisima
QN2 ≤ QNx ≤ QN3
QN2 ≤ QNx ≤ QN3
QN2 ≤ QNx ≤ QN3
QNx ≥ QN3
QN2 ≤ QNx ≤ QN3
QN2 ≤ QNx ≤ QN3
QN2 ≤ QNx ≤ QN3
QN2 ≤ QNx ≤ QN3
QN1 ≤ QNx ≤ QN2
QN1 ≤ QNx ≤ QN2
QNx ≤ QN1
QN1 ≤ QNx ≤ QN2
QN1 ≤ QNx ≤ QN2
QN2 ≤ QNx ≤ QN3
QNx ≤ QN1
QN1 ≤ QNx ≤ QN2
QN1 ≤ QNx ≤ QN2
QNx ≤ QN1
QN1 ≤ QNx ≤ QN2
QN1 ≤ QNx ≤ QN2
QN2 ≤ QNx ≤ QN3
QN1 ≤ QNx ≤ QN2
QNx ≤ QN1
QN1 ≤ QNx ≤ QN2
QN1 ≤ QNx ≤ QN2
QN1 ≤ QNx ≤ QN2
QN2 ≤ QNx ≤ QN3
QN1 ≤ QNx ≤ QN2
QN1 ≤ QNx ≤ QN2
QN1 ≤ QNx ≤ QN2
QNx ≤ QN1
QN1 ≤ QNx ≤ QN2
Na najvećem broju segmenata preovlađuje srednji geometrijski kvalitet: zadovoljavajuće i dobro.
Najbolji geometrijski kvalitet je od 211 do 232 km gde ima i segmenata sa vrlo dobrim kvalitetom. Na
segmentu br. 4 u dužini od 1000 m od 202 do 203 km je nezadovoljavajući kvalitet koloseka. Udeo
uslovnih nivoa kvaliteta po međunarodnim normama [2] i [3], prikazan je na dijagramu na slikama 4 i
5.
Belgrade, 2012
297
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Sastav koloseka po geometrijskom kvalitetu
Preporuka standarda u pogledu kvaliteta ispitnog koloseka
60
60
50
50
40
40
40
31.25
QNx [%]
QNx [%]
50
50
30
20
15.63
30
20
10
10
3.13
10
0
0
0
1
1
Nivoi kvaliteta
Nivoi kvaliteta
QNx≤QN1
QN1≤QNx≤QN2
QN2≤QNx≤QN3
QNx≥QN3
Slika 4. Sastav deonice Vitkovac – Vrtište
u pogledu geometrijskog kvaliteta
QNx≤QN1
QN1≤QNx≤QN2
QN2≤QNx≤QN3
QNx≥QN3
Slika 5. Preporučeni sastav ispitne deonice po
međunarodnim standardima
Iz gore navedenog može se zaključiti da, sastav ispitnog koloseka u pogledu geometrijskog kvaliteta,
ne odgovara preporuci standarda EN 14363, iako se radi o deonici sa najboljim geometrijskim
kvalitetom na koridoru 10 za preovlađujuće ispitno područje sa krivinama velikog poluprečnika.
6
ZAKLJUČAK
Podaci, koji su dobijeni od ''Železnica Srbije'' nisu bili u formi, koja omogućava obradu i ocenu prema
metodologiji iz EN 14363 [2] i UIC 518 [3]. Kvalitet analizirane deonice koridora 10 ne odgovara
preporuci iz propisa [2] i [3], tako da su uslovi ispitivanja u pogledu geometrijskog kvaliteta koloseka
prilikom ispitivanja novog DMV serije 711 bili oštriji od preporučenih [4]. Kriterijum nedostatka
nadvišenja pri vožnji kroz krivine različitih kategorija nije mogao da se ispuni, osim na ispitnom
području 1 na pravcima i krivinama veoma velikog poluprečnika, kako zbog stanja gornjeg stroja, tako i
zbog pridržavanja maksimalne brzine iz reda vožnje ŽS pri ispitivanju bezbednosti vožnje i dinamičkog
ponašanja DMV serije 711.
Iz sprovedene analize, nameće se zaključak da na domaćim prugama, pa i na koridoru 10 mogu da se
obavljaju samo voznotehnička ispitivanja za vozila, koja su predviđena samo za domaći saobraćaj. Da
bi se ispitivanja bezbednosti vožnje i dinamičkog ponašanja vozila u punoj brzini, namenjenih za
međunarodni i/ili regionalni saobraćaj na našim prugama mogla obavljati, potrebno je:
1) Podići i održavati geometrijski kvalitet koloseka naših pruga na što višem nivu prema
međunarodnim propisima [2] i [3].
2) Etalonirati merna kola ŽS prema mernim kolima holandskih železnica (NS) kao etalona, da bi
se odredio popravni faktor - K prenosne funkcije mernog sistema kola.
3) Obrađivati i prikazivati izveštaje mernih kola u formi, koja omogućuje analizu prema zahtevima
evropskih propisa [2] i [3], kako bi izveštaji o premeravanju pruga bili uporedivi sa evropskim.
4) Prilikom rekonstrukcija pruga, gornji stroj tako projektovati da se omoguće veće brzine kroz
krivine sa srednjim i malim poluprečnicima, kako bi se ostvario i kriterijum nedovoljnog
nadvišenja.
Belgrade, 2012
298
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
LITERATURA
[1] UPUTSTVO 339 o jedinstvenim kriterijumima za kontrolu stanja pruga na mreži JŽ Zajednica
jugoslovenskih železnica, Beograd
[2] EN 14363 “Railway applications-Testing for the acceptance of running characteristics of railway
vehicles-Testing of running behaviour and stationary tests”, CEN, June 2005
[3] UIC 518 “Testing and approval of railway vehicles from the point of view of their dynamic
behaviour – Safety – Track fatigue – Ride quality” UIC, Paris, October 2005
[4] ELABORAT O ISPITIVANJU dizelmotornog voza, serije 711. Deo 3 – Ispitivanje bezbednosti
trčanja i kvaliteta vožnje prema EN 14363, M. Krivokapić, M. Vukšić-Popović, B. Bogdanović, Z.
Starčević, S. Radulović, D. Mijuca, Institut ''Kirilo Savić'', Beograd, 2011
[5] UREĐENJE KOLOSEKA U KRIVINI ZA NOVE PRUGE I REKONSTRUKCIJE, L. Puzavac, Z.
Popović, Zbornik radova XIII Naučno-stručne konferencije o železnici ŽELKON '08, Niš, 2008.
[6] KARAKTERISTIKE PRUGE ZA ISPITIVANJE DINAMIČKOG PONAŠANJA ŽELEZNIČKIH
VOZILA, G. Simić, Zbornik radova XI Naučno-stručne konferencije o železnici ŽELKON '04, Niš,
2004.
Belgrade, 2012
299
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
NUMERICAL SIMULATION OF SPREADING CO2 AND SO2 EMITTED
FROM STACK KOSTOLAC B ABOVE THE MUSEUM VIMINACIJUM
Kozić Mirko, VTI, Belgrade, Serbia
Puharić Mirjana, Institut Kirilo Savić, Belgrade, Serbia
Ristić Slavica, Institut Goša d.o.o, Belgrade, Serbia
Suzana Polić Radovanović, Centralni institut za konzervaciju, Belgrade, Serbia
ABSTRACT
Air pollution in recent times become important, so that the need for protection from air pollution,
ensuring the quality of life in rural areas and industrial centers, and the preservation of the ecological
potential of the natural environment, it becomes one of the imperatives of development. The major
sources of atmospheric pollution are combustion of fossil fuels in industry and power generation, as
well as in internal combustion engines.
Scientific approach to solving this problem uses different experimental, theoretical and numerical
methods. This paper presents the results of simulations of pollution emitted from the stack Kostolac B,
CFD method above Viminacijum museums. This archaeological site was selected because of its
excellence. Used the software package Fluent for flow simulation. Wind direction was chosen to wind
rose, which was obtained from the Meteorological Department. Application of CFD numerical
simulation method is intended to demonstrate the advantages of the method presented in solving the
acute problems of environmental pollution in the fastest, most efficient and most economical way,
whether pollution comes from point sources, diffuse and mobile sources.
Keywords: simulation, CFD methods, pollution,
NUMERIČKA SIMULACIJA ŠIRENJA CO2 I SO2 EMITOVANIH IZ DIMNJAKA TERMOELEKTRANE
KOSTOLAC B IZNAD MUZEJA VIMINACIJUM
Zagađenje vazduha u novije vreme poprima značajne razmere, tako da potreba zaštite vazduha od
zagađenja, obezbeđenje kvaliteta života u naseljima i industrijskim centrima i očuvanje ekološkog
potencijala prirodne sredine, postaje jedan od imperativa razvoja. Najveći izvori zagađenja atmosfere
su sagorevanje fosilnih goriva u industriji i u proizvodnji električne energije, kao i u motorima sa
unutrašnjim sagorevanjem.
Naučni pristup rešavanja ovog problema koristi različite eksperimentalne, teoretske i numeričke
metode. U ovom radu predstavljeni su rezultati simulacije širenja zagađenja emitovanih iz dimnjaka
termoelektrane Kostolac B, CFD metodom, iznad muzeja Viminacijum. Ovo arheološko nalazište je
izabrano zbog svoje izuzetnosti. Za simulaciju strujanja korišćen je softverski paket Fluent. Smer
vetra je izabran prema ruži vetrova, koja je dobijena od meteorološke službe. Primena CFD metoda
numeričke simulacije strujanja ima za cilj da demonstrira prednosti koje ove metode daju u rešavanju
akutnih problema zagađenja životne sredine na najbrži, najefikasniji i najekonomičniji način, bilo da
zagađenje potiče iz tačkastih, difuznih ili pokretnih izvora.
Ključne reči: simulacija, CFD metoda, zagađenje,
Belgrade, 2012
300
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
1. UVOD
Čist vazduh je osnova za zdravlje i život ljudi i čitavog ekosistema. Vazduh je smeša gasova koja se
sastoji od približno 4/5 azota, 1/5 kiseonika i vrlo malih količina plemenitih gasova, ugljen dioksida,
vodonika, ozona, vodene pare i raznih nečistoća. Problem nastaje kada se ovaj odnos poremeti.
Glavni zagađivači vazduha su sumporni spojevi nastali sagorevanjem fosilnih goriva, ugljenmonoksid
(CO), azotni oksidi (NOx), ugljikovodonici, mikročestice čađi, a specifični olovo, kadmijum, mangan,
arsen, nikl, hrom, cink i drugi teški metali i organski spojevi.
Jedan od važnijih veštačkih izvora zagađenja je industrija, koja prema fizičkim i prostornim
karakteristikama, spada u tačkasti izvor zagađenja. Primarne emisije SO 2 u industriji potiču iz procesa
sagorevanja fosilnih goriva iz motornih vozila i postrojenja za proizvodnju energije, gde posebno
mesto zauzimaju termoelektrane. Za industrijske centre su karakteristične sezonske promene
koncentracije SO2, a najviše vrednosti se javljaju tokom zimskih meseci. Oksidna jedinjenja sumpora
su na vodećoj poziciji među zagađivačima vazduha i imaju veoma štetne efekte na biološke sisteme,
pa se koncentracija SO2 u vazduhu uzima kao referentni parametar za procenu kvaliteta, odnosno
stepena zagađenosti vazduha. Osnovni naučni dokazi pokazuju da ugljen dioksid CO 2 igra značajnu
ulogu kada je u pitanju efekat staklene bašte. Zbog pojasa ugljen-dioksida i drugih otrovnih gasova u
atmosferi infracrveni zraci ne mogu da se probiju u kosmos, već ostaju pod slojem gasova i Zemlja ih
ponovo apsorbuje što rezultuje efektom zagrevanja atmosfere. Za značajne količine ugljen dioksida i
drugih gasova koji izazivaju efekat staklenika, odgovorni su upravo antropogeni izvori.
Upravo iz ovih razloga, CFD metodom je simulirano širenje gasovitih polutanata iz termoelektrane
Kostolac B, a praćena je masena koncentracija sumpor dioksida i ugljen dioksida. Istraživanja vezana
za zagađenje vazduha iz termoelektrane Kostolac B sprovedena su na arheološkom nalazištu
Viminacijum. Ostaci ovog rimskog grada i vojnog logora predstavljaju dragulj kulturne baštine naše
zemlje. U Viminacijumu se izuzetno bogatstvo krije već u površinskom, oraničnom sloju. Jedan od
značajnih objekata je muzej Viminacijum, veoma atraktivan za posetioce, u čijim depoima je smešteno
više od 40.000 vrednih eksponata pronađenih na lokalitetu. Imajući u vidu izuzetnost ovog
arheološkog nalazišta, sprovedena su istraživanja, koja obuhvataju uticaj zagađenja iz termoelektrane
Kostolac B. Odbor za nacionalne starine je vršio procenu sadržaja koji mogu da oštete osetljive
artefakte, više od prirodnog raspadanja. Nivo tih sadržaja je znatno niži nego propisane granične
vrednosti za zdravlje [13,14].
Industrijsko zagađenje, pored negativnog uticaja na kulturnu baštinu, izaziva i
zagađenje
agrosistema, koje postaje veoma ozbiljan problem. Termoeletrane i proizvodnja cementa, takođe
zagađuju obradive površine u njihovoj blizini i snažni su izvori prašine i pepela. Industrija kontaminira
zemljište neposredno toksičnim supstancama i posredno taloženjem polutanata iz vazduha, jer
aerozagađenje pre ili kasnije pada na zemljište, gde dolazi do hemijskih reakcija koje menjaju sastav
zemljišta i negativno utiču na njegovu plodnost.
Jednako značajan izvor zagađenja životne sredine, pored industrije je i saobraćaj, kako u gradovima
tako i na velikim saobraćajnicama. Vozila koja koriste dizel gorivo proizvode veoma fine
suspendovane čestice, koje su izuzetno opasne za ljudsko zdravlje. Zbog toga je neophodno u izradi
inicijalnih studija putnih koridora napraviti studiju izvodljivosti zajedno sa pripadajućom procenom
uticaja na životnu sredinu. Puteve treba graditi tako da mogu zadovoljiti strožije zahteve za
bezbednost i zaštitu životne sredine [13].
U tabeli 1. dat je procenat štetnih gasova po vrstama saobraćaja. Očigledno je da drumski saobraćaj
ima najveći udeo emisije štetnih sastojaka u atmosferu. Većina zagađujućih supstanci, ne ostaje dugo
u atmosferi, već se u neizmenjenom ili izmenjenom obliku vraća na površinu zemlje. Gasovi i čestice
se spuštaju pod delovanjem sile gravitacije, difuzijom i turbulentnim transportom. Deo njih apsorbuje
vegetacija, ali se najvećim delom vraćaju na zemljinu površinu.
Belgrade, 2012
301
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Tabela 1: Procenat štetnih gasova po vrstama saobraćaja [12]
Udeo
emisije
po
saobraćajnim granama
(%)
Železnički saobraćaj
Drumski saobraćaj
Vazdušni saobraćaj
Vodeni saobraćaj
Ugljen
monoksid
(CO)
1
98
0,3
0,7
Azotni
oksid
(NOx)
4
90,5
0,5
5
Štetni sastojak
Ugljen
Ugljen
vodonik
dioksid
(CH)
(CO2)
1
4
95
80
1
11
3
5
Sumpor
dioksid
(SO2)
10
74
2
14
Čvrste
čestice
5
85
3
7
Teški metali se pretežno zadržavaju u površinskom sloju zemljišta, koji je izuzetno značajan za
produktivnost ekosistema. Stepen toksičnosti teških metala u zemljištu zavisi od više faktora: kiselosti,
količine i svojstava organskih materija u pogledu kapaciteta sposobnosti metala da stupi u interakcije
sa glinom i drugim neorganskim materijama. U uslovima zagađenja zemljišta teškim metalima,
menjaju se bitni parametri za rast, gustinu populacije, efikasnost metabolizma, što rezultuje zastojima
bioloških transformacija. Imajući u vidu ove činjenice, ovoj problematici treba posvetiti posebnu
pažnju, naročito kada su u pitanju nove saobraćajnice i njihov uticaj na agro i ekosisteme.
Takođe, na osnovu informacija o kulturnoj imovini Zavoda za zaštitu spomenika kulture, treba vršiti
trasiranje kako bi se zaobišla zakonom zaštićena područja i kulturni spomenici i da se uticaji na
životnu sredinu i socijalni poremećaji svedu na minimum. U toku izrade pojedinih faza projekta
saobraćajnica, potrebno je evidentirati koji lokaliteti zahtevaju dalja istraživanja, kako bi se utvrdilo da
li su ugroženi projektom [15].
Simulacija strujanja CFD metodom je lako primenljiva i na istraživanja vezana za zagađenja štetnim
jedinjenjima, kao što su olovo, benzen, suspendovane čestice i benzopiren, koje su značajno
povišene usled emisija iz saobraćaja.
2. PRIMENA CFD METODA
Zagađenje, pre svega zavisi od jačine izvora zagađenja, a njegovo širenje, razblaživanje i taloženje
polutanata na okolinu zavisi od visine zagađivača (visina dimnjaka), brzine padanja čestica,
turbulencije i razmene vazdušnih masa, pravca i brzine vetra, oblika zemljišta i okolnih objekata.
Osnovni parametar koji utiče na zagađenje atmosfere je vetar, njegova brzina, pravac i vertikalni
odnosno horizontalni gradijent temperature.
U ovom radu prikazan je primer primene CFD metoda na određivanje raspodele koncentracije štetnih
materija u bližem i daljem okruženju termoelektrane Kostolac B, pod uticajem dejstva vetrova. Za
određivanje putanja i promene koncentracija gasovitih štetnih materija u vazduhu od njihovog izvora i
njihovo širenje u okolinu, korišćen je softver ANSYS-FLUENT, koji uzima u obzir sve bitne detalje
geometrije i lokalne uslove okruženja [1]. Simulacija je urađena na osnovu poznatih vrednosti
koncentracija štetnih materija na izlasku iz dimnjaka. Dimni gasovi sastavljeni od ugljendioksida,
kiseonika, azota, vodene pare i polutanata, ispuštaju se u atmosferu kroz dimnjak. Na osnovu
ukupnog zapreminskog protoka vlažnog dimnog gasa i površine poprečnog preseka izlaznog preseka
dimnjaka, dobija se brzina dimnih gasova na izlasku iz dimnjaka. Ovaj softver rešava jednačine
održanja mase, količine kretanja, energije i masene koncentracije mešavine više gasova, kojima su
opisane konvekcija, difuzija i eventualno izvori (mase, energije) usled različitih reakcija, za svaki od
gasova čija koncentracija se izračunava u numeričkom domenu.
Na slici 1, data je mapa terena oko termoelektrane Kostolac B. Ovo područje odlikuje se umereno
kontinentalnom klimom u kojoj su naglašeni stepsko–kontinentalni klimatski uticaji susednog Banata.
Zime su hladnije, a leta toplija. Relativna blizina ulaza u Đerdapsku klisuru utiče da košava, čija brzina
ponekad prelazi 90 km/h, ima znatno dejstvo na klimu. Srednja godišnja temperatura je oko 10,9 °C, a
srednja godišnja amplituda kolebanja temperature iznosi 21,3 °C. Na području rudarsko-energetskog
Belgrade, 2012
302
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
bazena dominantan pravac vetra je jug-jugoistok i jugoistok, a zatim vetrovi zapadnog i zapadnoseverozapadnog pravca.
Ulazni podaci za numeričku simulaciju, definisani su na osnovu ruže vetrova i merenja njihovih
intenziteta, koja je izvršio Hidrometerološki zavod Srbije u Beogradu u periodu od 2000. do 2009.
godine [2]. Zbog položaja dimnjaka termoelektrane i mogući uticaj zagađenja na muzej Viminacijum,
za numeričke simulacije je odabran zapadni vetar, brzine 4 m/s, i severozapadni maksimalne brzine 9
m/s i za uslove umereno stabilne atmosfere [2].
Slika 1. Mapa terena oko termoelektrane Kostolac B sa objektima: dimnjak termoelektrane i muzej
Viminacijum, pogled odozgo [Google mapa]
Brzina i temperatura dimnih gasova na izlazu, izračunati su na osnovu merenja prikazanih u ref.
[3,4,6], i iznose je 19,1 m/s i 443 K. Analizirane su masene koncentracije svih konstituenata, koji se
nalaze u sastavu dimnih gasova, ali će u ovom radu biti razmatrane samo masene koncentracije
sumpordioksida i ugljendioksida. Putanje i brzina različitih zagađujućih tvari su identični, jedina razlika
je vrednost njihovih masenih koncentracija.
3. POSTUPAK NUMERIČKOG MODELIRANJA
Prvi korak u numeričkom modeliranju strujanja obuhvata generisanje geometrije i generisanje mreže.
Zatim se definišu parametri potrebni za numeričku simulaciju:
- definisanje modela transporta višekomponentne mešavine;
- definisanje modela turbulencije;
- definisanje graničnih uslova;
- izbor reda tačnosti numeričke diskretizacije;
- inicijalizaciju strujnog polja;
- praćenje konvergencije rešenja;
- postprocesiranje i analizu dobijenih rezultata.
Generisanje geometrije počinje sa izborom domena. Razmatrani domen ima dužinu 6000 m u pravcu
istok-zapad i 5000 m u pravcu sever-jug. Visina domena je 1000 m. Geometrija tla je generisana na
osnovu rasterske karte i digitalnog modela terena, za područje oko termoelektrane Kostolac B,
Belgrade, 2012
303
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
2
površine 30 km [1]. Visina dimnjaka je 250 m, sa izlaznim prečnikom 9.8 m. Numerička simulacija
širenja aerozagađenja iz termoelektrane Kostolac B je izvedena na objektu Viminacijum-muzej 60 x 60
x 2 m, slika 1.
3.1 Definisanje modela transporta višekomponentne mešavine
Za numeričku simulaciju širenja dimnog gasa i štetnih materija iz dimnjaka termoelektrane, korišćena
je opcija kojom se modelira transport višekomponentne mešavine gasovitih elemenata i jedinjenja. S
obzirom da se razmatra strujanje i promena koncentracije gasova nakon izlaska iz dimnjaka, problem
je pojednostavljen jer nema hemijskih reakcija i njihove interakcije sa turbulencijom.
Veoma je važno da se definišu fizička svojstva mešavine pre nego se definišu svojstva konstituivnih
sastojaka, jer mogu zavisiti od metode koja je korišćena pri definisanju osobina mešavine. Fizičke
osobine mešavine koje se definišu su: gustina preko zakona promene stanja ili kao funkcija sastava,
viskoznost kao funkcija sastava, specifična toplota i termička provodljivost kao funkcije sastava,
koeficijent difuzije mase i Šmitov broj od kojih zavisi difuzioni fluks mase. Za svaku komponentu
mešavine moraju se definisati: molarna masa, entalpija formiranja, viskoznost ako je viskoznost
mešavine definisana kao funkcija sastava, specifična toplota i termička provodljivost ako su ove
osobine mešavine definisane kao funkcije sastava [8].
3.2 Definisanje modela turbulencije
Za opisivanje efekata turbulentnih fluktuacija brzine i skalarnih veličina, korišćen je standardni k-ε
model, u kome se turbulentna viskoznost određuje preko kinetičke energije i disipacije turbulentnih
fluktuacija. Na osnovu ovako izračunate turbulentne viskoznosti izračunavaju se turbulentni naponi,
uvodeći pretpostavku Busineska, da je izraz za turbulentne napone sličan onom za napone u
laminarnom strujanju, a da umesto dinamičke viskoznosti stoji turbulentna viskoznost. Turbulentni
naponi se dalje koriste u jednačinama promene količine kretanja i energije.
3.3 Definisanje graničnih uslova
Na ulazu u numerički domen definisana je brzina vetra. Korišćen je logaritamski profil brzine vetra, koji
uzima u obzir uticaj graničnog sloja usled prisustva tla. Kod log profila kinetička energija i disipacija
turbulencije se menjaju sa visinom. Na izlazu iz dimnjaka, specificiraju se masene koncentracije svih
sastojaka višekomponentne mešavine, njena brzina i temperatura.
Na izlaznoj granici numeričkog domena definisana je vrednost statičkog pritiska, koji je jednak pritisku
okoline. Na ovoj granici definišu se i vrednosti masenih koncentracija sastojaka mešavine za slučaj da
se javi povratno strujanje u početnoj fazi numeričke simulacije.
Na čvrstim površinama (zidovima) za globalno strujanje, definišu se brzina i termalni granični uslovi.
Za brzinu se standardno uzima da nema klizanja, odnosno da je relativna brzina između zidova i
fluidnih delića u kontaktu sa njima, jednaka nuli. U razmatranom modelu sve čvrste površine (tlo,
dimnjak i druge građevine) su nepokretne, pa je apsolutna brzina fluidnih delića na njima jednaka nuli.
Za sve sastojke mešavine uzima se da je gradijent koncentracije u pravcu normale na čvrstu površinu
jednak nuli, odnosno taj uslov znači da je fluks svih sastojaka mešavine kroz čvrstu površinu jednak
nuli.
Za termalne granične uslove na čvrstim površinama uzeti su adijabatski uslovi, odnosno da nema
razmene toplote između zida i fluida, što je dovoljno tačno za razmatrano strujanje [5,7,9,10,11].
Belgrade, 2012
304
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
4. REZULTATI NUMERIČKE SIMULACIJE
Na slici 2. dati su vektori brzine dimnih gasova na izlazu iz dimnjaka i brzine okolnog vazduha usled
dejstva vetra. Zbog velike brzine, dimni gasovi na izlasku iz dimnjaka znatno menjaju lokalno strujanje
koje nastaje usled dejstva vetra.
Slika 2. Vektori brzine dimnih gasova na izlazu iz dimnjaka i okolnog vazduha
usled dejstva vetra
Na slici 3. prikazana je masena koncentracija štetnih gasova SO 2 i CO2 na samom izlasku iz dimnjaka.
Masene koncentracije gasovitih polutanata se zadaju kao granični uslov i predstavljaju srednju
vrednost merenih veličina. Na skali levo mogu se očitati njihove vrednosti. Očigledno su vrednosti
masenih koncentracija sumpordioksida, na izlazu iz dimnjaka termoelektrane, veće od masene
koncentracije ugljendioksida.
Na slici 4. (a, b i c), prikazana je masena koncentracija sumpordioksida, odnosno njegovo širenje u
vertikalnoj ravni koja je postavljena kroz Viminacijum – muzej. Prikaz je dat u obliku izolinija i punog
profila. Može se primetiti da je uticaj, pod normalnim atmosferskim uslovima, zanemarljiv. Masene
koncentracije i svih ostalih gasovitih polutanata ponašaju na kvalitativno isti način. Jedina razlika je
samo u vrednostima masenih koncentracija. Iz tog razloga prikazano je širenje samo sumpordioksida
pod delovanjem zapadnog vetra.
a)
b)
Slika 3. Masena koncentracija gasovitih polutanata na samom izlasku
iz dimnjaka a) sumpordioksid, b) ugljendioksid
Belgrade, 2012
305
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Na slici 5. prikazana je masena koncentracija sumpordioksida istovremeno u dve vertikalne ravni, koje
su upravne na pravac strujanja zapadnog vetra. Prednja ravan je postavljena tačno iznad
Viminacijum-muzeja, a zadnja na udaljenosti ... m od nje, iznad Viminacijum – arheološkog lokaliteta.
Strujna slika širenja polutanata u ravnima upravnim na pravac strujanja zapadnog vetra, pokazuje
značajan pad masene koncentracije SO2 na udaljenosti oko 1000 m.
(a)
(b)
(c)
Slika 4. Masena koncentracija sumpordioksida u vertikalnoj ravni koja prolazi
kroz Viminacijum – muzej u pravcu strujanja zapadnog vetra
Belgrade, 2012
306
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Simulacija širenja zagađenja je rađena i za severo-zapadni vetar,
brzine 9 m/s. Na slici 6. je
prikazana masena koncentracija CO2 u vertikalnoj ravni postavljenoj kroz Viminacijum-muzej u pravcu
sever-jug. Može se zaključiti da postoji znatna razlika u koncentraciji gasova u odnosu na raspodelu
koja je dobijena za zapadni vetar. Razlog za to je znatno većoa brzina severozapadnog vetra.
Simulacija širenja zagađenja je rađena i za severo-zapadni vetar,
brzine 9 m/s. Na slici 6. je
prikazana masena koncentracija CO2 u vertikalnoj ravni postavljenoj kroz Viminacijum-muzej u pravcu
sever-jug. Može se zaključiti da postoji znatna razlika u koncentraciji gasova u odnosu na raspodelu
koja je dobijena za zapadni vetar. Razlog za to je znatno veća brzina severozapadnog vetra.
(a)
(b)
Slika 5. Masena koncentracija sumpordioksida u dve vertikalne ravni
upravne na pravac zapadnog vetra na udaljenosti oko 1000 m jedna od druge
Belgrade, 2012
307
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
(a)
(b)
Slika 6. Masena koncentracija ugljendioksida u vertikalnoj ravni postavljenoj
u pravcu sever- jug, kroz Viminacijum – muzej, pod delovanjem severo-zapadnog vetra
5. ZAKLJUČAK
Numeričke simulacije širenja dimnog gasa sa gasovitim polutantima iz dimnjaka termoelektrane
Kostolac B ka Viminacijum muzeju, izvedene su pri normalnim atmosferskim uslovima, za slučajeve
zapadnog i severozapadnog vetra, pri čemu su uzete u obzir maksimalne merene brzine vetrova.
Masene koncentracije gasovitih polutanata na muzeju su za nekoliko redova veličine manje od onih na
izlasku iz dimnjaka, odnosno nemaju uticaja na njegovo zagađenje.
Ne sme se zanemariti činjenica da bi se, pri nepovoljnim atmosferskim uslovima, kao što su jake
padavine (kiša, sneg), gusta magla i nizak pritisak, višestruko povećalo moguće zagađenje muzeja
Viminacijum gasovitim polutantima. U zimskim mesecima usled niskih temperatura okolnog vazduha,
dolazi do bržeg hlađenja dimnih gasova nakon njihovog izlaska iz dimnjaka. Rezultat toga je da oni
brže gube silu potiska, tj. brže padaju na tlo. Na širenje dimnih gasova zanemarljiv uticaj ima reljef oko
termoelektrane. Ovo je posledica velike visinske razlike između dimnjaka i najviših kota na okolnom
reljefu.
Primer praćenja zagađenja iz termoelektrane Kostolac B, pokazuje velike mogućnosti primene
numeričkih simulacija korišćenjem CFD metoda na istraživanja zagađenja životne sredine, kako od
Belgrade, 2012
308
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
industrijskih izvora zagađenja, tako i zagađenja od saobraćaja. Drumski saobraćaj je uzrok više od
polovine emisija NOx i 35% emisija isparljivih organskih jedinjenja.
Poseban problem u zagađivanju zemljišta čini emisija velike količine CO 2, sumpor–anhidrida, različitih
metala, ugljene kiseline. Industrijski objekti i saobraćajnice u degradaciji zemljišta učestvuju sa oko
25%.
CFD metode simulacije širenja zagađenja su koristan i neophodan alat u planiranju i projektovanju
velikih industrijskih postrojenja i velikih saobraćajnica, koje mogu da budu uzrok zagađenja vazduha i
degradacije plodnog zemljišta u njihovoj okolini.
Zahvalnost:
Zahvaljujemo se Ministarstvu za prosvetu i nauku Republike Srbije i PD TE - KO Kostolac, za
finansijsku podršku u okviru projekta TR-34028.
LITERATURA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
Izveštaj, Rasterska karta 1 : 25000, Br. 431 – 3 – 2 i digitalni modela terena – grid, za
2
područje oko termoelektrane Kostolac B (površine 30 km ) u formatu DXF, Vojnogeografski
institut VS, Beograd
Izveštaj, Ruža vetrova za područje Kostolca, period 2000. do 2009. god., Veliko Gradište,
Hidrometerološki zavod Srbije, Beograd
Izveštaj o merenju emisija br. E-15/09, Rudarski institut-Beograd, Laboratorija za zaštitu
sredine, Zemun, 2009.
Izveštaj o merenju emisija br. E-16/09, Rudarski institut-Beograd, Laboratorija za zaštitu
sredine, Zemun, 2009
M.Kozić, S.Ristić, M.Puharić, B.Katavić, Comparison of Euler-Euler and Euler-Lagrange
th
approach in numerical simulation of multiphase flow in ventilation mill, Third Serbian 28 Yu)
Congress on Theoretical and Applied Mechanics, Vlasina lake, Serbia, 5-8 july 2011.
D.Stojiljković, A.Jovović, V.Jovanović, N.Manić, Đ.Milovanović, S.Petrović, L.Rubov, M.Gavrić,
Z.Žbogar, "Izbor optimalnog tehničkog rešenja postrojenja za odsumporavanje dimnih gasova
na TE Kostolac B", Termotehnika br. 2, vol. XXXV, 177-195, 2009.
Kozić M., Puharić M., Ristić S., Katavić B., Numerička simulacija strujanja u ventilacijskom
mlinu i kanalu aerosmeše termoelektrane na lignit Kostolac B, Strojarstvo 53, 2, 2011, 83-90
ANSYS FLUENT 12.0 User's Gude
Kozic Mirko S., Ristic Slavica S., Puharic Mirjana A., Katavic Boris T., Numerical simulation of
multiphase flow in ventilation mill and channel with louvers and centrifugal separator, Thermal
Science, Vol. 15, No.3, pp.677-689, 2011,
M.Kozić, S.Ristić, M.Puharić, B.Katavić, Comparison of Euler-Euler and Euler-Lagrange
th
approach in numerical simulation of multiphase flow in ventilation mill, Third Serbian 28 Yu)
Congress on Theoretical and Applied Mechanics, Vlasina lake, Serbia, 5-8 july 2011.
Kozić M., Puharić M., Ristić S., Katavić B., Numerička simulacija strujanja u ventilacijskom
mlinu i kanalu aerosmeše termoelektrane na lignit Kostolac B, Strojarstvo 53, 2, 2011, 83-90
Bundalo Z., Uticaj kombinovanog kopnenog transporta na zaštitu životne sredine, 4.
Nacionalne konferencije o kvalitetu života, 21. 05. 2009., Mašinski fakultet u Kragujevcu
STRATEŠKO PLANIRANJE U SEKTORU PUTEVA, Deo 3: Preporuka o izradi plana zaštite
životne sredine i bezbednosti na putevima, Izdavač JAVNO PREDUZEĆE „PUTEVI SRBIJE“
Beograd, 2009.
Preserving our heritage, improving our environment, Volume I, 20 years of EU research into
cultural heritage, edited by Michel Chapuis Directorate-General for Research 2009.
Environment
Koridor X Idejni projekat autoputa E-80 NIŠ – DIMITROVGRAD, deonica: Prosek – granica
Bugarske, IZVEŠTAJ O ZAŠTITI ŽIVOTNE SREDINE, Maj 2009.
Belgrade, 2012
309
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ECOTRACK - NEW TYPE OF BALLASTLESS TRACK SYSTEM
Prof.dr.sc. Stjepan Lakušić Građevinski fakultet Sveučilišta u Zagrebu, Croatia
Abstract
Modern ballastless railway structures find ever wider use on conventional railway lines as well as
urban tracks. In order to achieve better mechanical and durability properties of the ballastless railway
structure and to preserve the environment through better waste management, on Faculty of Civil
Engineering University of Zagreb was developed innovative concrete ballastless track prototype called
ECOTRACK. In its nutshell, ECOTRACK is a concrete based solution that incorporates waste
materials obtained during mechanical recycling of waste tyres. Application of recycled rubber assures
this innovative type of track alignment with all relevant EU Directives in the field of waste management
on one side, and on the other produce of the high performance concrete with enhanced resistance to
impact loads, toughness, but also present degradation mechanisms.
keywords: ballastless track, high performance concrete, tyre recycling, waste management,
ECOTRACK – novi tip kolosijeka na betonskoj podlozi
Sažetak
Moderne kolosiječne konstrukcije na betonskoj podlozi bez zastora nalaze sve veću primjenu kako na
konvencionalnim željezničkim trasama tako i na urbanim kolosijecima. U cilju poboljšanja mehaničkih i
trajnosnih svojstava kolosiječne konstrukcije na čvrstoj podlozi te očuvanja okoliša poboljšanjem
gospodarenja otpadom, na Građevinskom fakultetu Sveučilišta u Zagrebu razvijen je inovativni tip
kolosijeka na betonskoj podlozi pod nazivom ECOTRACK. Kolosijek tipa ECOTRACK je betonska
konstrukcija zasnovana na ideji korištenja produkata reciklaže automobilskih guma. Primjena
reciklirane gume osigurava ovom inovativnom tipu kolosijeka usklađivanje sa svim relevantnim
direktivama EU u području gospodarenja otpadom te dobivanja betona visokih uporabnih svojstava s
poboljšanom otpornošću na udarna opterećenja, žilavost, ali i prisutne mehanizme degradacije.
Ključne riječi: kolosijek na betonskoj podlozi, beton visokih uporabnih svojstava, reciklirana guma,
gospodarenje otpadom
Belgrade, 2012
310
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
TRANSPORTATION DEMANDS OF OIL AND OIL DERIVATES
ALONG THE CORRIDOR X ON TERRITORY OF THE REPUBLIC OF
SERBIA
dr Branko Milovanović, dipl.inž. Saobraćajni fakultet Univerziteta u Beogradu, Srbija
Prof. dr Vojkan D. Jovanović, dipl. inž.Saobraćajni fakultet Univerziteta u Beogradu, Srbija
Abstract
In this paper, the transportation demands of oil and oil derivatives along the corridor X is presented.
For the whole service area, the modal split and the total volume of transported oil and oil derivates for
each of the modes of transport, ie road, rail and water transportation is defined. Based on the total
amount of petroleum products that each refinery and oil installations attracted and produces, in order
to assess the risk and potential contamination of the environment, is burdened by the entire route of
the Corridor X flows of goods, the flow of oil and oil derivates. At the end of the paper is the proposal
of measures to reduce the likelihood of incident situations and consequence size along the Corridor X
on the basis of risk assessment in all sections of Corridor X.
Key words: corridor X, incident situation, oil derivates, risk.
VELIČINA TRANSPORTNIH ZAHTEVA NAFTE I NAFTNIH DERIVATA DUŽ KORIDORA X NA
TERITORIJI REPUBLIKE SRBIJE
Apstrakt
U okviru rada dat je prikaz veličine transportnih zahteva nafte i naftnih derivata duž koridora X. Za
celokupno područje opsluge, definisan je i modal split ukupnih količina transportovane nafte i naftnih
derivata po svakom od vida prevoza, odnosno za drumski, železnički i vodni vid prevoza. Na osnovu
ukupnih količina naftnih derivata koje svaka od rafinerija i instalacija nafte atrakuje i produkuje, u cilju
procene rizika i potencijalnog zagađenja zivotne sredine, opterećena je celokupna trasa drumskog
koridora X tokovima robe, odnosno tokovima nafte i naftnih derivata. Na kraju rada dat je i predlog
mera u cilju smanjenja verovatnoće nastanka incidentih situacija i veličine posledica duž drumskog
koridora X na osnovu procene rizika po svim deonicama koridora X.
Ključne reči: koridor X, incidentna situacija, naftni derivati, rizik.
Belgrade, 2012
311
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
POSTER PREZENTACIJE
Belgrade, 2012
312
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Belgrade, 2012
313
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Belgrade, 2012
314
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
Belgrade, 2012
315
3rd International Scientific and Professional Conference
CORRIDOR 10 - a sustainable way of integrations
ACKNOWLEDGEMENTS
We express our gratitude to the collective of Transportšped eminent shareholding
company for international and domestic freight forwarding and its leader,
Mr. Branislav Baćović, for their support in organizing this conference.
Conference organizers
This conference is one of the results of the project TR 36012 financed by the Ministry
of Education, Science and Technological Development of the Republic of Serbia in
the period of 2010-2014.
Belgrade, 2012
316
Download

Zbornik radova sa 3. naučno-stručne konferencije