1st HUSRB Students Meeting of the Project Cross-border network
for knowledge transfer and innovative development in wastewater
treatment “WATERFRIEND” HUSRB/1203/221/196
INDUSTRY WASTEWATER TREATMENT
AND ENVIRONMENTAL PROTECTION
Book of abstracts and lectures
University of Novi Sad, Faculty of Technology,
Bul. Cara Lazara 1, Novi Sad, Serbia
March 27-29, 2014
NOVI SAD
2014
PUBLISHER:
UNIVERSITY OF NOVI SAD FACULTY OF TECHNOLOGY,
Bul. Cara Lazara 1, 21000 Novi Sad, Serbia, E-mail: [email protected]
FOR PUBLISHER:
Prof. dr Zoltan ZAVARGO, Dean of Faculty of Technology, Novi Sad
EDITED BY:
dr Marina ŠĆIBAN
dr Zita SERES
dr Cecilia HODÚR
dr Gábor KESZTHELYI-SZABÓ
PUBLISHER READERS AND REVIEWERS:
dr Cecilia HODÚR
dr Gábor KESZTHELYI-SZABÓ
dr Zsuzsanna LÁSZLÓ
István PÉTER SZABÓ
Sándor BESZÉDES
dr Zita SERES
dr Marina ŠĆIBAN
dr Ljubica DOKIĆ
dr Bilja na PAJIN
dr Dragana ŠORONJA-SIMOVIĆ
dr Radovan OMORJAN
TRANSLATION
Centar Stranih Jezika ALFABET, 21000 Novi Sad, Narodnog fronta 27
Aleksandra Kolak PR
PRINT
Grafiĉko štamparska radionica KriMel
21242 Budisava, Cara Dušana 111
NUMBER OF COPIES: 100
ISBN 978-86-6253-033-2
2
CONTENT
PREFACE
5
Ildiko Galambos, Gyula Vatai
HUMIC SUBSTANCES IN WELL-WATERS: BACKGROUND AND
REMOVAL USING MEMBRANE FILTRATION METHODS
6
Boţo Dalmacija, Jasmina Agbaba, Malcolm Watson
DIFFERENT APPROACHES TO THE MONITORING OF
WASTEWATER
15
Dunja Sokolović, Radmila Šećerov Sokolović, Dragan Govedarica
EFFICIENCY OF SEPARATION OF OILY WASTEWATER BY
APPLICATION OF DIFFERENT FILTRATION MATERIALS IN
COALESCING FILTRATION
22
Vesna Vasić
TREATMENT OF DISTILLERY WASTEWATER BY
MICROFILTRATION
29
Vilmoš Kovaĉ
ISO 14001:2004 ENVIRONMENTAL MANAGEMENT SYSTEM
35
Enikő Tabajdi
INVESTIGATION OF THE RELATIONSHIP BETWEEN DIELECTRIC
PARAMETERS AND BIODEGRADABILITY OF FOOD
INDUSTRY BY-PRODUCTS AND WASTEWATER
39
Jovana Radić, Jasmina Vuković
PURIFICATION OF WASTEWATER USING MEMBRANE
BIOREACTORS
41
Nikolina Bubnjević
DAIRY WASTEWATERS
43
Kristóf Szabó
BIOGAS PRODUCTION FROM DAIRY WASTEWATER
45
Tibor Szarka
ENHANCING OF THE BIODEGRADABILITY OF WHEY
BY MICROWAVE PRE-TREATMENT
47
Petar Keković
POTENTIAL OF STARCH STILLAGE FOR BIOGAS PRODUCTION
49
3
Jana Zorjan
BIODIESEL – ECOLOGICAL FUEL
51
Dóra Vitay
BIOETHANOL FROM HEMICELLULOSE WASTE
53
Balázs Lemmer
INTENSIFICATION OF BIOETHANOL FERMENTATION FROM
LIGNOCELLULOSIC WASTES BY THERMAL AND MICROWAVE
PRE-TREATMENTS
55
Dragana Đilas
MICROFILTRATION OF WASTEWATER FROM SUGAR INDUSTRY
57
Kitti Fejes
ENHACEMENT OF BIOACTIVE COMPONENTS OF MILK
59
Nándor Csorba
INVESTIGATION OF MEMBRANE FILTRATION COMBINATED WITH
ADVANCED OXIDATION PROCESSES DURING DAIRY
WASTEWATER TREATMENT
61
Gábor Vigchert
DESINGING AND TESTING OF ULTRASONICALLY ASSISTED
ULTRAFILTRATION EQUIPMENT
63
Mina Jandrć
INFLUENCE OF pH VALUE ON ADSORPTION EFFICIENCY OF
HEAVY METALS FROM WATER
65
Dubravka Malenić
ADSORPTION OF COPPER IONS FROM WATER WITH MAGNETIC
TREATED WOOD SAWDUST
67
Tijana Nović
CAUSES OF POLLUTION OF GREAT BAĈKA CANAL
69
Radovan Omorjan
SUPERPRO DESIGNER
71
4
PREFACE
The majority of activities envisaged in the EU finansed project “Cross-border
network for knowledge transfer and innovative development” with acronym
WATERFRIEND, from HUSRB IPA Cross-border Co-operation Programme
(Project number HUSRB/1203/221/196) was made on three meetings and two
training courses held at Faculty of Engineering, University of Szeged and Faculty
of Technology, University of Novi Sad. Practical syllabus for tutors and students
were prepared. Modern equipment for practical courses and applied research in
the field of biological wastewater treatment was purchased. These activities bring
about enhance the knowledge transfer between the students and strengthening
cooperation between project partners which could lead to propose new joint
projects and provide mutual student cooperation. This all leads to the ultimate
objective of improving environmental conditions through prevention and
reduction of natural water pollution and as a result healthier life of the inhabitants
of cross-border regions in the future. Furthermore, these activities will give more
knowledge about each others education system, culture and country trough the
cultural events which are organized during mutual activities of project partners.
This Book of abstract contain the summary of the results of the continuous work
with the students in the laboratories in the field of environmental protection and
industry wastewater treatment.
The project team members togeather with the dean of the Faculty of Technology
(prof. dr Zoltan Zavargo) and the dean of the Faculty of Engineering
(prof. dr Keszthelyi-Szabó Gábor)
5
HUMIC SUBSTANCES IN WELL-WATERS: BACKGROUND
AND REMOVAL USING MEMBRANE FILTRATION METHODS
Ildiko Galambos, Gyula Vatai
Corvinus University of Budapest, Faculty of Food Science, Department of Food
Engineering, H-1118 Ménesistr 44, Budapest, Hungary
E-mails: [email protected], [email protected]
Humic substances (HS) dissolve from the soil into the well water. They have
different size, molecular weight and structure. It is important to remove these
substances because they build carcinogenic by-products when they react with
disinfection materials. Membrane filtration can be an effective method to remove
HS from water. Different membranes with a wide range of nominal molecular
weight cut off (NMWCO), using different recycle flow rates and transmembrane
pressures were investigated. The solutions were natural well-waters containing
humic substances, model-solution with humic acid from Sigma-Aldrich GmbH
and deionized water. The permeates and feeds in case of model-solution and
natural well-water were analyzed measuring the UV absorbance on 254
nanometer, the total (TOC) and the dissolved organic carbon (DOC) content.
KEY WORDS: well-water, humic substances, membrane filtration
INTRODUCTION
In the 20th century the science and technology has developed to a great extent,
but in parallel the problem of environmental pollution, including water pollution
has increased in a large measure all over the world. So an increasing demand is
reported for those processes which are able to purify the water without
environmental pollution. Nowadays thousands of experts are working to decrease
the degree of harmful procedures and to reduce the consequences. The traditional
water treatment methods include the use of chemicals so during the purification
they contaminate in some sort. To eliminate this problem membrane technology
is applied increasingly worldwide.
In our assay we are working on the removal of humic substances from wellwaters. Humic acid (HA) is one of the constituents of humic substances (fulvic
acid, humic acid, humin, etc.), which are natural materials in the environment.
HA dissolve into natural waters from the soil, because they are heterogeneous
mixtures of degradation products of plant and animal residues (Wang et al.,
2001).
6
In the HA fraction the main constituents are C, H, O and N atoms. The ratio of
these atoms can change, but usually the carbon proportion is around 56-58%, the
nitrogen content is around 4-6% (Stefanovits et al., 1999). The ratio of the
constituents depends on the origin.
Because of the various functional groups the HA forms different complexes and
inside the holes in the molecule structure it can also capture smaller organic or
inorganic compounds, until as a result of environment changes (e.g. pH or ion
strength of the solution) these compounds get out. Fig. 1 shows a possible
conformation state of humic-acid.
Figure 1. Possible structure of humic acid “molecule”
(Schulten and Schnitzer, 1993)
The properties of humic substances depend on the source of the origin, but
generally humic acid (HA) is the major component of natural organic matter
(NOM) also in surface and well-water. HA may constitute 95% of the total
dissolved organic matter in aquatic systems, and it‟s concentrations are often
equal to or greater than the concentrations of inorganic ions present. In many
cases the HS act as the major buffering system, which has serious influence for
acidification of lakes and rivers (Zsolnay, 2002).
The problem with humic substances presenting in the well-waters is that in the
course of the traditional water treatment humic substances react with disinfectants
e.g. chlorine and the resulted trihalomethanes in the drinking water are dangerous
carcinogens and can cause adverse reproductive effect for the human body
(Alborzfar et al., 1998; Castaño-Vinyals et al., 2011; Tsaia et al., 2013).
7
EXPERIMENTAL
In experimental investigations the feeds were used as follows:
Deionized water;
Humic acid model-solution: commercial humic acid product of the SigmaAldrich GmbH., Germany, was dissolved in deionized water (approx
10 mg/L), for membrane screening purposes;
high HS content well-water from Senta, Serbia, characteristics of the wellwater is shown on Table 1.
Table 1. Characteristics of the examined well-water
As
Fe
Mn
NH4+
COD
(mg/L) (mg/L) (mg/L) ( g/L) (mg/L)
0.15
0.07
2.2
90.1
Conduc
Total
tivity
hardness
(mgCaO/L) ( S/cm)
3.7
94.0
1320
pH
UV
abs.
8.13 0.261
DDS 20 Minilab laboratory apparatus (Fig. 2) with flat sheet membranes in
crossflow mode was used for membrane screening (active surface = 0.036 m2) in
case of M1-M4 and M7-M8 membranes. The M5-M6 modules were home-made
from hollow fibres (manufacturer: Koch), length of module: 30 cm, 1 mm inside
diameter, number of the hollow fibres: 15, active surface: 0.012 m2. The picture
of the module can be seen on Fig. 3. Permeate flux was calculated continuously.
Temperature (t 25°C) was kept constant while recycle flow rate (Q 200-500
L/h) and pressure values were changed (ΔpTM 0.5-20 bar).
For membrane-screening purposes eight different membranes were tested with a
wide range of nominal molecular weight cut off (NMWCO) values. The
membrane characteristics are shown in Table 2. At first four different flat sheet
ultrafiltration membranes were tested with NMWCO of 5, 6, 15 and 100 kDa,
respectively. The two hollow fibre membranes had 1 and 2 kDa NMWCO. In
addition two flat sheet nanofiltration membranes (NMWCO: 0.3 and 0.4 kDa)
were investigated, too.
The humic acid content of the feeds, the permeates and the retentates was
analyzed by measuring the UV-absorbance at wavelength 254 nm (UV254nm), the
total organic carbon (TOC, [mg/L]) and dissolved organic carbon (DOC, [mg/L]).
For the evaluation of the membrane filtration results a calibration line was
prepared from different HS dilutions of commercial humic acid and deionized
water:
y = 0,0199x
where y is the UV254nm absorbance and x is HS in mg/L.
Both in Hungarian and German regulation for drinking water there is no limit
value for HS or TOC, only the maximum trihalomethane content (50 g/L) is
specified. According to Sánchez Jimenezet. al. (1993)
8
y = 0,0014x – 0,0011
where y is the UV254nm absorbance of units of 1/mg C, and x is the concentration
of THM in g/mg C. Using this equation the limit value for HS would be ~3,5
mg/L (calculated from the model-solution).
Figure 2. Flow diagram and picture of the DDS 20 Minilab equipment
9
Figure 3. Picture of PM1 or PM2 module
Table 2. The characteristics of the applied membranes
Membrane
Manufac
turer
code
type
UF
M1
BFM–
70100
Berghof
UF
M2
SP 015
A
Mavibran
UF
M3
SP 006
A
Mavibran
UF
M4
BFM–
3705
Berghof
UF
M5
PM2
Koch
UF
M6
PM1
Koch
NF
M7
NF 200
NF
M8
NF 45
Dow/
Filmtec
Dow/
Filmtec
Material
Polyethersulfon
(PES)
Polyethersulfon
(PES)
Polyethersulfon
(PES)
Poly-ariletherketone
(PAES)
Polysulfon
(PS)
Polysulfon
(PS)
MWCO
(kDa)
Pure
water
Literature
flux
(L/m2h)
100
222,2*
10
15
213,6*
10
6
191,5*
10
5
76,1*
10
2
50,2**
-
1
41,0**
-
Polyamide
0,4
84***
-
Polyamide
0,3
55***
-
* at 4 bar
** at 1 bar
***at 10 bar
10
RESULTS AND DISCUSSION
Results with membranes M1-M4:
We have first tested the membranes M1-M4, measuring the flux values of
deionized water, model-solution and well-water. Experiments were carried out at
constant temperature (t = 25 °C), the recycle flow rate was varied between 260
and 400 L/h. Although these membranes had higher flux values the permeate
concentration was higher than the calculate limit value: 3,5 mg/L HS
concentration.
Results with membranes M7-M8:
The membranes M7-M8 removed the HA from the feed solutions, so the
permeate concentration was near zero, but the flux values of these nanofiltration
membranes were one magnitude smaller.
Results of the membranes M5-M6:
The fluxes of deionized water, model-solution and well-water (Senta) in case of
PM1 and PM2 membranes were measured at 100 and 200 L/h recycle flow rates,
at 25 C. The fluxes were nearly the same independently of the flow rate. In
principle at higher flow rates a HS cake should be removed more easily from the
membrane surface by the flowing recycled liquid. In the measured range during
the concentration experiments the higher recycle flow rate had no significant
effect on the fouling, in both cases frequent backwash was nesessary. Fig. 4.
show the fluxes in function of transmembrane pressure in case of well-water
(Senta).
100
PM1, 100 L/h
Flux (L/m2h)
80
60
PM1, 200L/h
40
PM2, 100 L/h
20
PM2, 200 L/h
0
0
0,5
1
1,5
Pressure (bar)
Figure 4. The fluxes of the well-water
(PM1 and PM2, t = 25 C, Q = 100 L/h and 200 L/h)
11
In the case of model-solution the HS concentration calculated from the UV254nm
absorbance stayed far under 3,5 mg/L (not shown), and also in case of the natural
well-water the HA concentration of the permeates didn‟t reach the limit value
(Fig. 5).
14
12,46 12,46
HS concentration (mg/L)
12
10
8
PM1
PM2
6
4
2,11 2,51
2
2,56
1,51
1,38
2,76
0
Feed
0,5
1
1,5
Pressure (bar)
Figure 5. The HS concentration calculated from the UV254nm absorbance of the
feed well-water and the permeates (t = 25 C, QR = 100 L/h, PM1 and PM2)
Comparison of different membranes
The following diagram in Fig. 6. summarizes the results of membrane screening.
It represents the changing of the humic substances concentration in the permeates
of model-solution and natural well-water in function of NMWCO.
The measured HS concentrations increased with the NMWCO of the membranes,
the exponent of the NMWCO is less than one in case of well-water, and even less
in case of the model-solution.
CONCLUSIONS
Based on the experiments performed with membranes in the range of NMWCO =
0,3 – 100 kDa the following conclusions were established:
In the permeates of NF membranes (NMWCO = 0,3 – 0,4 kDa) there was no
HS to detect, so the rejection of the nanofiltration membranes were ~100%,
but they have also removed all the other compounds (e.g. total hardness),
which are important for the drinking water quality. Also the costs of the
nanofiltration are higher, because of the higher pressure needs.
12
6
HS concentration (mg/L))
5
4
3
2
1
0
0,1
10
1
100
1000
NMWCO (kDa)
Model-solution HS
Well-water HS
Log. (Well-water HS)
Log. (Model-solution HS)
Figure 6. The humic substances concentration (calculated from
UV254nm absorbance) in the permeates of the eight membranes
in case of model-solution and well-water
The UF membranes with NMWCO ≤ 2 kDa are suitable for the removal of
humic substances, the rejections were ~83%. Also the costs of the
ultrafiltration are lower than that of the nanofiltration, so these membranes
seem to be optimal to produce the proper water quality.
The UF membranes with NMWCO higher than 2 kDa (5 – 15 kDa) are
proper for model-solutions, but for natural well-water the HS content of the
permeates are higher than the limit value (3,5 mg/L).
In case of the UF membrane with NMWCO of 100 kDa the removal
efficiency is lower, so this membrane is not suitable for HS removal.
ACKNOWLEDGEMENTS
The authors express their thank to the OTKA Foundation (K68596), for the TÉT
10-1-2011-0072 and TÁMOP-4.2.1/B-09/1/KMR-2010-0005 for the financial
support.
REFERENCES
1.
Alborzfar, M., Jonsson, G., Gron, C., Removal of natural organic matter
form two types of humic ground waters by nanofiltration, Water Research
32 (1998) 2983-2994.
13
2.
3.
4.
5.
6.
7.
8.
9.
Castaño-Vinyals, G, Cantor, K.P., Villanueva, C.M., Tardon, A., GarciaClosas, R., Serra, C., Carrato, A., Malats, N., Rothman, N., Silverman, D.,
Kogevinas, M., Socioeconomic status and exposure to disinfection byproducts in drinking water in Spain, Environmental Health 10 (2011) 1-6.
Sánchez Jimenez, M.C., Pedraza Dominguez, A., CachazaSilverio, J.M.,
Reaction kinetics of humic acid with sodium hypochlorite, Water Research
27 (1993) 815-820.
Schulten, H.R., Schnitzer, M., A state-of-the-art structural concept for
humic substances. Naturwissenschaften 80 (1993) 29-30.
Sein, L.T., Varnum, J.M., Jansen, S.A., Conformational modeling of a new
building block of humic acid: Approaches to the lowest energy conformer,
Environmental Science and Technology 33 (1999) 546-552. In:
astro.temple.edu
Stefanovits, P., Filep, Gy., Füleky, Gy., Talajtan. Budapest: Mezőgazda
Kiadó. (1999) (in Hungarian)
Tsaia,S-S., Chiub, H-F., Yang, C-Y., Trihalomethanes in drinking water and
the risk of death from esophageal cancer: Does hardness in drinking water
matter?, Journal of Toxicology and Environmental Health, Part A 76 (2013)
120-130.
Wang, Y., Combe, C., Clark, M., The effect of pH and calcium on the
diffusion coefficient of humic acid, Journal of Membrane Science 183
(2001) 49-60.
Zsolnay, Á., Dissolved organic matter: artefacts, definitions, and functions,
Geoderma 113 (2002) 1-23.
14
WASTEWATER AND CERTAIN METHODS FOR ITS ANALYSIS
Božo Dalmacija, Jasmina Agbaba, Malcolm Watson
University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3,
21000 Novi Sad
E-mail: [email protected]
The monitoring of wastewater is an essential prerequisite in ensuring compliance
with environmental protection legislation which relates to the discharge of
treated effluent into natural streams, and efficient control systems for wastewater
treatment. This paper discusses how wastewater origin and other factors effect
which parameters must be monitored during an investigation into wastewater
quality. Great care must be devoted not just to choosing the correct analytical
method for each parameter of interest, but also in applying vigorous quality
control procedures for every step in the analytical process, from sampling to final
analysis.
KEY WORDS: wastewater, monitoring, analytical methods
Population growth and the dynamic development of industry leads to an increase
in water consumption , which in turn leads to an increase in the quantity of
wastewater produced. Due to the expansion of industrial activities, wastewater
contains an increasingly wide range of pollutants. There is no universally
accepted definition of wastewater, although one possibility is the following:
wastewater is water which is contaminated in any way during use. In general,
wastewater is contaminated with dissolved and insoluble organic and inorganic
substances and microorganisms. Water polluters are numerous and can be
classified as concentrated or point sources (urban areas, industrial facilities,
power facilities, agricultural buildings for fattening cattle, landfills) or diffuse
sources (pesticide and mineral fertilizer use on land, dumps, atmospheric
precipitation and traffic) of contaminants.
According to its origin, wastewater can be classed as: a) municipal wastewater water used in households, institutions, schools, hospitals, etc.; b) industrial
wastewater - used water from industrial plants; c) wastewater from livestock
facilities (farms) - usually wet manure removed from breeding pigs and so on; d)
atmospheric waste water - rainfall which flows from the city and industrial areas
and which can contain various materials found locally; and e) drainage
wastewater from landfills containing municipal and other waste.
In order to mitigate or completely eliminate damage to the environment, effective
water protection management is required. An important step in this process is the
monitoring of waste water.
The selection of monitoring parameters depends on the manufacturing process,
raw materials and chemicals used in the plant/factory. Parameter monitoring
15
frequencies vary over a wide range according to the needs and depending on the
risk posed to the recipient ecosystem (water streams), and in accordance with the
monitoring approach undertaken. Parameter selection depends on the raw
materials, by products and products which may be present in the wastewater.
Large numbers of factories/companies discharge various pollutants with their
wastewater, depending on the technological processes applied. This makes it
analytically irrational and economically unjustified to analyse all possible
pollutants regardless of polluter activity and quantity of wastewater produced.
Parameters are therefore grouped according to activities performed by the polluter
and currently applied technology. In all these cases, there is a certain number of
parameters common to this type of wastewater. Due to their traits being common
for all polluters, and in order to determine the quality of wastewaters, these
parameters are called "general parameters" (table 1).
The parameters that characterize the different activities, technological processes,
and in some cases differences in production organization, are called "specific
parameters". These parameters are defined after examining the production
process and defined for wastewaters in certain factories or companies. Examples
of some specific parameters for different industrial activities are given in table 2.
Table 1. General wastewater parameters
Parameter
Parameter
Flow - daily average (m3/day)
Fixed and volatile solids ignited at 550°C
(mg/l)
Air temperature (oC)
Loss on ignition (mg/l)
Water temperature (oC)
Suspended matter (mg/l)
Colour (description or as spectral COD (dichromate method), homogenised
adsorption coefficient (SAC))
sample (mg O2/l)
Odour (description)
COD (dichromate method), filtered and
settled sample (mg O2/l)
Visible material (description)
BOD5, homogenised sample (mg O2/l)
Settleable solids (after 2 hours)
BOD5 filtered and settled sample (mg O2/l)
(ml/l)
pH
Total nitrogen (mg N/l)
Dry residue (mg/l)
Total phosphorus (mg P/l)
The need to increase the speed and efficiency of obtaining information about the
chemical composition of wastewater, about its changes over time or the spatial
distribution of analytes in the effluent, has resulted in striving for more reliable
and selective analytical methods, at increasingly demanding detection limits. An
intelligent and meaningful concept of laboratory analysis includes: (i) method
development, with emphasis on optimization, (ii) determination, including
wastewater sample preparation, the eventual separation of analytes and
measurement, and (iii) the interpretation of measurement data, and converting the
signal into information for the user.
16
Table 2. Examples of specific parameters by industrial activity
Activity
Agriculture
Livestock
Pig farms
Poultry
Specific parameter analysed in this wastewater
- ammonium ion (mgN/l)
- organic nitrogen (mgN/l)
- total coliform bacteria
For farms greater than 40000 poultry, 2000 pigs
(larger than 30 kg) or 750 sows, the following should
also be determined:
- Cu compounds (mg/l)
- Zn compounds (mg/l)
Food manufacturing
Production,
- oil and grease (mg/l)
processing and
- sodium (mg/l)
preservation of
- chlorides (mg/l)
meat and meat
- surface active agents, (mg DBS/l)
products
- total coliform bacteria
- fecal coliform bacteria
Processing and
- oil and grease (mg/l)
preservation of
- sodium (mg/l)
fish and fish
- chlorides (mg/l)
products
- surface active agents (mg DBS/l)
The production of - oil and grease (mg/l)
vegetable and
- surface active agents (mg DBS/l)
animal oils and
- sulphates (mg/l)
fats
Processing and
- oil and grease (mg/l)
preservation of
- surface active agents (mg DBS/l)
milk
- m- and p-alkalinity (mVal/l)
- m- and p-acidity (mVal/l)
Tanning and leather production
Tanning and
- chrome (mg/l) - if chrome tanning agents are used
dressing of
- aluminium (mg/l) - if white tanning used
leather,
- calcium (mg/l)
manufacture of
- sodium (mg/l)
luggage,
- sulphates (mg/l)
handbags, saddles, - m- and p-alkalinity (mVal/l)
harness and
- m- and p-acidity (mVal/l)
footwear
- toxicity (%)
Manufacture of basic metals and fabricated metal products
Manufacture of
In principle, depending upon the technology used to protect
fabricated metal
the metal projects, the following need to be determined:
products,
- all metals present in the different reagents such as:
17
Activity
except machinery
and equipment
Specific parameter analysed in this wastewater
 preparation, cleaning and activating metal products:
Fe, Mn, Zn, Cd, Sn, cyanides, F, Cr, etc.
 coating metals Cr (all forms), Zn, Ni, Ag, Al, Pb, Ti,
B, Sn, etc.
 post processing: Cr, Zn, Co, etc.
- m- and p- alkalinity or acidity (mVal/l)
- toxicity (%)
The processes that take place between sampling wastewater and developing
information about the chemical composition of a wastewater sample are usually
of chemical and physical nature, and involve working with laboratory equipment,
instruments, standard solutions and reference materials. Preparing programs for
testing the composition and properties of a wastewater sample should always be
preceded by the taking samples for analysis. Detailed planning is necessary when
it is necessary to examine the complete composition of a wastewater, particularly
when it is necessary to determine some properties on site. For preliminary
wastewater testing, quick qualitative or semi-quantitative tests, carried out by
spectroscopic, micro - and macro chemical methods are used. After these
preliminary tests, a full program of work, or chart of the logical test order, is
prepared, that the analyst can follow when analyzing the samples. This scheme
allows the analyst to correctly determine: the amount of water required for
testing, the number of special samples to be taken, specific requirements for the
taking and storage of individual samples, the proper selection of analytical
methods, and any links between the presence of one component or water property
with the absence of an other.
If the wastewater sample is not representative, either at the time of sampling or
the time of analysis, even the most careful analysis will not be useful. Due to
changes in the composition of wastewater, which can even take place during
sampling, equipment for the preparation of a representative sample is necessary,
as well as the provision of suitable processes for the preparation and storage of a
sample prior to analysis. According to the nature of the components that need to
be determined, samples can be classified into two groups: (1) samples taken for
the determination of characteristics and contents which change in contact with air,
and (2) samples taken for the determination of properties that do not change in
contact with air.
Water samples for air-sensitive parameters require the use of specific sampling
methods. These precautions are necessary because the properties of water in
contact with air during sampling can change, affecting the final test results. To
avoid sample contact with air, sample containers must be immediately sealed or
conserved. Separate samples must be taken for the determination of air sensitive
components, such as: acidity/alkalinity, ammonia and ammonium ions, CO 2, Fe2+
and Fe3+, dissolved oxygen, nitrites, residual chlorine, chlorine demand, pH,
hardness, phenols, H2S and sulphides, SO2, sulphites and bisulphites. For the
determination of some wastewater characteristics, it is even necessary to carry out
18
the analysis on the spot, during or immediately after taking the sample (dissolved
gases, pH, suspended solids).
To determine the characteristics and composition of a wastewater that does not
change in contact with air, a composite sample is usually taken, but it is still
necessary to take precautions against possible contamination of the sample solids
from the air, which may occur due to keeping samples for too long in unsuitable
containers. From one composite sample, the following parameters may be
determined: organic substances, suspended solids, nitrates, phosphates, calcium
and magnesium, sulphates, total iron and other metals. Separated samples are
taken for the determination of substances extracted by some solvent (grease,
suspended matter, detergents). The amount of water that needs to be taken for
analysis of each component in a separate or composite sample, depends on the
analytical methods chosen for the determination of the individual analytes.
Samples taken for wastewater parameters which do not change in contact with the
air may or may not be filtered prior to analysis, depending on the nature and
quantity of insoluble material, and the applied method of measurement. Industrial
wastewater almost always contains insoluble substances in suspension. According
to the purpose of the investigation and the components to be determined, analysis
might include only the aqueous phase, only the solid phase, or the entire system.
In some cases, according to the chemical properties of the components to be
determined, it can be predicted that they will not be present in the solid phase
(ammonium ions, nitrates, chlorides), in which case, the analysis is carried out
only in the filtered water.
For the analysis of gaseous wastewater components (oxygen, CO 2, H2S), prior
filtration of the sample is not allowed, in order to prevent the loss of these
components. If filtration is not allowed, as outlined in the analytical method, the
precipitate may be separated by centrifugation, clarification by standing, etc.
Today, there are many known methods for the qualitative detection and
quantitative determination of pollutants in wastewater, and they are continuously
improving. The choice of method depends on the purpose and goals of the
wastewater investigation and the information desired, from the concentration of
components determined (the maximum allowable concentrations of pollutants
prescribed by regulations are often highly relevant), the type of results required
(approximate, accurate and correct results), the instrument and chemicals that are
available, to possible limitations due to interference and others. When choosing
methods, it is important to ensure that they are as accurate as possible, fast, easily
manageable and accessible to a large number of laboratories. It is always
necessary to find a compromise between the fastest, most accurate and most
complete methods of analysis.
The methods can be classified according to their purpose:
o Reference (standard) methods are formal or official methods prescribed by
law or regulation, and which are internationally recognized (Standards of the
International Organization for Standardization (ISO), Standard Methods for
the Examination of Water and Wastewater published by the American Public
Health Organization (APHA), the American Waterworks Association
19
(AWWA) and the Water Pollution Control Federation (WPCF), EPA
(Environmental Protection Agency )) .
o Rapid or screening methods are used for preliminary testing of a large
number of samples, as an expedient means of determining whether any
sample must be subjected to additional testing with more accurate methods.
o Routine methods can be official or standard, but may be modified to be better
suited for application with a large number of similar samples.
o Automated methods using automated equipment, which can also be official
or rapid methods.
o Modified methods are official or standard methods that have been modified
in order to simplify them or adapt them to different types of samples from
the original planned method, or to remove abnormal interfering substances.
If absolutely necessary, it is also possible to use non-standard methods, and those
that are published by reputable scientific journals or research companies. The
choice of optimal method is very important for the operation of the laboratory, to
ensure compliance with the quality assurance program based on scientific and
technical information, taking into consideration practical requirements, such as
the time and cost of wastewater analysis, the accuracy and precision of analytical
instruments, and the experience and skills of the analyst.
The selected method must be based on solid scientific and technical principles,
have adequate sensitivity, selectivity, accuracy and precision, and be sure to
perform. Preferably it is applicable to multiple parameters, such that their
determination is simple, quick and inexpensive. Only once it satisfies all these
criteria is a method judged suitable for a specific analysis. Very often, the
standard method can not be followed completely, and thus needs a validated
modification. If there is a choice between several good methods, preference is
given to: the method recommended by the relevant international organizations,
methods validated by interlaboratory tests conducted in accordance with
international protocols, methods validated in the required concentration range,
methods which are often applied, are simple, fast and economical, methods
applicable to samples similar to those investigated, methods applicable to
different sample types, and materials and methods which allows for the
traceability of each result. Analytical method selection, and obtaining proof that
you can get the expected result for a particular parameter, must be done carefully,
taking into account the following: (i) accuracy, (ii) precision, (iii) the linear range
of the measurements, (iv) limits of detection (MDL), (v) the practical limit of
quantification, (vi) applicability of the procedure under a variety of operating
conditions (available equipment and experienced analysts in the laboratory), and
(vii) the stability of the method.
Small changes in measurement procedure can be responsible for reducing the
reliability of the method. Method robustness is a measure of how little a method
responds to small changes in measurement parameters to allow its
implementation. The notion of robustness during instrumental analysis can be
linked to the concept of instrument stability, or its ability to retain its
measurement characteristics over time.
20
EFFICIENCY OF SEPARATION OF OILY WASTEWATER BY
APPLICATION OF DIFFERENT FILTRATION MATERIALS IN
COALESCING FILTRATION
EFIKASNOST SEPARACIJE ZAULJENIH OTPANIH VODA
PRIMENOM RAZLIĈITIH FILTARSKIH MATERIJALA U
KOALESCENTNOJ FILTRACIJI
Dunja Sokolović*1, Radmila Šećerov Sokolović2, Dragan Govedarica2
1
Fakultet tehniĉkih nauka, Univerzitet Novi Sad, Trg Dositeja Obradovića 6,
Novi Sad, Srbija
2
Tehnološki fakultet, Univerzitet Novi Sad, Bul. cara Lazara 1, Novi Sad, Srbija
*E-mail: [email protected]
Coalescence in porous layer proved to be a highly efficient method for separation
of the oily phase, particularly concerning extremely small droplets, even less than
5 μm. Coalescing filtration is applied for the treatment of oily waste waters. In
this paper the efficiency of the coalescing filtration using two different recycled
polymeric materials as the filter medium, is investigated and compared. Materials
that have been investigated are polyethylene terephthalate and polyurethane.
Polymeric materials have elastic fibers, so their layer are compressible, and
consequently it is possible to provide the layer with different properties, by
compression. Thus, by use of a polymeric material can be obtained a fibrous
layer of high porosity, up to 98%. The efficiency of separation of four oils of
different nature were investigated. Nature of the oils were monitored over the
neutralization number. The permeability of the layer was varied in the range of
0.18·10-9 to 5.389·10-9 m2. The filtration was carried out on a laboratory device in
horizontal orientation of fluid flow, which in our studies proved to be the most
effective.
KEY WORDS: oily wastewater, coalescent filtration, recycled polymers
UVOD
Veliki broj ĉovekovih aktivnosti stvara zauljenje otpadne vode. Pored industrije
koja svakako stvara najveće koliĉine zauljenje otpadne vode (petrohemijska,
hemijska, prehrambena, farmaceutska, termoelektrane, itd), one nastaju i u
domaćinstvu, autoperionicama, transportu (kaljužne vode sa brodova...), itd.
Zauljenje otpadne vode mogu sadržati maziva, sredstva za hlaĊenje i
podmazivanje (SHP), teške ugljovodonike i lake ugljovodonike kao što su
kerozin, mlazno gorivo, benzin, kao i biljna ulja i masne kiseline (1).
U cilju zaštite životne sredine, propisana dozvoljenja koncentracija ulja u
otpadnoj vodi kreće se od 15 do 30 mg/l. Za preĉišćavanje zauljenih otpadnih
21
voda primenjuju se metode, kao što su: taloženje, filtracija kroz nasuti sloj,
centrifugiranje, adsorpcija, membrane, koalescentna filtracija i druge (2–6). Vrlo
ĉesto, izabrana metoda za tretman zauljene otpadne vode ne može da ostvari
propisanu normu. Tako na primer, taloženje je efikasno kada su dispergovane
kapi ulja krupnije od 100 µm. Sa druge strane, koalescentna filtracija u poroznom
sloju pokazuje visoku efikasnost separacije uljne faze izrazito sitnih kapi, ĉak
manjih i od 5 µm. Primenom koalescentne filtracije podstiĉe se ukrupnjavanje
kapi uljne faze, koje se tako ukrupnjene, nakon napuštanja sloja, efikasnije talože.
U poroznom sloju se istovremeno odvijaju sledeći oblici koalescencije:
koalescencija na površini filtarskog materijala, koalescencija izmeĊu kapi u
porama sloja i koalescencija na površini kapilarno provodne uljne faze (7).
Koalescencija u poroznom sloju pokazala se i kao pogodna, ne samo za
separaciju ulja u vodi u obliku nestabilne emulzije, već i za separaciju vode iz
ulja. Bez obzira na tip nestabilne emulzije, koliĉinu i koncentraciju faza, ova
metoda se pokazala kao izrazito ekonomiĉna. Njena ekonomiĉnost u odnosu na
druge tehnike separacije ulja iz otpadnih voda ogleda se pre svega u znaĉajnoj
uštedi energije i eliminisanju potrošnje bilo kakvih hemikalija (emulgatori i
deemuglatori) (8). Pored toga kolesceri su malih gabarita, kompaktni, jednostavni
za instalaciju, automatizaciju i održavanje.
Zbog složenosti fenomena koalescencije na koji utiĉe veliki broj paramtara, još
uvek nije moguće projektovati ureĊaje bez eksperimentalnog rada (9-13).
Morfologija, geometrijske karakteristike, fiziĉke i hemijske osobine, kao i fiziĉka
i hemijska heterogenost, prema većini autora predstavljaju najbitnije osobine
vlaknastog poroznog sloja. Kada je reĉ o prirodi materijala vlakana, mišljenja u
literaturi su podeljenja. Većina autora smatra da priroda materijala vlakana ima
uticaja na koalescentnu filtraciju, mada neki autori tvrde da priroda materijala
nema nikakvog uticaja (14). Može se uoĉiti da je uticaj prirode materijala kod
ovih autora minoran, jer su koristili vlaknasti sloj u kojem su formirane pore
znatno veće od preĉnika kapi ĉija se kolaescencija želi postići.
Merilo propustljivosti sloja u odnosu na fluid predstavlja permeabilnost sloja.
Permeabilnost je pokazatelj zastupljenosti meĊusobno povezanih pora od ulaza
do izlaza iz sloja (7). U literaturi se mogu naći relacije za njeno proraĉunavanje
(8), ali se ona najĉešće odreĊuje eksperimentalnim putem. Permeabilnost kao
važna osobina sloja, dugo je bila zanemarivana u literaturi, tako Voyutski, AbdelGhani, Daviec smatraju da ona nema uticaja na koalescenciju (15-17).
Dahlquist i Setterwall su uoĉili da je geometrija sloja i veliĉine koje se ubrajaju u
ovu grupu važnije od prirode materijala (17).
Šećerov Sokolović i saradnici izuĉavaju fenomen koalescentne filtracije više do
dve decenije (7). Oni su još u svojim najranijim radovima ukazivali na znaĉaj
kritiĉne brzine za projektovanje ureĊaja, a samim tim i za praćenje koalescencije.
U okviru svojih istraživanja ispituju uticaj radnih uslova na efikasnost separacije,
od kojih kao najvažnije pored kritiĉne brzine istiĉu i geometriju sloja (9-13).
Neosporno su dokazali da je za separaciju ulja iz vode optimalna orjentacija toka
fluida horizontalna (9).
22
Cilj ovog rada je bio ispitati i uporediti efikasnost koalescente filtracije primenom
recikliranog poliuretana i primenom recikliranog polietilentereftalata kao
filtracionog medijuma pri razliĉitoj geometriji sloja u širokom opsegu brzina
fitlracije, za separaciju ĉetri ulja razliĉite prirode.
Važno je istaći da primena recikliranih polimernih materijala ostvaruje uštede u
potrošnji sirove nafte kao polazne sirovine za njihovu proizvodnju, uz
istovremeno smanjenje potencijalnog zagaĊenja životne sredine. Na taj naĉin
ispunjavaju se osnovni zahtevi održivog razvoja.
EKSPERIMENTALNI DEO
Eksperimenti su realizovani na model emulziji tipa ulje u vodi pri horizontalnoj
orijentaciji toka fluida, kao optimalnoj (9). Aparatura na kojoj su realizovana
ispitivanja detaljno je opisana u predhodnim radovima (9-13).
Model zauljene vode pripreman je korišćenjem vode za piće u dva rezervoara od
80 l, i dispergovanjem ulja kontinualnim mešanjem properelskim mešalicama u
rezervoaru brzinom od 650 o/min u trajanju od 45 min pre poĉetka ogleda i
kontinualno tokom ogleda, kako bi se održala proseĉna veliĉina kapi od 10µm.
Ispitivana je separacija ĉetri tipa zauljene vode. Svaki tip je dobijen
dispergovanjem razliĉitog ulja u vodi za piće. Ulja koja su dispergovana su:
domaća nafta A, njene frakcije A1 i A4, i namešani poluproizvod P1, a njihove
osobine su prikazane u tabeli 1.
Tabela 1. Fiziĉko-hemijske osobine dispergovane faze
Analiza/uzorak
Gustina 150C, kg/m3
Gustina 200C, kg/m3
Viskoznost na 400C, mPa s
Neutralizacioni broj, mg
KOH/l
Taĉka teĉenja 0C
MeĊupovršinski napon,
mN/m
Površinski napon, mN/m
Emulzivnost %vol
Dielektriĉna konstanta
Molska masa, g/mol
A
A4
A1
P1
916,7
915,5
43,35
923,3
918,9
168,9
907,3
905,9
9,183
883,3
879,0
10,32
1,42
1,71
1,13
0,13
-42
-3
-56
+3
18,8
30,5
33,8
32,4
26,56
99,92
0,1612
410
27,72
70,00
0,1905
520
28,91
56,25
0,1334
150
30,16
54,17
0,0645
300
Koalescentna filtracija realizovana je primenom vlaknastog sloja poliuretana (PU)
i primenom vlaknastog sloja polietilentereftalata (PET), ĉije su osobine prikazane
u tabeli 2.
23
Tabela 2.Osobine materijala
Materijal
Poliuretan (PU)
Polietilentereftalat
(PET)
Gustina
kg/m3
Taĉka
topljenja
0
C
Dielektriĉna
konstanta
1200
310,80
3.4
Kritiĉni
površinski
napon,
mN/m
23
1400
250,68
4,1-5
31
Korišćen je otpadni poliuretan iz industrije nameštaja, koji je nastao rezanjem, a
zatim mašinskim mlevenjem. Polietilentereftalat korišćen u ovim eksperimentima
predstavlja otpad nastao pri seĉenju filtarskog materijala za kuhinjske aspiratore.
Optiĉkom mikroskopijom je utvrĊeno da su vlakna ovih ispitivanih filtarskih
materijala glatka.
Debljina filtarskog sloja je 5 cm i konstantna je tokom svih ogleda, tako da je
geometrija sloja varirana promenom permeabilnosti sloja. Permeabilnost sloja je
varirana u opsegu od 0,18·10-9 – 5,389·10-9 m2.
Opseg brzina u ogledu je bio od 19 do 40 m/h. Odabrana brzina je držana
konstantnom jedan sat.
Ulazna koncentracija dispergovanog ulja model emulzije iznosila je 500 mg/l i
takoĊe je konstantna u svim ogledima, koji su izvoĊeni pri konstantnoj
temperaturi od 20°C. Izlazna koncentracija uljne faze odreĊivana je FTIR
metodom.
Efikasnost koalescencije je raĉunata na bazi ulazne koncentracije ulja, Cu, i
izlazne koncentracije ulja u zauljenoj vodi, primenom sledeće formule:
REZULTATI I DISKUSIJA
Analizirana je efikasnost separcije ĉetiri ulja razliĉite prirode korišćenjem
vlakana poliuretana i polietilentereftalata kao filtarskog materijala u koalesceru u
širokom opsegu radnih brzina pri razliĉitoj geometriji sloja.
Kako je debljina sloja konstantna, geometrija sloja je varirana i prikazana preko
permeabilnosti sloja. Polimerna vlakna su elastiĉna i kao takva formiraju
kompresibilan sloj. Na osnovu ranijih istraživanja (9-13), veliĉina koja adekvatno
odražava koliko je sloj sabijen jeste permeabilnost. Kako su eksperimenti
realizovani u intervalu permeabilnosti od 0,18·10 -9 do 5,389·10-9 m2, može se
zakljuĉiti da se poroznost sloja, uslovljena njegovom permeabilnošću, kretala od
0,85 do 0,97.
24
Pošto je u eksperimentima varirana permeabilnost sloja i priroda uljne faze u
zauljenoj otpadnoj vodi, analiza rezultata je raĊena posmatranjem promene
efikasnosti separacije u zavisnosti od promene ove dve veliĉine. Za analizu
prirode ulja odabran je neutralizacioni broj, kao osobina ulja koja je merilo
njegove polarnosti.
U analizi rezultata primenjeni su 3D dijagrami jer daju mogućnost uoĉavanja ne
samo promena u celom opsegu vrednosti dve promenjive, već olakšavaju i
poreĊenje efikasnosti separacije primenom dva razliĉita materijala. Na slici 1.
prikazani su 3D dijagrami zavisnosti efikasnosti separacije od permeabilnosti
sloja za oba ispitivana filtarska materijala i za sva ispitivana ulja, pri jednakoj
brzini fluida od 30 m/h. Na osnovu ovih dijagrama uoĉavamo da je efikasnost
separacije primenom oba ispitivana filtarska materijala, PU i PET, pri brzini
fluida od 30 m/h, izrazito velika, preko 94% za sve permeabilnosti i sve vrste
ulja. Ako uporedimo materijal PU i PET, možemo uoĉiti da je PU stabilniji na
promenu prirode ulja, na šta ukazuje njegova efikasnost preko 98% za sva
ispitivana ulja i sve ispitivane permeabilnosti sloja.
PUv30
PEv30
100
100
98
98
96
96
94
94
E%
90
88
86
86
liz
ac
KO ioni
H / b ro
l
j
1,5
1,0
10 -9m 2
n o st
800
0,5
4
5
0,0
1
2
3
g
eabil
3
ut
ra
2
Perm
82
m
1
84
Perm
eabil
nost
10 -9m 2
4
5
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
ut
ra
l
m izac
g
KO ioni
H/ bro
l
j
82
ne
84
800
92
90
88
ne
E%
92
Slika 1. Efikasnost separacije na 30 m/h primenom a) PU b) PET
Daljim povećavanjem radne brzine, sve do brzine 40 m/h, filtarski materijal PU
pokazuje dobru efikasnost, preko 88%, što nije sluĉaj sa filtarskim materijalom
PET, koji pokazuje taĉku proboja na toj brzini. Taĉka proboja se javlja kada
izlazna koncentracija ulja preĊe dozvoljenu vrednost od 15 mg/l.
Na slici 2. su prikazane efikasnosti separacije na kritiĉnim brzinama. Potrebno je
napomenuti da je kritiĉna brzina maksimalna moguća brzina, jer se iznad nje
javlja taĉka proboja. Ako uporedimo efikasnost separacije PU na njegovoj
maksimalnoj mogućoj brzini od 40 m/h, i PET na njegovoj maksimalnoj mogućoj
brzini od 35 m/h, uoĉava se da je i u ovom sluĉaju efikasnost PU bolja, naroĉito
pri višim vrednostima permeabilnosti, i to za sva ulja.
25
PUv40
PEv35
98
96
96
94
94
E%
100
98
92
92
90
90
88
88
86
10 -9m 2
nost
2
3
Perm
eabil
10 -9
m2
nost
4
5
iza
c
KO ioni
H/ bro
l
j
eabil
5
1
1,8
1,6
1,4
1,2
1,0
0,8
0,6
0,4
0,2
0,0
g
Perm
4
800
ut
ra
l
3
liz
ac
KO ioni
H/ bro
l
j
2
82
g
1
ut
ra
800
84
m
82
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
ne
84
m
86
ne
E%
100
Slika 2. Efikasnost separacije primenom a) PU na 40 m/h i b) PET 35 m/h
ZAKLJUĈAK
Na osnovu realizovanih eksperimenata uoĉeno je da je reciklirani poliuretan, PU,
bolji filtracioni medijum za separaciju ulja iz zauljenih otpadnih voda
koalescentnom filtracijom, pošto realizuje veću radnu brzinu (40 m/h) i nije
osetljiv na prirodu ulja, naroĉito pri visokoj permeabilnosti. Veća radna brzina
omogućuje i veći kapacitet koalescera.
ZAHVALNICA
Ovaj rad je uraĊen uz finansijsku pomoć Ministarstva prosvete, nauke i
tehnološkog razvoja Republike Srbije, projekat broj 172022.
LITERATURA
1. Mysore D., Viraraghavan T., Jin Y., Treatment of oily water using vermiculite,
Water Res. 39 (2005) 2643–2653.
2. Šećerov Sokolović R., Sokolović S., Šević S., Oily water treatment using a new
steady-state fiber-bed coalescer, J. Hazard. Mater. 162 (2009) 410–415
3. Diaz M.P., Boyd K.G., Grigson S.J., Burgess J.G., Biodegradation of crude oil
across a wide range of salinity by an extremely halotolerant bacterial
consortium MPDM, immobilization onto polypropylene fibers, Biotechnol.
Bioeng. 79 (2002) 145–153.
4. Li J., Gu Y., Coalescence of oil-in-water emulsions in fibrous and granular
beds, Sep. Purif. Technol. 42 (2005) 1–13.
26
5. Peng H., Tremblay A.Y., Veinot D.E., The use of backflushed coalescing
microfiltration as a pretreatment for the ultrafiltration of bilge water,
Desalination 181 (2005) 109–120.
6. Lefebure O., Moletta R., Treatment of organic pollution in industrial saline
wastewater: a literature review,Water Res. 40 (2006) 3671–3682.
7. Šećerov Sokolović R., Sokolović S., Koalescencija u poroznom sloju – teorija i
praksa, Tehnoloski fakultet , Novi Sad (1999)
8. Govedarica D., Sokolović D., Tretman zauljenih otpadnih voda kroz sloj
otpadnih polimera, Reciklaža i održivi razvoj 1 (2009) 53-59.
9. Šećerov Sokolović R., Vulić T., Sokolović S., Effect of fluid flow-orientation
on the coalescence of oil droplets in steady-state bed coalescers, Ind. Eng.
Chem.Res. 45 (2006) 3891–3895.
10. Šećerov Sokolović R., Vulić T., Sokolović S., Effect of bed length on steadystate coalescence of oil-in-water emulsion, Sep. Purif. Technol. 56 (2007) 79–
84.
11. Šećerov Sokolović R., Sokolović S., Đoković B., Effect of working
conditions on bed coalescence of an oil-in-water emulsion using a
polyurethane foam bed, Ind. Eng. Chem. Res. 36 (1997) 4949–4953.
12. Šećerov Sokolović R., Vulić T., Sokolović S., Marinković Neduĉin R., Effect
of fibrous bed permeability on steady-state coalescence, Ind. Eng. Chem. Res.
42 (2003) 3098–3102.
13. Šećerov Sokolović R., Govedarica D., Sokolović D., Separation of oil-inwater emulsion using two coalescers of different geometry, J. Hazard. Mater.
175 (2010) 1001-1006.
14. Sharifi H., Shaw J.M., Secondary drop production in packed-bed coalescers
Chem. Eng. Sci. 51 (1996) 4817-4826.
15. Voyutskii S.S., Akl'yanova K.A., Panich R., Fodiman N., Mechanism of
separation of the disperse phase of emulsions during filtration Dokl. Akad.
Nauk SSSR 91 (1953) 1155-1158.
16. Abdel-Ghani M.S., Davies G.A., Simulation of nonwoven fiber mats and the
application to coalescers, Chem. Eng. Sci. 40 (1985) 117-129.
17. Dahlquist E., Setterwall F., A study on the importance of fiber properties and
filter structure on the efficiency of coalescence filters, Proceedings of Filtech
Conference, Utrecht (1987) 36-43.
27
TREATMENT OF DISTILLERY WASTEWATER BY
MICROFILTRATION
Vesna Vasić
University of Novi Sad, Faculty of Technology,
Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
E-mail: [email protected]
Stillage (distillery wastewater), the main waste product generated in distilleries,
is characterized by a very large volume, high content of organics and total solids,
low pH, in some cases high content of suspended solids, color components etc.
Different treatment approaches, based on biological and various physicochemical methods, have been introduced for the treatment of stillage, before its
discharging into the environment. This work presents application of
microfiltration for distillery wastewater purification. The experiments were
performed using distillery stillage from starch feedstocks. The experiments were
carried out in a conventional cross-flow microfiltration unit by ceramic
membrane with nominal pore size 200 nm. Suspended solids are completely
removed, and COD in the permeate was decreased compared to initial value in
the stillage, with removal efficiency of about 35%. Dry matter content was lower
by about 18%, and total nitrogen content by about 48%. COD, dry matter and
total nitrogen in retentate, were higher compared to initial values in stillage by
about 15%, 21% and 27%, respectively. The general conclusion is that
microfiltration is suitable as a stillage pretreatment.
KEY WORDS: distillery wastewater, microfiltration, ceramic mambrane
INTRODUCTION
Stillage (distillery wastewater) is the main waste product generated in distilleries.
Its pollution potential is one of the most serious problems today, so distillery
industries are forced to develop new techniques for stillage purification and
utilization. It is characterized by a high content of organics and total solids, low
pH and a very large volume, increasing together with the ethanol production. To
produce 1L of ethanol, approximately 10 to 15 liters of distillery stillage are
generated (1). Also, it has very high biological oxygen demand (BOD), chemical
oxygen demand (COD) and a high BOD/ COD ratio. The amounts of inorganic
substances such as nitrogen, potassium, phosphates, calcium and sulfates are also
very high (2). Distillery stillage contains some feedstock components and
degraded yeast cells. Many of those components are characterized by a high
nutritive value. They contain vitamins (with large amounts of those classified as
group B), proteins rich in exogenous amino acids, and mineral components (3).
28
The amount and composition of stillage are variable and depend on the feedstocks
used for bioethanol production, as well as various aspects of the production
process.
Compared to other distillery wastewaters (sugar-based stillage and stillage from
cellulosic materials), the stillage from the fermentation of starch-based feedstocks
contains more suspended solids due to the presence of grains remaining after
fermentation. An important characteristic of stillage obtained from molassesbased feedstocks include color components. Phenolics from the feedstock,
melanoidins from Millard reaction of sugars with proteins, caramels from
overheated sugars and furfurals from acid hydrolyses can contribute to the color
of the effluent (4). Chromium, copper, nickel and zinc were found at levels
significantly above detection limits in some distillery effluents, especially in the
stillages from cellulosic feedstocks.
Table 1. Comparative characteristics of different stillages
Feedstock
BOD
(mg/L)
COD
(mg/L)
Total
nitrogen
(mg/L)
Total
phosphate
(mg/L)
Wheata
~90
~90
550
170
a
Barley
83.0
97.0
600
nd*
Sugar beet
44.9
91.1
3569
163
molassesb
Sugar cane
39.0
84.3
1229
187
molassesb
Cellulosic
27.6
63.1
2787
28
feedstockb
a
Krzywonos et al., 2009, b Wilkie et al., 2000, * no data available
pH
4.6
3.9
5.35
4.46
5.35
Considering complex composition and high organic load of distillery stillage, it
should not be dispose in the environment without appropriate treatment. Stillage
disposal in the environment can be adverse. High COD and nutrient content may
result in eutrofication of natural waters, colored compounds block out sunlight
penetration in rivers and lakes, reducing photosynthetic activity and dissolved
oxygen concentration. All of the above have negative influence on aquatic life.
Disposal of distillery wastewater on land is also harmful, and can affect the
vegetation and groundwater quality.
Different treatment approaches, based on biological and various physicochemical methods, have been introduced for the treatment of stillage. Some of
them are: a combination of anaerobic and aerobic biological treatment, fungal,
bacterial and algal treatment, adsorption, coagulation and flocculation and
oxidation processes, microfiltration, nanofiltration, reverse osmosis, ultrasound
29
and different combinations of these methods. This work aims to present
application of microfiltration for distillery wastewater purification.
Membrane processes
As costs of a wastewater treatment are getting higher it is necessary to develop
techniques for wastewater purification that will allow their reuse together with
recycling of valuable matters that can be find in waste flows. Stillage treatment is
usually consists of suspended solids removal with decanter or centrifuge followed
by anaerobic and aerobic treatment. Although the biological treatment process
has several advantages such as an easy access and a large scale operation, the
major drawbacks of the process are its high energy consumption (30% of the total
energy), high labour costs, and large variations of the treatment efficiency with
the change in the raw materials used for the ethanol fermentation (1). Also, it is
difficult and sometimes impossible to achieve effluent discharge limits with this
kind of treatment. Membrane separation techniques are widely used for distillery
wastewater treatment, offering a possibility to improve the value of stillage and to
meet environmental standards.
Contrary to another conventional treatment of wastewaters by coagulation with
alum, when difficulties with sludge treatment or discharge appear (because of the
alum present in the sludge), a retentate obtained after membranes application can
be used (after additional analyses) as an addition to fertilizers or feed, for biogas
production, or it can be disposed into nature without any adverse effects. Besides,
distillery wastewaters contain high amount of dead yeast cells, as well as yeast
metabolites (amino acids, vitamins and proteins), which have high nutritive value
and can be recycled by use of membranes. The most commonly used membrane
processes for wastewater purification are: microfiltration, ultrafiltration,
nanofiltration and reverse osmosis.
Microfiltration
Microfiltration refers to filtration processes that use porous membranes to
separate suspended particles with diameters between 0.1 and 10 μm. Thus,
microfiltration membranes fall between ultrafiltration membranes and
conventional filters. Microfiltration has its modern origins in the development of
nitrocellulose membranes in the 1920s and 1930s. Until the mid-1960s, the use of
microfiltration membranes was confined to laboratory or to very small-scale
industrial applications. In the 1960s and 1970s, microfiltration became important
in biological and pharmaceutical manufacturing (5).
The most widely used process designs, illustrated in Figure 1, are dead-end and
cross-flow filtration.
In dead-end filtration the entire fluid flow is forced through the membrane under
pressure. As particles accumulate on the membrane surface or in its interior, the
pressure required to maintain the required flow increases, until at some point the
membrane must be replaced.
30
a)
b)
Figure 1. Schematic representation of a) dead-end and
b) cross-flow microfiltration (5).
In cross-flow systems, the feed solution is circulated across the surface of the
filter, producing two streams: a clean particle-free permeate and a concentrated
retentate containing the particles. The equipment required for cross-flow filtration
is more complex, but the membrane lifetime is longer than with in-line filtration.
Streams containing less than 0.1% solids are almost always treated with in-line
filters; streams containing 0.5% solids are almost always treated with cross-flow
filters.
Membrane modules that are commonly used for microfiltration are: spiral-wound
modules, tubular modules, hallow-fiber and plate and frame modules.
EXPERIMENTAL
The experiments were performed using distillery stillage from the ethanol factory
Reachem, Srbobran (Serbia), where it was obtained from starch feedstocks. The
experiments were carried out in a conventional cross-flow microfiltration (MF)
unit (Figure 2).
Figure 2. Scheme of laboratory apparatus for cross-flow microfiltration (6)
31
The feed was transported from feed tank by peristaltic pump through the
membrane module. Transmembrane pressure is regulated by pressure valve, and
measured by two pressure gauge. The experiments were performed under the
transmembrane pressure (TMP) of 0.6 bar. The feed suspension was concentrated
to volume concentration factor of 1.88 (from 1 m3 of stillage, 0.47 m3 of permeate
was obtained). The permeate was constantly drained away from the system,
collected and analysed. Retentate was also analysed. The single channel ceramic
membrane used had a nominal pore size 200nm. The membrane was cleaned
according to the recommendation of the manufacturer before each experiment;
the cleaning sequence was a classical acid–base one. All experiments were
carried out at the room temperature (25°C).
RESULTS AND DISCUSION
The stillage was analyzed immediately after its bringing from the factory. The
results of the analyses are presented in Table 2.
As can be seen from Table 2, stillage had high COD value. Dry matter and total
nitrogen content were also high. About 29% of dry matter was in form of
suspended solids. Based on presented results it can be concluded that stillage was
highly polluted.
Further in the experiment stillage was passed through the membrane for
microfiltration. Obtained permeate and retentate were also analysed (Table 2).
The suspended solids were completely removed in permeate and remained in
retentate. Based on these results it can be said that COD in the permeate was
decreased compared to initial value in the stillage. Removal efficiency was about
35%. Dry matter content was lower by about 18%, and total nitrogen content by
about 48%. The ash content of the permeate obtained after filtration was higher
by about 60% compared to initial value in the stillage. Arora et al. (7) reported
similar results obtained after the ultrafiltration of thin stillage. Their results
showed that ash content of permeate was higher than in thin stillage. They
concluded that this may be attributed to the solubility of mineral components in
the stillage stream, which allowed them to pass through the membrane.
Suspended solids were completely removed from the stillage.
According to the results presented in Table 2, it can be seen that values of COD
and dry matter in retentate, were higher compared to initial values in stillage by
about 15% and 21%, respectively. Total nitrogen content was also increased by
about 27%. The ash content in retentate was lower compared to initial value in
stillage, which is in accordance with the results of ash content in permeate.
Considering the pore size of the membranes for microfiltration, it cannot be
expected to remove all organic pollution from wastewater by their application,
but it can be reduced considerably. That makes microfiltration suitable as a
pretreatment for ultrafiltration or reverse osmosis (8).
32
Table 2. Results of analyses of stillage, permeate and retentate
Parameter
Stillage
Permeate
Retentate
Dry matter (mg/L)
63,700
52,362
77,132
Ash (mg/L)
9,640
16,637
4,635
Organic dry matter (mg/L)
54,060
35,725
72,497
85
68
94
Suspended solids (mg/L)
18,340
-
33,560
Ash of suspended solids (mg/L)
1,165
-
2,237
Organic dry matter of
suspended solids (mg/L)
17,175
-
31,323
94
-
93
102,000
65,964
118,000
2,866
1,480
3,650
% of organic dry matter (%DM)
% of organic dry matter of
suspended solids (%)
COD (mgO2/L)
Total nitrogen (mg/L)
CONCLUSIONS
Under performed experiments and results obtained for investigation of
microfiltration efficiency for distillery wastewater treatment, it can be concluded
that the satisfactory organic matter reduction degree was achieved compared to
initial values in stillage. Using microfiltration membranes, organic pollution was
not removed completely from wastewater. However, remarkable results can be
achieved by combination of the microfiltration with other membrane processes
(ultrafiltration, nanofiltration, reverse osmosis), which is crucial both from the
economic standpoint and the standpoint of environmental protection.
REFERENCES
1.
2.
3.
Lapišová, K., Vlĉek, R., Klozová, J., Rychtera, M., Melzoch, K.: Separation
techniques for distillery stillage treatment. Czech J. Food Sci. 24 (2006)
261-267.
Mohana, S., Acharya, B.K., Madamwar, D.: Distillery spent wash: treatment
technologies and potential applications. J. Hazard. Mater. 163 (2009) 12-25.
Krzywonos, M., Cibis, E., Miśkiewicz, T., Ryznar-Luty, A.: Utilization and
biodegradation of starch stillage (distillery wastewater). Electron. J.
Biotechn. 12 (2009) 1-12.
33
4.
5.
6.
7.
8.
Wilkie, A.C., Riedesel, K.J., Owens, J.M.: Stillage characterization and
anaerobic treatment of ethanol stillage from conventional and cellulosic
feedstocks. Biomass Bioenerg. 19 (2000) 63-102.
Baker R.W.: Membrane technology and applications, John Wiley & Sons
Ltd, Membrane Technology and Research, Inc., Menlo Park, California
(2004).
Jokić, A., Zavarago, Z., Šereš, Z., Tekić, M.: The effect of turbulence
promoter on cross-flow microfiltration of yeast suspension: A response
surface methodology approach. J. Membr. Sci. 350 (2010) 269-278.
Arora, A., Dien, B.S., Balyea, R.L., Wang, P., Singh, V., Thumbleson,
M.E., Rausch, K.D.: Ultrafiltration of thin stillage from conventional and emill dry grind processes. Appl. Biochem. Biotechnol. 164 (2011) 58-67.
Ryan, D., Gadd, A., Kavanagh, J., Barton, G.W.: Integrated biorefinery
wastewater design. Chem. Eng. Res. Des. 87 (2009) 1261-1268.
34
ISO 14001:2004 ENVIRONMENTAL MANAGEMENT SYSTEM
Kovač Vilmoš
AGROFOOD SR, Srbija
E-mail: [email protected]
Nowadays more and more challenging to introduce an environmental
management system for the economy. Responsibility to the environment can
change consumers' expectations, so they can be an important tool in retaining
customers. For those companies that are well communicated environmentally
conscious attitude obtain market advantage.
KEY WORDS: ISO 14001:2004, standards, environment
INTRODUCTION
International Standards are strategic tools and guidelines to help companies tackle
some of the most demanding challenges of modern business. They ensure that
business operations are as efficient as possible, increase productivity and help
companies access new markets.
DISCUSSION
ISO 14001 was first published in 1996 and specifies the actual requirements for
an environmental management system. It applies to those environmental aspects
which the organization has control and over which it can be expected to have an
influence.
ISO 14000is a family of standards related toenvironmental managementthat exists
to help organizations :
minimize how their operations negatively affect the environment
comply with applicable laws, regulations, and other environmentally oriented
requirements, and
continually improve in the above.
ISO14000 is similar toISO 9000quality managementin that both pertain to the
process of how a product is produced, rather than to the product itself. As
withISO 9000, certification is performed by third-party organizations rather than
being awarded by ISO directly. TheISO 19011audit standard applies when
auditing for both 9000 and 14000 compliance at once.
The requirements of ISO 14001:2004 are an integral part of theEuropean
Union„sEco-Management and Audit Scheme(EMAS). EMAS„s structure and
material requirements are more demanding, foremost concerning performance
improvement, legal compliance and reporting duties.
35
In 1992, the firstEarth Summit was held inRio-de-Janeiro, and served to generate
a global commitment to the environment. In the same year,BSI Grouppublished
the world's first environmental management systems standard, BS 7750 This
supplied the template for the development of the ISO 14000 series in 1996, by the
International Organization for Standardization, which has representation from
committees all over the world (ISO) (Clements 1996, Brorson& Larsson, 1999).
As of 2010, ISO 14001 is now used by at least 223 149 organizations in 159
countries and economies.
The ISO 14000 family standards includes most notably the ISO 14001:2004
standard, which represents the core set of standards used by organizations for
designing and implementing an effective environmental management system.
Other standards included in this series are ISO 14004: which gives additional
guidelines for a good environmental management system, and morespecialized
standards dealing with specific aspects of environmental management. The major
objective of the ISO 14000 series of norms is: to promote more effective and
efficient environmental management in organizations and to provide useful and
usable tools - ones that are cost effective, system-based, flexible and reflect the
best organizations and the best organizational practices available for gathering,
interpreting and communicating environmentally relevant information.
ISO 14000 standards reviewed by ISO to ensure they still meet market
requirements.
Principes
Plan: Prior to implementing ISO 14001:2004, an initial review or gap analysis of
the organization‟s processes and products is recommended, to assist in identifying
all elements of the current operation and if possible future operations, that may
interact with the environment, termed environmental aspects (Martin 1998).
Environmental aspects can include both direct, such as those used during
manufacturing and indirect, such as raw materials (Martin 1998). This review
assists the organization in establishing their environmental objectives, goals and
targets, which should ideally be measurable; helps with the development of
control and management procedures and processes and serves to highlight any
relevant legal requirements, which can then be built into the policy.
Do: During this stage the organization identifies the resources required and works
out those members of the organization responsible for the EMS‟ implementation
and control (Martin 1998). This includes establishing procedures and processes,
although only one documented procedure is specified related to operational
control. Other procedures are required to foster better management control over
elements such as documentation control, emergency preparedness and response,
and the education of employees, to ensure they can competently implement the
necessary processes and record results.Communication and participation across
all levels of the organization, especially top management is a vital part of the
implementation phase, with the effectiveness of the EMS being dependant on
active involvement from all employees (Federal Facilities Council Report 1999).
36
Check: During the check stage, performance is monitored and periodically
measured to ensure that the organization‟s environmental targets and objectives
are being met (Martin 1998). In addition, internal audits are conducted at planned
intervals to ascertain whether the EMS meets the user's expectations and whether
the processes and procedures are being adequately maintained and monitored.
Act:After the checking stage, a management review is conducted to ensure that
the objectives of the EMS are being met, the extent to which they are being met,
that communications are being appropriately managed and to evaluate changing
circumstances, such as legal requirements, in order to make recommendations for
further improvement of the system. These recommendations are incorporated
through continual improvement, plans are renewed or new plans are made, and
the EMS moves forward.
Benefits:
ISO 14001 was developed primarily to assist companies with a framework for
better management control that can result in reducing their environmental
impacts. In addition to improvements in performance, organizations can reap a
number of economic benefits including higher conformance with legislative and
regulatory requirements (Sheldon 1997) by adopting the ISO standard. By
minimizing the risk of regulatory and environmental liability fines and improving
an organization‟s efficiency (Delmas 2001), benefits can include a reduction in
waste and consumption of resources, and operating costs. Secondly, as an
internationally recognized standard, businesses operating in multiple locations
across the globe can leverage their conformance to ISO 14001:2004, eliminating
the need for multiple registrations or certifications (Hutchens 2010). Thirdly there
has been a push in the last decade by consumers, for companies to adopt better
internal controls, making the incorporation of ISO 14001:2004 a smart approach
for the long term viability of businesses. This can provide them with a
competitive advantage against companies that do not adopt the standard (Potoki
& Prakash, 2005). This in turn can have a positive impact on a company‟s asset
value.The use of ISO 14001:2004 can demonstrate an innovative and forward
thinking approach to customers and prospective employees. It can increase a
business‟s access to new customers and business partners. In some markets it can
potentially reduce public liability insurance costs. It can serve to reduce trade
barriers between registered businesses (Van der Deldt, 1997).
CONCLUSION
The spread of environmental management, increasing emphasis on the ISO 14001
standard. Because the standards are reviewed and renewed every 3-5 years, so are
constantly new challenges to application of the standard. So organizations should
train continuouslythemselves regarding to standard. The ISO 14001 certification
is good communication tool to ensure compliance with environmental
regulations.
37
REFERENCES
Brorson, T &Larsson, G 1999, Environmental Management:
HowtoImplement an Environmental Management System within a
CompanyorOther Organization, EMS AB, Stockholm.
Clements, R.B 1996, CompleteGuideto ISO 14000, Prentice
Hall, UpperSaddleRiver.
Delmas, Magali (2009). Stakeholders and Competitive Advantage: The Case
of ISO 14001. Production and Operations Management 13
Federal Facilities Council Report 1999, Environmental Management Systems
and ISO 14001, National Academy Press, Washington DC
Hutchens, S, Using ISO 9001 or ISO 14001 to Gain a Competitive
Advantage, Intertek white paper, viewed 10 September 2010
Martin, R 1998, ISO 14001 Guidance Manual, National Centre for
environmental decision-making research: Technical report, viewed 23
August 2010
Potoski, Matthew; Prakash, Aseem (2005). "Green Clubs and Voluntary
Governance: ISO 14001 and Firms' Regulatory Compliance". American
Journal of Political Science 49
Sheldon C. (1997), ISO 14001 and Beyond: Environmental Management
Systems in the Real World, Prentice Hall, New York
Van Der Veldt, Danja (1997) "Case studies of ISO 14001: A new business
guide for global environmental protection". Environmental Quality
Management 7
Internet:
http://www.iso.org
http://www.bsigroup.com
Standards:
ISO 9001:2008
ISO 19011:2012
ISO 14001:2004
38
DIELEKTROMOS JELLEMZŐK ÉS A BIOLÓGIAI BONTHATÓSÁG
ÖSSZEFÜGGÉSÉNEK VIZSGÁLATA ÉLELMISZERIPARI
SZENNYVIZEK ÉS MELLÉKTERMÉKEK ESETÉBEN
Tabajdi Enikő
Szegedi Tudományegyetem, Mérnöki Kar, Moszkvai krt. 9, H-6725 Szeged,
Magyarország
A mikrohullámú szennyvíziszap kezelés és kondicionálás a szennyvízkezelési
kutatás-fejlesztési munka egyik kiemelt területe. Azonban a mikrohullámú
eljárások hatékonyságnövelésének eléréséhez
az iszapok dielektromos
jellemzőinek ismerete, illetve ezen paramétereknek a biológiai lebonthatóságára
gyakorolt hatásainak elemzése kulcsfontosságú lenne. Ezért a munkám
célkitűzéseként a húsipari szennyvíziszap dielektromos állandójának ( ‟) és
dielektromos veszteségi tényezőjének ( ”) meghatározását, illetve ezen
paraméterek és a biológiai lebonthatóság változásainak összefüggés-vizsgálatát
fogalmaztam meg. A dielektromos jellemzők méréshez egy a méréshez
speciálisan kifejlesztett, NRVD (Rohde & Schwarz). Teljesítmény mérővel
felszerelt dielektrométert használtam, amelyben egy 2450 MHz frekvencián
működő alacsony teljesítményű magnetron van beépítve.
A
szennyvíziszapok
dielektromos
jellemzőit
tekintve,
a
magas
nedvességtartalmuk miatt, a vízhez hasonló változás lenne elvárható a
hőmérséklet függvényében A saját mérési eredményeim azonban mind az ‟,
mind az ” esetében a víztől eltérő változásokat mutattak. A vizsgált 30-80°C
hőmérséklet tartományban mindkét dielektromos jellemző kezdetben csökkent,
azonban 50°C felett növekvő tendenciákat figyeltem meg.
Az iszapszerkezet felbomlásának, illetve az iszappelyhek dezintegrálódásának
jellemzésére használatos, kémiai oxigénigény méréssel meghatározott
sCOD/tCOD paraméter a dielektromos jellemzők szempontjából kritikus
hőmérséklettartományban szintén növekedett, amely az iszapszerkezet és a
dielektromos jellemzők változásainak összefüggését igazolja. A biokémiai
oxigénigény méréssel meghatározott, a biológiai lebonthatóság mértékét jelző
BOD/tCOD paraméter esetében megállapítottam, hogy ennek értéke és változása
elsősorban a dielektromos veszteségi tényező ( ‟) értékével korrelál.
39
INVESTIGATION OF THE RELATIONSHIP BETWEEN DIELECTRIC
PARAMETERS AND BIODEGRADABILITY OF FOOD
INDUSTRY BY-PRODUCTS AND WASTEWATER
Enikő Tabajdi
University of Szeged, Faculty of Engineering, Moszkvai krt. 9, H-6725 Szeged,
Hungary
Microwave sludge processing has been one of the major parts of research and
development activity of wastewater sector of environmental industry.
Nevertheless, the knowledge about dielectric parameters of food industry sludge
is not sufficient, yet. Furthermore, the relationship between the dielectric
properties and biodegradation has not been analyzed. Therefore the aim of this
work was to measure the dielectric constant ( ‟) and the dielectric loss factor ( ”)
for a meat processing wastewater sludge and investigate possible correlation of its
dielectric parameters with the biodegradability indicator. Dielectric constant and
dielectric loss factor were determined in a tailor made dielectrometer equipped
with a dual channel NRVD power meter (Rohde & Schwarz). Magnetron of
dielectrometer operates at a frequency of 2450 MHz.
Wastewater sludge contains water in a high concentration, therefore behavior of
investigated dielectric parameters i.e. dielectric constant ( ‟) and dielectric loss
factor ( ”) have theoretically a similar trend to water as a function of temperature.
Experimental results presented, that in spite of the high moisture content, the
changes in ‟ and ” were different from the water. By increasing of temperature
of the sludge, the values ‟ and ” were decreased, but over a certain value of
sample temperature both dielectric parameter show an increasing tendency in the
temperature range of 50-80°C.
Ratio of soluble chemical oxygen demand (sCOD) to total COD (tCOD)
correlates with disintegration degree of sludge particles. Experimental results
show that sCOD/tCOD parameter start to increase at the same temperature range
that was critical for the dielectric parameters. Results of experiments show, that
the change in biodegradable fraction of organic matters of meat processing sludge
is in relationship mainly with the change of dielectric loss factor ( ”). In the
investigated temperature range (30-80°C) a good linear correlation was obtained
between the ” and the biodegradability indicator (BOD/tCOD).
40
PREĈIŠĆAVANJE OTPADNE VODE MEMBRANSKIM
BIOREAKTORIMA
Jovana Radić, Jasmina Vuković
Univerzitet u Novom Sadu, Tehnološki fakultet, Bul. Cara Lazara 1,
21000 Novi Sad, Srbija
Membranski bioreaktor je ureĊaj za preĉišćavanje otpadnih voda i njegova
primena u savremenim tehnologijama je postigla veliki znaĉaj i ima niz
prednosti:
dobija se cista voda (BPK < 2mg O2/l),
potreban je mali prostor za uredjaj,
nema neugodnih mirisa,
jednostavne je konstrukcije,
povoljna cena.
Tehnologija membranskog bioreaktora je separacijski proces biološke obrade sa
aktivnim muljem.U zavisnosti od željenog stepena separacije upotrebljavaju se
mikrofiltracijske ili ultrafiltracijske membrane veliĉine pora 0,01-0,5
mikrometara. Mehaniĉka predobrada otpadnih voda prilagoĊena je zahtevima
bioloških procesa koji se odvijaju unutar bioreaktora. Proraĉuni za obradu voda se
izvode za odreĊeni broj reaktorskih jedinica, uzimajući u obzir karakteristiĉne
oscilacije koliĉina i kvaliteta dotoka na ureĊaj, a kako bi parametri efluenta na
izlazu iz ureĊaja uvek bili u granicama zadanih.
Obrada otpadne vode se izvodi u 4 faze:
1. Pre nego što influent (otpadna voda) uĊe u reaktor, on podleže mehaniĉkoj
predobradi koja je prilagoĊena zahtevima bioloških procesa koji se odvijaju
unutar bioreaktora;
2. Aerisanje vode;
3. Zadržavanje optimalne koliĉine aktivnog mulja u bazenu bioreaktora gde se
za 10 do 15 dana nastani dovoljan broj mikroorganizama, koji u kratkom
vremenskom periodu razlažu organske materije koje opterećuju otpadne
vode;
4. Propustanje biološki obraĊene vode kroz membrane koje zadržavaju
mikroorganizme i zaostale organske i neorganske materije, a propuštaju
vodu visokog stepena ĉistoće.
Literatura:
http://www.concordewater.com/serbia-wastewater.htm
http://www.vanis.hr/Vanis-Inzenjering/MBRuredjaj%20za%20prociscavanje%20otpadnih%20voda.htm
41
PURIFICATION OF WASTEWATER USING MEMBRANE
BIOREACTORS
Jovana Radić, Jasmina Vuković
University of Novi Sad, Faculty of Technology, Bul. Cara Lazara 1,
21000 Novi Sad, Serbia
Membrane bioreactor is a device for the treatment of wastewater and its
application in modern technology has achieved great importance and has a
number of advantages :
provided pure water ( BOD < 2 mg O2/l),
need a little space for the unit,
no odor,
it has simple construction,
good price.
Membrane bioreactor technology is a separation process of biological treatment
with active sludge. Depending on the desired degree of separation, the
microfiltration or ultrafiltration membranes are used with pore size of 0.01-0.5
microns. Mechanical pre-treatment of wastewater is adjusted to the requirements
of the biological processes that take place inside the reactor. Calculations for
water treatment are made for a number of reactor unit taking into account the
characteristic oscillations of the quantity and quality of supply at the device, in
the aim the parameters of the effluent which exiting from the device always be
within the prescribed limits.
Treatment of wastewater is carried out in 4 phases:
1. Before influent (wastewater) enters the reactor, it is subject to mechanical
pretreatment, which is adapted to the requirements of the biological
processes that take place within the bioreactor ;
2. Aeration of water;
3. Maintaining the optimal amount of activated sludge in a bioreactor's pool
where in the period of 10 to 15 days is settled sufficient number of
microorganisms in a short period decompose organic matter which have bad
influence on wastewater;
4. Passing the treated water through a membrane that separate microorganisms
and residual organic and inorganic matters, and leakage the water with high
degree of purity.
Literature:
http://www.concordewater.com/serbia-wastewater.htm
http://www.vanis.hr/Vanis-Inzenjering/MBRuredjaj%20za%20prociscavanje%20otpadnih%20voda.htm
42
OTPADNE VODE INDUSTRIJE MLEKA
Nikolina Bubnjević
Univerzitet u Novom Sadu, Tehnološki fakultet, Bul. Cara Lazara 1,
21000 Novi Sad, Srbija
U otpadnim vodama mlekarske industrije pored mleka, može se naći surutka, sa
primesama kazeina i drugih proteina, laktoze i masti, kao i sredstva za ĉišćenje
sistema. Ukoliko se u otpadnoj vodi ne nalaze dovoljne koliĉine kiseonika doći će
do anaerobnog razlaganja laktoze, pri ĉemu nastaje mleĉna kiselina koja utiĉe na
pH i dolazi do taloženja kazeina i do procesa koji stvaraju jake i neprijatne mirise.
Kada se nepreĉišćene otpadne vode ispuštaju u recipijente doći će do razgradnje
organske materije mikroflorom koja se prirodno nalazi u vodi recipijenta. Tokom
razgradnje se troši rastvoreni kiseonik iz vode. Usled ispuštanja otpadnih voda
koje sadrže azot i fosfor, dolazi do eutrofikacije vode recipijenta tj. prekomernog
rasta vodenog bilja što ima negativan uticaj na stajaće vode.
Otpadne vode mlekarske industrije mogu se podeliti na: rashladne vode, procesne
otpadne vode, sanitarne otpadne vode. Metode koje se primenjuju za obradu
otpadnih voda iz pogona za pripremu i preradu mleka su:
1. Razblaženje u prirodnom prijemniku otpadne vode je moguće ako otpadne
vode nemaju previsok stepen zagaĊenja i ako nisu zapreminski obimne, a
prirodni uslovi to dozvoljavaju.
2. Irigacija napuštenog zemljišta, ako u blizini pogona postoji dovoljna
površina neplodnog, napuštenog zemljišta.
3. Obrada u septiĉnim bazenima, samo za otpadne vode sa manjom koliĉinom
neĉistoća.
4. Biološko filtriranje kroz filtracioni materijal (šljaka, šljunak) sa prisutnim
mikroorganizmima za razgradnju organske materije.
5. Obrada aktivnim muljem koja se takoĊe zasniva na biološkim osnovama
preĉišćavanja. Otpadna voda, uz aeraciju, ostaje u bazenima sa aktivnim
muljem najmanje 30 sati, zatim se prevodi u taložni bazen, iz koga se
aktivni mulj vraća u aeracionu sekciju. Mulj se recirkuliše uz povremenu
mikrobiološku stabilizaciju.
6. Hemijsko taloženje pomoću hemijskih koagulanata (kreĉ, soli trovalentnog
gvožĊa) uz višeĉasovnu aeraciju i odvajanje taloga u bazenima za
sedimentaciju.
7. Anaerobno preĉišćavanje ĉiju osnovu predstavlja metansko vrenje kojim se
organska materija prevodi u biogas. Osnovne komponente biogasa su metan
i ugljen-dioksid, te se on može koristiti kao energent. Ovim postupkom se
mogu obraĊivati jako zagaĊene otpadne vode uz nisku proizvodnju mulja i
istovremeno uklanjaje patogenih mikroorganizama.
43
DAIRY WASTEWATERS
Nikolina Bubnjević
University of Novi Sad, Faculty of Technology, Bul. Cara Lazara 1,
21000 Novi Sad, Serbia
Dairy wastewaters besides milk, contain whey, with traces of casein and other
proteins, lactose and fat, as well as cleaning agents. If in dairy wastewater is not
enough oxygen, it will begin of anaerobic decomposition of lactose, with the
formation of lactic acid which influences the pH and this triggers the precipitation
of casein and leads to the process which produces strong and unpleasant odors.
When raw wastewater discharged into recipients, it will result in degradation of
organic matters by microflora, which is found naturally in recipient. During the
decomposition the oxygen from water is consumed. Due to the discharge of
wastewater containing nitrogen and phosphorus, occurs eutrophication, ie
excessive growth of aquatic plants which have a negative impact on the stagnant
waters.
Dairy wastewater can be divided into: cooling water, process wastewater, sanitary
wastewater. The methods used for dairy wastewaters are:
1. Dilution in the natural recipient of wastewater is possible if wastewaters
have not excessive levels of pollution, have not a large volume and if natural
conditions permit this.
2. Irrigation of abandoned and unfruitful land near the plant if there is.
3. Treatment in septic pool for wastewater with a small amount of impurities.
4. Biological filtration through filtration material (clay, gravel) with the
existing microorganisms for degradation of organic matters.
5. Treatment with the activated sludge which is also based on the biological
purification. Wastewater, under aeration, remains in the pool with the
activated sludge for at least 30 hours, then is transfered in a settler, from
which activated sludge is being returned in the section for aeration. The
sludge recirculating with occasional microbiological stabilization.
6. Chemical precipitation by chemical coagulants (lime, salt of trivalent iron)
under several hours of aeration and separation of precipitates in a
sedimentation tank.
7. Anaerobic treatment on the basis of the methane fermentation when the
organic matter converted to a biogas. The main components of biogas are
methane and carbon dioxide, that it can be used as an energy source. In
these process can be treated wastewaters high loaded by organic matters,
with low sludge production, and removal of pathogens at the same time.
44
BIOGÁZ ELŐÁLLÍTÁSA TEJIPARI SZENNYVIZEKBŐL
Szabó Kristóf
Szegedi Tudományegyetem, Mérnöki Kar, Moszkvai krt. 9, H-6725 Szeged,
Magyarország
Munkám során a különböző szennyvizek biogázzá való alakíthatóságát,
lebonthatóságukat vizsgáltam. A kutatás fontos célja volt a nehezen bontható
tejipari szennyvízben fellelhető tápanyagok lebontásának vizsgálata. A kísérletek
során mind a metán, mind a biogáz mennyiségét vizsgáltam párhuzamos
kísérletekben, változtatva a koncentrációt, illetve a pH-t. A hőmérséklet
egységesen 35°C-on zajlott mindegyik kísérletben.
Eredményeim két részre oszthatók aszerint, hogy milyen eszközzel végeztem
kísérletet. Az első felében anaerob, de folyamatos átfolyású rendszert, a
másodikban szintén anaerob, de nem átfolyásos rendszert, hanem egy szakaszos
rendszert használtam. Mivel fontos, hogy a mérések reprodukálhatók legyenek,
így kísérletek során oltóanyagként egy ismert összetételű mikroorganizmus
kultúrát használtam, az ismeretlen összetételű szennyvíziszappal szemben.
Az oltóanyag kiválasztását követően a megfelelő oltóanyag koncentrációt
kerestem, ehhez glükóz tartalmú modellszennyvizet alkalmaztam. Az
eredmények alapján a 15 mg/100 ml koncentrációjú adagolás az ideális, lévén,
hogy az ennél nagyobb mennyiségű mikroba nem ad arányosan nagyobb
gázhozamot, az ennél kisebb pedig nem elegendő a gáztermelés folyamatának
hosszú távú és folyamatos fenntartására.
A megfelelő oltóanyag-koncentráció megállapítása után az oltóanyag
felhasználásra került az eredeti kutatási célomra, a tejipari szennyvizek bontására.
A tejipari szennyvízként az ellenőrizhetőség szempontjából modell tejipari
szennyvizekkel használtam. Lévén, hogy a korábbi kísérletekben az oldatok
kémhatása elsavasodott, egy kísérletsorozatban a kémhatás befolyását is nyomon
követtem. Egyértelműen megfigyelhető, hogy a kiindulási pH hatással van a
gáztermelésre. A különböző tejporoldat koncentrációk, amennyiben előre
beállított (jelen esetben pH=9) kémhatású oldatban vannak, nem térnek el
jelentősen gázhozamban.
A tejporoldat membránszűréssel történő koncentrálása után is viszonylag magas
gázhozamot produkál, ami bíztató abból a szempontból, hogy a fehérjék lebontása
lúgos kémhatású oldatokban megfelelő gázhozamot adhat, attól függetlenül, hogy
a fehérje nehezen hasznosítható biogázként.
45
BIOGAS PRODUCTION FROM DAIRY WASTEWATER
Kristóf Szabó
University of Szeged, Faculty of Engineering, Moszkvai krt. 9, H-6725 Szeged,
Hungary
In this work the possibility of biogas production from different waste waters was
studied. The research objective was to investigate the of hardly-degradable
compounds of dairy waste water. During the experiments, both the methane and
the total amount of biogas were measured in parallel experiments, varying the
concentration and the pH. The temperature was uniformly 35°C for each
experiment.
Our results can be divided into two parts according to type of equipment were
used. In the first series of experiments an anaerobic continuous flow system, in
the second one anaerobic, but a batch system were used. As it is important that
the measurements are reproducible, so an inoculum culture microorganisms with
known composition was used as instead of an unknown composition of sewage
sludge.
After selecting the appropriate inoculum, the appropriate inoculum concentration
was searched. During these experiments model wastewater containing glucose
was used. On the basis of results, 15 mg/100 ml were found to be ideal, since
greater amount of microbes does not give proportionally higher gas yield, while
lower concentration is not sufficient to maintain a long-term gas production
process.
After determining the appropriate inoculum concentration the biogas yield from
wastewater was investigated. For these experiments model dairy waste waters
were used. Since the previous experiments showed that the pH decreasing during
the process, a series of experiments were carried out to monitor the influence of
pH . It was observed that the initial pH affects on the gas production. Different
concentrations of milk powder, if a preset solution pH (in this case pH 9), do not
differ significantly in the gas yield.
After the membrane concentration of milk powder, the concentrate produced a
relatively high gas yields, which is promising because degradation of the protein
can provide adequate gas yield in alkaline solutions, however the protein is hardly
usable biogas source.
46
TEJSAVÓ BIOLÓGIAI LEBONTHATÓSÁGÁNAK NÖVELÉSE
MIKROHULLÁMÚ ELŐKEZELÉSSEL
Szarka Tibor
Szegedi Tudományegyetem, Mérnöki Kar, Moszkvai krt. 9, H-6725 Szeged,
Magyarország
A munkám során a mikrohullámú energiaközléses előkezelési eljárás
hatékonyságát vizsgáltam a tejiparban keletkező melléktermék, a tejsavó,
biológiai lebonthatóságára. Az utóbbi évtizedekben a mikrohullámú
energiaközléses műveleteket egyre szélesebb körben alkalmazzák a
környezetvédelmi technológiákban is. A termikus, és ezen belül a mikrohullámú
előkezelések alkalmasnak bizonyultak többféle biológiai eredetű hulladék és
melléktermék biológiai lebonthatóságának fokozására. A szakirodalmi
eredmények azonban cellulóz tartalmú alapanyagokra és kommunális
szennyvíziszapokra vonatkoznak és a kísérleteket szakaszos üzemmódban
végezték.
A kísérleti munkám elsődleges célja a folyamatos anyagtovábbítású rendszerben
végzett mikrohullámú előkezelésnek a tejsavó aerob és anaerob körülmények
közötti biológiai bonthatóságára gyakorolt hatásának vizsgálata. A kísérleteimhez
egy 2450 MHz frekvencián sugárzó, 150-850 W tartományban változtatható
teljesítményű magnetronnal felszerelt toroid üregrezonátoros mikrohullámú
kezelő berendezést használtam, amelynél az átáramoltatási térfogatáramot 6-25
L/óra tartományban változtattam.
Az előkezelések hatékonyságának jellemzésére meghatározott BOI/KOI
paraméter változása egyértelműen igazolta, hogy a mikrohullámú előkezelések a
kontrollmintához képest az aerob biológiai lebonthatóságot kb. 74%-al, a
szervesanyagok vízoldhatóságát kb. 23%-al növelte. A szennyvíziszappal együtt
fermentált minták mezofil hőmérséklettartományú anaerob rothasztási tesztjeinek
eredményei alapján továbbá megállapítható volt, hogy a mikrohullámú
előkezelések a biogázproduktumot 51%-al növelték, továbbá az előkezelések
alkalmasnak bizonyultak az anaerob folyamat időszükségletének csökkentésére.
A folyamatos üzemű mikrohullámú kezelések hatékonyságát mind a
térfogatáram, mind a fajlagos kezelési teljesítmény befolyásolta.
47
ENHANCING OF THE BIODEGRADABILITY OF WHEY
BY MICROWAVE PRE-TREATMENT
Tibor Szarka
University of Szeged, Faculty of Engineering, Moszkvai krt. 9, H-6725 Szeged,
Hungary
In this work, the efficiency of microwave pre-treatments on the biodegradability
of whey originating from dairy processing was investigated. In the last decades,
microwave processing has been become a widely used technology in the
environmental engineering and technology. More and more scientific works
concluded the thermal pre-treatments and among them the microwave technique
suitable to increase and accelerate the biological degradation of various material,
such as bio-waste and other by-products. Nevertheless these results related to the
cellulosic material and municipal sludge processing. There is lack of information
about the efficiency of continuously flow microwave systems processing food
industry byproducts and liquid wastes.
Therefore, experimental work was focused on the investigation of the efficiency
of continuously flow microwave process on the aerobic and anaerobic
degradability of whey. The experiments were carried out in a tailor made
microwave toroidal cavity resonator equipped with a changeable power
magnetron in a range of 150-850 W operating in a frequency of 2450 MHz.
During experiments the volumetric flow rate of processed material was changed
in a range of 6-25 L/hr, according to the capacity range of the equipment.
The trends in the change of BOD/COD parameter showed, that microwave pretreatments increased the aerobic biodegradability of whey by 74%, and the
organic matter solubility by 23%. Results obtained from mesophilic anaerobic
digestion tests co-digesting the whey by wastewater sludge have revealed that the
cumulative biogas production was increased by 51% related to the untreated
control sample. Furthermore the advantageous effect of microwave pretreatments were manifested in an accelerated anaerobic process with shorter
process time demand. Additionally, the experimental results verified, that the
efficiency of microwave pre-treatments was influenced by the volumetric flow
rate and the specific power intensity, as well.
48
POTENCIJAL SKROBNE DŢIBRE ZA PROIZVODNJU BIOGASA
Petar Keković
Univerzitet u NovomSadu, Tehnološki fakultet, Bul. Cara Lazara 1,
21000 Novi Sad, Srbija
E-mail: [email protected]
U postupku dobijanja bioetanola iz skrobnih sirovina nastaje, kao sporedni
proizvod, velika koliĉina džibre. Po sastavu, džibra je vodeni rastvor ostataka
nakon destilacije profermentisane komine. Skrobna džibra ima veliki sadržaj
organske materije (vrednost hemijske potrošnje kiseonika veću od 100 g/dm3),
suspendovanih ĉestica, azotnih i fosfornih jedinjenja, i predstavlja potencijalno
opasnog zagaĊivaĉa životne sredine (Wilkie i sar., 2000). Najĉešće se koristi kao
Ċubrivo, stoĉna hrana, za navodnjavanje, kao podloga za drugu mikrobiološku
proizvodnju ili se odbacuje. U ovom radu je analizirana mogućnost upotrebe
skrobne džibre u procesu anaerobne digestije radi dobijanja biogasa. Proraĉun je
raĊen za kompletnu džibru i za retentat džibre dobijen primenom “cross-flow”
mikrofiltracije kroz keramiĉku membranu sa otvorima pora od 200 nm. Skrobna
džibra ima BPK5 od 89 gO2/l, a retentat 105,5 gO2/l. Od 10 m3/dan džibre se, u
postupku mikrofiltracije, dobija oko 5,5 m3/dan retentata. Iz ovih supstrata se
može dobiti oko 408 Nm3/dan biogasa iz 10 m3/dan džibre, tj. 259,6 Nm3/dan
biogasa iz 5,5 m3/dan retentata, ako se pretpostavi da se po 1 kg organske
materije koja ulazi u digestor (izražene kao HPK), može dobiti oko 0,4 Nm3
biogasa (Hutnan i sar., 2003). Zapremina digestora za obradu kompletne džibre bi
bila 240 m3 (ako se usvoji dovoljno dugo hidrauliĉko vreme zadržavanja u
digestoru od 20 dana), a zapremina digestora za obradu retentata 132 m3.
Proizvodnja biogasa iz retentata je efikasnija, jer se dobija 1,97 m3/dan biogasa
po jedinici zapremine digestora, dok je za džibru ta vrednost 1,7 m3/dan. Može se
zakljuĉiti da, iako se obradom džibre dobija veća koliĉina biogasa dnevno,
obradom samo retentata se dobija veća koliĉina biogasa po jedinici zapremine
digestora uz istovremeno manje troškove za održavanje potrebne temperature u
digestoru manjih dimenzija. Permeat dobijen mikrofiltracijom džibre se može
koristiti za navodnjavanje, kao voda za pripremu komine ili u neke druge svrhe.
Literatura:
Hutnan M., M. Hornak, I. Bodík, V. Hlavacka, 2003, Anaerobic treatment of
wheat stillage, Chemical and Biochemical Engineering Quaterly, 17, 3, 233-241.
Wilkie A.C., K.J. Riedesel1, J.M. Owens, 2000, Stillage characterization and
anaerobic treatment of ethanol stillage from conventional and cellulosic
feedstock, Biomass and Bioenergy, 19, 63-102.
49
POTENTIAL OF STARCH STILLAGE FOR BIOGAS PRODUCTION
Petar Kekovic
University of Novi Sad, Faculty of Technology, Bul. Cara Lazara 1,
21000 Novi Sad, Serbia
E-mail: [email protected]
In the process of producing bioethanol from starch feedstock a large quantity of
stillage is produced as a byproduct. Stillage is a water solution of all the residues
after distillation of the fermented mash. Stillage has a high quantity of organic
matters (chemical oxygen demand over 100 g/dm3), suspended solids, nitrogen
and phosphorus compaunds, and it is a possible hazardous pollutant (Wilkie et al.,
2000). It is usually used as a fertilizer, feed, for irrigation, as a supstrate for some
other microbiological production or it is disposed. In this paper, the possibility of
using starch stillage in the process of anaerobic digestion in order to biogas
production is analysed. An estimate has been made for complete stillage and the
retentate produced by “cross-flow” microfiltration through a ceramic membrane
with the pore size of 200 nm. Starch stillage has a BOD5 of 89 gO2/l and the
retentate has a BOD5 of 105.5 gO2/l. A stillage volume of 10 m3/day provides
5.5 m3/day of retentate through the process of microfiltration. From these two
supstrates could be produce of 408 Nm3/day of biogas from 10 m3 of stillage, or
259.6 Nm3/day from 5.5 m3 retentate, if it is assumed that per 1 kg of organic
matter that enters into the digester (as COD), a volume of 0.4 Nm3 of biogas can
be obtained (Hutnan et al., 2003). The digester volume for processing the
complete amount of stillage should be 240 m3, if hydraulic retention time of 20
days is taken, whereas the digester volume for processing the retentate should be
132 m3. Production of biogas from the retentate is more efficient, since
1.97 m3/day of biogas is obtained per unit of digester volume, while that value for
stillage is 1.7 m3/day. It can be concluded that, although processing of stillage
provides a higher amount of biogas per day, working with the retentate alone
gives more biogas per unit of digester volume, along with lower expenses on
maintaining the required temperature in a smaller digester. The permeate obtained
by the process of microfiltration of stillage can be used for irrigation, as water for
mash preparing, or for other purposes.
Literature:
Hutnan M., M. Hornak, I. Bodík, V. Hlavacka, 2003, Anaerobic treatment of
wheat stillage, Chemical and Biochemical Engineering Quaterly, 17, 3, 233-241.
Wilkie A.C., K.J. Riedesel1, J.M. Owens, 2000, Stillage characterization and
anaerobic treatment of ethanol stillage from conventional and cellulosic
feedstock, Biomass and Bioenergy, 19, 63-102.
50
BIODIZEL – EKOLOŠKO GORIVO
Jana Zorjan
Univerzitet u Novom Sadu, Tehnološki fakultet, Bul. Cara Lazara 1,
21000 Novi Sad, Srbija
Biodizel je teĉno gorivo proizvedeno iz biljnih ulja ili upotrebljenih ulja i masti.
Kao osnovna sirovina se najĉešće upotrebljava ulje uljane repice, soje, suncokreta
i masti životinjskog porekla. Biodizel je po hemijskom sastavu mešavina metil
estara masnih kiselina. Gorivo je delom nižeg energetskog sadržaja, ali sadrži
veći procenat kiseonika što pomaže boljem sagorevanju.
Biodizel je ekološki energent. Njegovim korišćenjem se smanjuje emisija gasova
"staklene bašte". Biodizel ne sadrži sumpor ĉime se smanjuje mogućnost pojave
kiselih kiša. Ne sadrži olovo, ni toksiĉna aromatiĉna jedinjenja. Visok sadržaj
kiseonika doprinosi smanjenju sadržaja nesagorelih ĉestica (ili ĉaĊi) u gasovima
od sagorevanja, a potpunije sagorevanje doprinosi i smanjenoj emisiji ugljenmonoksida. Njegovim korišćenjem može se smanjiti zagaĊivanje vazduha za ĉak
300%. Biološki je razgradljiv. Sporedni proizvodi koji nastaju tokom proizvodnje
biodizela (glicerin, masne kiseline, lecitin) takoĊe imaju upotrebnu vrednost,
ĉime se smanjuje potreba za njihovim uvozom. Od glicerina se pravi ekološko
sredstvo za hlaĊenje motora, a ima i mnogostruku primenu u farmaceutskoj i
kozmetiĉkoj industriji.
Suncokret se nameće kao najpovoljnija sirovina za proizvodnju biodizela, jer je
gajenje suncokreta u našoj zemlji najrentabilnije. Suncokret sa 1 ha obezbeĊuje
800 kg ulja ili oko 900 l biodizela, ali se ne može koristiti kao jedina sirovina.
Koristi se u kombinaciji sa uljem uljane repice i soje. Standardni postupak za
proizvodnju biodizela je sledeći: ekstrahovano i rafinisano ulje se podvrgava
procesu transesterifikacije sa metanolom, uz dodatak katalizatora, i dobija se
metilestar masnih kiselina. Dobijeno gorivo ima sliĉnu energiju i viskoznost kao
fosilni dizel, i koje se stoga može koristiti u standardnim dizel motorima.
Tokom 2006/2007. godine u svetu je proizvedeno 8,9 miliona tona biodizela, od
kojih je 64% proizvedeno u EU. U Srbiji nema zabeležene proizvodnje pa ni
korištenje biodizela nakon 2009. godine zbog: porasta cena ulaznih sirovina,
izostajanja podsticajnih mera od strane države, zanemarljivog broj struĉnjaka,
nedovršenog odnosa prema evropskim integracijama, nedostataku svesti prema
zaštiti životne sredine. U EU se na 10% obradivih površina ne mogu gajiti biljne
vrste namenjene ishrani, već samo u tehniĉke svrhe. Prikljuĉivanjem Srbije EU to
bi znaĉilo smanjenje površina pod uljaricama namenjenim preradi u jestivo ulje.
Upotrebom biodizela doprinelo bi se oĉuvanju i zaštiti životne sredine i
smanjenju nepoželjnih efekata po okolinu i ĉoveka.
51
BIODIESEL – ECOLOGICAL FUEL
Jana Zorjan
University of Novi Sad, Faculty of Technology, Bul. Cara Lazara 1,
21000 Novi Sad, Serbia
Biodiesel is a liquid fuel produced from vegetable oils or from used oils and fats.
The basic raw materials are commonly used rapeseed, soybean, sunflower and
animal fats. Its chemical composition is the mixture of methyl esters of fatty
acids. Biodiesel has lower energy content, but contains a higher percentage of
oxygen which helps better combustion.
Biodiesel is an environmentally friendly energy source. Its use reduces emissions
of "greenhouse gases". Biodiesel contains no sulfur and that reduces the
occurrence of acid rain. It does not contain lead, nor toxic aromatic compounds.
The high oxygen content helps to reduce the content of unburned particules (or
soot) in the exhaust gases, while more complete combustion contributes reducing
the emissions of carbon monoxide. The use of biodiesel reduces air pollution by
up to 300%. It is biodegradable. By-products created during the production of
biodiesel (glycerol, fatty acids, lecithin) can also be evaluated, thus reducing the
need for their imports. The glycerine can be used for producing ecological engine
coolant and has many uses in the pharmaceutical and cosmetic industry .
Sunflower is imposed as the best raw material for biodiesel production, because
growing of sunflowers in our country is the most profitable. One ha of sunflower
provides about 800 kg of oil or about 900 liters, but it can not be used as the only
raw material. It is used in combination with rapeseed and soybean. The standard
process for the production of biodiesel is following: extracted and refined oil is
subjected to a process of transesterification with methanol, with the addition of
the catalyst and fatty acid methyl esters are obtained. The resulting fuel has a
similar viscosity and energy as fossil diesel, therefore it can be used in a standard
diesel engine.
During 2006/2007 it has been produced 8.9 million tons of biodiesel in the world,
of which 64% was produced in the EU. In Serbia, there is no recorded production
and use of biodiesel after 2009 due to: an increase in price of raw materials,
absence of incentive measures by the state, a negligible number of experts,
rugged attitude towards European integration, lack of awareness towards
environmental protection. In the EU, 10% of arable land can not be used for
cultivation of plant species intended for human consumption, but only for
technical purposes. Serbia's accession to the EU would mean a reduction the area
that is used for cultivating oilseed crops intended for obtaining edible oil. The use
of biodiesel would contribute the preservation and protection of the environment
and reducing the adverse effects on the environment and humans.
52
BIOETANOL ELŐÁLLÍTÁSI LEHETŐSÉGEI HEMICELLULÓZ
ALAPÚ HULLADÉKOKBÓL
Vitay Dóra
Szegedi Tudományegyetem, Mérnöki Kar, Moszkvai krt. 9, H-6725 Szeged,
Magyarország
Kísérleteink alapvető célja az volt, hogy megvizsgáljuk az ipari célra termesztett
dohány feldolgozásának melléktermékéből és a biomassza célra termesztett
dohányból milyen körülmények között lehet bioetanolt előállítani, melyik esetben
alakul kedvezőbben az etanol termelés.
Első lépésként, a magas hemicellulóz tartalmú anyag enzimes hidrolízisét
végeztük celluláz és cellobiáz enzimek segítségével meghatároztuk az enzim
arány és enzim mennyiség optimum értékeket. A bontás során a keletkező
cukoroldat koncentrációjának növekedését és a cukrosodás mértékét követtük
nyomon. Egy gazdaságosabb gyártási eljárás kidolgozásának lehetőségének
érdekében megvizsgáltuk, hogy a minták aprítottsági értékének van-e hatása a
cukorkihozatalra, illetve a membránszeparációval visszanyert enzimek megőrzike aktivitásukat. Különösen érdekes volt az a vizsgálatsorozat, amikor az ultrahang
erőterű szétválasztásból származó enzimek aktivitását mértük.
A kísérletterv által behatárolt és a grandisensterv segítségével optimált cellulóz
lebontási vizsgálataink egyértelműen igazolták, hogy a kétféle dohányminta közül
a melléktermék dohány enzimes hidrolízise adta a magasabb cukorhozamokat. Itt
elértük a 175 mg/cm3 cukorkoncentrációt is 72 órás kísérletinknél. Az
eredmények eltérése a két minta összetételének különbségéből adódik. Amíg a
kísérleti dohány mintákban lényegesen kevesebb a szár, a vastagabb
cellulózkötegeket tartalmazó részek aránya, addig a melléktermék minták
esetében ez a meghatározó összetevő. A kísérleti dohány minták lebontásánál a
cellobiáz enzim túlsúly, a melléktermék dohánynál ezzel ellentétben a celluláz
enzim magasabb aránya adódott optimálisnak. Az aprítás mintegy 20 %-al
növelte a termelődő cukor mennyiségét.
Az enzim visszanyerése céljából végzett ultraszűrési, ill. ultrahang erőtérben
végzett ultraszűrési kísérleteinknél határozottan megfigyelhető az a tendencia,
hogy az ultrahang-erőtérben végrehajtott ultraszűrés során a melléktermék
dohányból származó minták esetében javul a fluxus értéke, kevésbé csökken a
relatív fluxus értéke.
Összességében megállapíthatjuk, hogy a kísérleti dohány-forrású fermentációkból
nagyobb valószínűséggel és több etanolt lehet előállítani, és egy további
kísérletsorozattal optimalizálni lehet mindkét alapanyagból való etanol termelést.
53
BIOETHANOL FROM HEMICELLULOSE WASTE
Dóra Vitay
University of Szeged, Faculty of Engineering, Moszkvai krt. 9, H-6725 Szeged,
Hungary
Fundamental purpose of our experiments was to examine the characteristics of
the by-products from the tobacco processing for industrial purposes and the
tobacco produced especially for the biomass purposes, weather they could be
used for bioethanol production. Further there were investigated the special
conditions, under what circumstances, in which case will be produced the optimal
amount of ethanol from the mentioned biomass.
As a first step, a high hemicelluloses content material was hydrolyzed by
enzymatic hydrolysis using cellulase and cellobiase enzyme. By this hydrolisation
it was determined the rate and the amount of the optimal enzyme content for the
hidrolysis. During the hydrolysis the formed sugar amount was measured as the
sugar concentration rate in the solution and it was measured as the rate of increase
of the saccharification as well. These two parameters were monitored during the
hydrolysis. For developing a more economical manufacturing process, it was
examined whether the value of the comminuted samples have effect on the sugar
yield or on the enzymes which were recovered by membrane separation. The
recovered enzymes kept their activity after the membrane separation too. It was
an interesting study carried on, when the activity of enzymes was monitored after
the separation in the field of the ultrasound.
Limited by the experimental examination and using the gradient plan to optimize
the cellulose degradation studies, it was clearly demonstrated that the enzymatic
hydrolysis of the tobacco by-products samples were gave the highest sugar yields.
In this case the 175 mg/cm3 of sugar concentration was reached during the 72
hours long examination. The differences of the results are came from the
difference between the composition arises of the two samples. While the test
sample had significantly less stem parts of the tobacco, than the byproduct
tobacco had more proportion of cellulose bundles parts. In the enzymatic
degradation of the experimental tobacco samples had an overweight of cellobiase
enzyme. On the other hand the by-products tobacco had higher levels of cellulase
enzyme. Shredding approximately 20 % increased the amount of produced sugar.
For the recovery of the enzyme different methods were used: ultrafiltration and a
combinated method by ultrafiltration with ultrasound in a power field. The
examinations with by-products of tobacco were showed that in ultrasound power
field, the ultrafiltration improved the flux values and had less relative flux
decline.
From these investigations it could be concluded, that the experimental tobacco as source and multi- fermentations, produce more ethanol, and could be a further
series of experiments to optimize ethanol production from both materials.
54
LIGNOCELLULÓZ TARTALMÚ HULLADÉKOKBÓL TÖRTÉNŐ
BIOETANOL ELŐÁLLÍTÁS INTENZIFIKÁLÁSA TERMIKUS ÉS
MIKROHULLÁMÚ ELŐKEZELÉSEKKEL
Lemmer Balázs
Szegedi Tudományegyetem, Mérnöki Kar, Moszkvai krt. 9, H-6725 Szeged,
Magyarország
A mezőgazdasági és élelmiszeripari hulladékokból történő etanolgyártás
legfontosabb előnyei közé sorolható az alapanyagok nagy mennyisége és
alacsony ára. Az enzimes hidrolízis hatékonyságának növelésére különböző
előkezelések ismeretesek. Ezek közül az utóbbi években a mikrohullámú
előkezelések alkalmazhatóságával egyre többet foglalkoznak. Ezek alapján, a
munkám célkitűzése a cukorrépa feldolgozásakor keletkező kilúgozott répaszelet
celluláz és -glükozidáz enzimekkel végzett cukrosítási eljárás hatásfokának
növelése volt. Célom volt a hagyományos hőkezelés, a savas és lúgos előkezelés,
valamint a mikrohullámú kezelés hatékonyságának összehasonlító vizsgálata
hagyományos fermentációs-, és szimultán cukrosítás és fermentációs (SSF)
eljárások alkalmazása során. A mikrohullámú előkezeléseket Labotron 500 típusú
berendezésben végeztem, a kezelési teljesítményszintet és időt, valamint a kezelt
szuszpenziók pH-ját változtatva.
A mérési eredményem alapján megállapítható, hogy a mikrohullámú előkezelés
lényegesen, kb. 35%-al magasabb cukorkihozatalt eredményezett, mint a
hagyományos hőközlés, továbbá a hidrolízishez szükséges idő is jelentősen
lerövidült (120-ról kb. 50 órára csökkent) Az enzimes hidrolízis hatásfokát
tekintve megállapítottam, hogy azonos sugárzott energia esetén a magasabb
fajlagos mikrohullámú teljesítmény kedvezőbb volt, továbbá az alapanyag
előzetes aprításának mértéke a mikrohullámú előkezelési eljárás esetén kevésbé
volt meghatározó.
Mérési eredményeim alapján a SSF módszer eredményesebbnek bizonyult, ennek
oka, hogy a jelenlévő élesztőgombák a képződő cukrot egyből erjesztik, így a
termék-gátlás kisebb mértékű lesz. A mérési eredményeim alapján a
mikrohullámú előkezelés, elsősorban ennek a lúgos előkezeléssel történő
kombinációja nagyobb mértékű cellulóz-hidrolízist eredményezett, mint a
hagyományos hőközlés. A teljes etanol fermentáció folyamat szempontjából
legjobb eredményeket hozó paraméterek nem azonosak a maximális cellulóz
degradációt okozó paraméterekkel, mivel a túlzott mikrohullámú kezelési
energia-intenzitás már olyan vegyületek képződésével jár, amelyek jelenléte az
enzimes folyamat szempontjából nem, de az élesztőgombákkal végzett etanol
fermentáció szempontjából káros, a hatásfokot rontó, és a folyamat sebességét
lassító tulajdonságokkal rendelkeznek.
55
INTENSIFICATION OF BIOETHANOL FERMENTATION FROM
LIGNOCELLULOSIC WASTES BY THERMAL AND MICROWAVE
PRE-TREATMENTS
Balázs Lemmer
University of Szeged, Faculty of Engineering, Moszkvai krt. 9, H-6725 Szeged,
Hungary
The main advantages of bioethanol processing of agro-food wastes are the low
price and the huge quantity of them. But these fermentation technologies require
preliminary hydrolysis of cellulose. Several pre-treatment processes are known to
increase the efficiency of enzymatic hydrolysis. One of the novel pre-treatment
method is the microwave irradiation which has been become a promising area of
researches in the last years. Therefore the aim of this work was to examine the
applicability of microwave irradiation on enzymatic hydrolysis of sugar beet
processing waste. The efficiency of conventional thermal treatments, combination
of them by alkali and acid addition and the microwave process were compared.
The suitability of separated saccharification and fermentation and the
simultaneous saccharification and fermentation (SSF) were also investigated.
Microwave pre-treatments were carried out in Labotron 500 microwave
equipment with varied duration of time, pH, and specific microwave power
intensity.
Experimental results show that microwave pre-treatment method has advantages
over the conventional thermal method, because of the 35% higher glucose yield.
It was verified that the higher applied microwave power level resulted in a higher
efficiency of cellulose hydrolysis, and the influence of particle size was less
significant after microwave pre-treatment comparing it to conventional thermal
treatment. Beside the higher glucose yield, advantage of microwave pre-treatment
was manifested in shorter process time of enzymatic process (time demand
decreased from 120 to 50 hour). Microwave pre-treatments, and mainly the
combination of them with alkali addition resulted in a higher degree of cellulose
hydrolysis than the pre-treatment methods operated by conventional thermal
treatment. But it was also verified that from the aspect of ethanol fermentation the
optimal parameters were different from that of determined for enzymatic
hydrolysis. The reason for this phenomenon can be found in the higher than
optimal power level of microwave irradiation. Too high energy intensity of
microwave pre-treatment led to side product forming which have inhibitory effect
for yeast fermentation manifested in lower efficiency and lower rate of process.
56
MIKROFILTRACIJA OTPADNE VODE INDUSTRIJE ŠEĆERA
Dragana Đilas
Univerzitet u Novom Sadu, Tehnološki fakultet, Bul. Cara Lazara 1,
21000 Novi Sad, Srbija
E-mail: [email protected]
Prerada šećerne repe u cilju dobijanja šećera, dovodi do pojave znatne koliĉine
otpadnih voda, koje predstavljaju veliko opterećenje za vodoprijemnike. Ukupna
potrošnja vode u šećerani iznosi oko 15 m3/t, dok je potrošnja sveže vode oko
0,25-0,4 m3/t preraĊene šećerne repe ili manje, ukoliko je fabrika modernizovana.
Znaĉajan izvor otpadnih voda je faza pranja šećerne repe. Voda koja potiĉe od
pranja repe, ima visok sadržaj organskog zagaĊenja usled prisustva mulja i šećera
rastvorenog iz degradirane repe. HPK (hemijska potrošnja kiseonika) ove otpadne
vode se kreće od 5000 do 10000 mgO2/l (Dalmcija, 2011). Nakon dobijanja
ekstrakcionog soka, on se uparava, a kondenzat se koristi za zagrevanje
uparivaĉa. Kondenzat iz faze koncentrisanja i kristalizacije sadrži visoku
koncentraciju amonijaka i relativno nisku koncentraciju HPK. Kombinovana
procesna voda karekteriše se visokom vrednošću BPK5. Otpadna voda nastala u
procesu proizvodnje šećera zahteva znaĉajno minimizovanje u pogledu koliĉine
organskog opterećenja, pre ispuštanja u recipijent. Nekoliko metoda tretmana se
može preporuĉiti za te svrhe.
U okviru eksperimentalnog dela rada se ispitivala mogućnost mikrofiltracije
otpadnih voda industrije šećera na keramiĉkim membranama nove generacije.
Time se kao permeat dobija voda sa smanjenom HPK vrednošću i bez mutnoće, i
retentat sa povećanim sadržajem organske materije i suspendovanih ĉestica.
Dobijeni permeat bi se mogao recirkulisati u proces proizvodnje šećera.
Za mikrofiltarciju je korišćena cevna keramiĉka memebrana sa veliĉinom otvora
pora od 200 nm, i to pri transmembranskom pritisku u opsegu 1-3 bara, i protoku
od 50-150 l/h. Tokom mikrofiltracije pratio se fluks permeata, HPK, sadrzaj suve
materije napojne smeše, permeata i retentata. Fluks je voma bitan parametar s
obzirom da je on polazna osnova za dalje dimenzionisanje ureĊaja za
mikrofiltraciju.
Najveći fluks permeata, 34,54 l/m2h se dobija kada se pritisak održava na 3 bara i
pri protoku od 150 l/h. Pod tim uslovima sadržaj suve materije u permeatu se
smanji za oko 50% u odnosu na napojnu smešu.
Literatura:
Dalmcija B. (Urednik), 2011, Graniĉne vrednosti emisije za vode, Univerzitet u
Novom Sadu, Prirodno-matematiĉki fakultet, Departman za hemiju, biohemiju i
zaštitu životne sredine, Centar izvrsnosti za hemiju okoline i procenu rizika,
Udruženje za unapreĊenje i zaštitu životne sredine “Novi Sad”, Novi Sad
57
MICROFILTRATION OF WASTEWATER FROM SUGAR INDUSTRY
Dragana Đilas
University of Novi Sad, Faculty of Technology, Bul. Cara Lazara 1,
21000 Novi Sad, Serbia
E-mail: [email protected]
Sugar beet processing in order to obtain sugar, leads to significant amounts of
wastewater, which is a great load to water recipients. The total water
consumption in sugar factory is about 15 m3/t, while the consumption of fresh
water is around 0.25-0.4 m3/t of refined sugar beet or less, if the plant was
modernized. The most significant source of wastewater is the washing of sugar
beets. The water originating from the washing proces has a high content of
organic pollution due to the presence of sludge and sugar. COD (chemical
oxygen demand) the wastewater ranges from 5000 to 10000 mgO2/l (Dalmcija,
2011). After obtaining extraction juice, it is evaporated, and the obtained
condensate is used for heating of the evaporator. The condensate received in
process of concentration and crystallization contains a high concentration of
ammonia, and a relatively low COD. The combined process water has a high
level of BOD5. The wastewater produced in the process of sugar production
requires significant treatment in terms of minimization of organic meter prior to
discharging. Several treatment methods can be recommended for this purpose.
These paper examines possibilities of wastewater microfiltration through the new
generation of ceramic membranes. Thus, the permeate with reduced COD value
and without suspended solids, and retentate with high content of organic matter
and suspended solids were obtained. The permeate may be recirculated in the
process of sugar production.
In the process of the microfiltration tubular ceramic membrane with pores of
200 nm at the transmembrane pressure between 1-3 bar, and a flow rate of 50150 l/h hase been used. During microfiltration different parametars have been
followed, such us flux, COD and dry matter content in the semples. Flux is very
important parameter since it is a basis for further dimensioning of microfiltration
device. The largest permeate flux of 34.54 l/m2h is obtained when the pressure is
maintained at 3 bar and at a flow rate of 150 l/h. Under those conditions, the dry
matter content in the permeate was reduced by about 50% as compared to the
feeder mixture.
Literature:
Dalmcija B. (Ed.), 2011, Emission limit values for water, University of Novi Sad,
Faculty of Science, Department for chemistry, biochemistry and environmental
protection, Center of excellence for environmental chemistry and risk assessment,
The Association for the promotion and protection of environment “Novi Sad”,
Novi Sad (in Serbian)
58
A TEJ BIOAKTÍV ANYAGAINAK NÖVELÉSE
Fejes Kitti
Szegedi Tudományegyetem, Mérnöki Kar, Moszkvai krt. 9, H-6725 Szeged,
Magyarország
A tejben a legfontosabbak összetevők a tejfehérjék, tejcukor, ásványi anyagok és
vitaminok. Legértékesebb tápanyagfehérjéink közé tartoznak a tejfehérjék,
amelyek lehetnek savófehérjék vagy immunpeptidek. Alapanyagként fölözött
tejet használtam különböző vágási értékű membránokon szeparálva, valamint a
kimozin enzimmel lebontott tejminták ultraszűrési paramétereit. A kísérleteket
szobahőmérsékleten, 200 rpm keverési fordulatszám mellet, 0,5 MPa nyomáson
illetve 54 Hz vibrációs frekvencia mellett végeztem. A kiindulási minták
térfogata 50 ml illetve 10 liter volt. A membránszűréseket minden esetben
négyszeres sűrítési arány eléréséig végeztem. Az enzimkezelések során a fölözött
tejmintát 43°C-ra melegítve biztosítottam az enzim működéséhez megfelelő 6,26,5 pH-t és hőmérsékletet, majd 6 óra hosszán át tartott a hidrolízis 43°C-on. A
mintákat 100, 30 és 10 kDa vágási értékű regenerált cellulóz alapanyagú
membránokkal ultraszűrtem. A szűrletek tejfehérje, tejzsír, tejcukor, összes
fehérje és szárazanyag tartalmainak változásait, a fluxusokat, relatív fluxus
értékeket, a membránok visszatartási értékeit, valamint az analizátor segítségével
a minták tejcukor, tejfehérje, szárazanyag és összes fehérje tartalmát is
meghatároztam.
A fölözött tej fluxus értékei a 10 kDa-os membránon egy enyhén meredekebb
lefutású hatványgörbét adtak, mint a 30 kDa-os membránon. A 100 kDa-on
kapott adatokhoz képest, pedig 20%-al alacsonyabb lett a fluxus. Okai, a
membrán pórusmérete és az eltömődési index között fordítottan arányosak
egymással, illetve, hogy nagyobb relatív fluxus változás a legkisebb (10 kDa)
vágási értékű membránú szűrésnél figyelhető meg, mivel itt erőteljesebb az
áteresztőképesség csökkenés, így az eltömődés is. A tejmintákat később kimozin
enzimmel kezeltem. A mintákat 30 kDa és 10 kDa vágási értékű membránnal
szeparáltam lépcsőzetes elvet követve. Összegzésként megállapítottam, hogy a
kimozinnal végzett fehérjebontás sikeresen lejátszódik, és a 100 kDa vágási
értékű membránon (vibráció alkalmazása nélküli) a fehérjefrakció eltömte a
membrán pórusait, így a többi tej összetevő visszatartása is megnövekedett. Az
enzimes feltárás eredményeként a roncsolt óriás fehérjemolekulák a 100 és 30
kDa-os membránon átjutva a 10 kDa-os membránon mutattak magas
visszatartási.
59
ENHACEMENT OF BIOACTIVE COMPONENTS OF MILK
Kitti Fejes
University of Szeged, Faculty of Engineering, Moszkvai krt. 9, H-6725 Szeged,
Hungary
In this thesis, the goal was to examine the extractability of the milk-protein based
bioactive materials and the possibility to increase their amount. Enzym and
membrane separation were used in the experiments. Based on the results it can be
concluded that the ultrafiltration of milk is an appropriate process for separating
bioactive components of the milk. Through the process it have proved that there
is an inverse relationship between the size of the pores of the membranes used in
separation and the clogging index. The relative flux change was detected at the
smallest (10 kDa) membrane filtering cutoff, as it experienced a stronger decrease
of permeability, thus clogging as well. The chymosin enzymatic treatments have
shown that lower molecular weight fractions have been generated, which
confirmed enzymatic detection of milk proteins, respectively some of them have
passed through the pores of ultrafiltration, and some of them caused more
blockage.
Flux values of the skimmed milk of 10 kDa membrane gave a slightly steeper fall
characteristics power curve than of the 30 kDa membrane. The resulting datas on
100 kDa compared with the datas on 10 kDa, on got 20% lower flux values than
the 100 kDa membranes flux values. The causes, the membrane pore size and the
fouling index are inversely proportional to each other and the greater relative flux
change was observed on the smallest (10 kDa) cutoff value membranes during the
filtration, whereas the permeability was decreased stronger, thus fouling as well.
The milk samples were subsequently treated with chymosin enzyme. The samples
were separated by 30 kDa and 10 kDa cutoff value membranes following the
cascading principle. In summary, it was found that protein breakdown with the
chymosin enzyme was occurred successfully, and on the 100 kDa cutoff value
membrane (without applying vibration), the protein fraction fouled the pores of
the membrane, so that the retention of the rest component of the milk was
increased too. The disrupted giant protein molecules during the enzymatic
digestion were passed through a result of 100 and 30 kDa membrane and these
proteins were showed high retention values of the 10 kDa membrane. The
enzymatic digestion was successfully carried out, furthermore, that the small
protein fractions molecular weight was 10 kDa, which small protein fractions
were quickly fouled the pores of the membrane and the started the gelation.
60
NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSOKKAL KAPCSOLT
MEMBRÁNSZŰRÉS HATÉKONYSÁGÁNAK VIZSGÁLATA TEJIPARI
SZENNYVIZEK TISZTÍTÁSA SORÁN
Csorba Nándor
Szegedi Tudományegyetem, Mérnöki Kar, Moszkvai krt. 9, H-6725 Szeged,
Magyarország
A munkám során tejipari modell szennyvizek oxidatív előkezelését végeztem,
majd ultraszűrő regenerált cellulóz membrán segítségével szűrtem. A mérésekhez
a Milipore által gyártott laboratóriumi kevertetett membránszűrő berendezést
használtam (MEUF), a modellszennyvizet pedig tejporból készítettem. Elsődleges
célom az volt, hogy megvizsgáljam az előkezelések hatását a membránszűrés
folyamatára. Továbbá meghatároztam a fluxusértékeket és az ellenállások
változását az egyes kezelések hatására, valamint, hogy van-e hatása a
visszatartásokra.
A kísérletek során Fenton-reakciót, illetve ózonos előkezelést végeztem a modell
oldatunkon, majd végrehajtottam az ultraszűrést. Az ózonkezelést 5 perces
időtartamban végeztem. A Fenton-reakció során megvizsgáltam milyen hatással
van a pH megváltoztatása, illetve a H2O2 és vas(II)-szulfát arányának változása a
szervesanyag-tartalom csökkentésre és a membránszűrés paramétereire.
A vizsgálataim során kapott eredmények alapján elmondhatjuk, hogy az általam
készített modellszennyvíz Fenton előkezelése a szűrés során kismértékű
eltömődés okozta ellenállás növekedést eredményez, az ózonkezelés pedig növeli
a gélréteg ellenállást a kevertetés ellenére is. Ugyanakkor az ózonkezelt oldatok
esetében fluxus javulása tapasztalható. Az ózonos előkezelésnek viszont a
későbbi szennyvízkezelés során lehet pozitív hatása ugyanis az előkezelés
hatására megnő a szennyvíz biológiai bonthatósága.
A hagyományos membránszűrést összehasonlítottam a kombinált eljárások során
elérhető összes szerves anyageltávolítási hatékonysággal, azt tapasztaltam, hogy
az előkezelések jelentősen növelték a szerves anyag eltávolítási hatékonyságot.
61
INVESTIGATION OF MEMBRANE FILTRATION COMBINATED
WITH ADVANCED OXIDATION PROCESSES DURING DAIRY
WASTEWATER TREATMENT
Nándor Csorba
University of Szeged, Faculty of Engineering, Moszkvai krt. 9, H-6725 Szeged,
Hungary
The work was dealed the investigation of combination of oxidative pre-treatments
and ultrafiltration using regenerated cellulose membrane for cleaning model dairy
wastewater. The measurements were carried out by a Millipore laboratory stirred
membrane filtration apparatus (MEUF). The model wastewater was prepared
from milk powder. The primary goal was to investigate the effect of pre-treatment
of the membrane filtration process and changes in the fluxes. The filtration
resistances and the effect of pretreatments on the retention also were investigated.
During the experiments, Fenton reaction and ozone pre-treatment was carried out
on the model solution, and then the samples were ultrafiltered. The ozone
treatment was performed in five-minute period. In the Fenton reaction, the effects
of pH, concentration of H2O2 and ferrous (II) sulphate on the degradation of
organic material and changes of membrane filtration parameters were examined.
It was found that the pre-treatment with Fenton-reaction results in a slight
increase in resistance during filtration due to clogging. Ozone pre-treatment
increases the resistance of the gel layer, despite the stirring well. However,
improvements in flux for ozone treated solutions also were observed. The ozone
pre-treatment may have been further positive effect in subsequent wastewater
treatment because of the increased biodegradability of treated waste waters.
Comparing the total organic material removal efficiency of conventional
membrane filtration and combined methods it was found that a the pre-treatment
significantly increased the removal efficiency of organic matter.
62
ULTRAHANGGAL KAPCSOLT MEMBRÁNSZŰRŐ BERENDEZÉS
ÉPÍTÉSE ÉS TESZTELÉSE
Vigchert Gábor
Szegedi Tudományegyetem, Mérnöki Kar, Moszkvai krt. 9, H-6725 Szeged,
Magyarország
Munkám során egy ultraszűrő berendezést és egy ultrahangos készüléket
kapcsoltam össze.
Előzetes kísérleteim során megállípítottam, hogy a tiszta víz együttes szűrése és
ultrahangos kezelése esetén megfigyelhető fluxusnövekedés részben az ultrahang
alkalmazása során fellépő hőmérsékletemelkedés, részben pedig magának az
ultrahangnak a hatására következik be. A mért fluxusokat az UH hőmérséklet
növelő hatása miatt korrigátam20°C-ra, később ezeket a korrigált adatokat
hasonlítottam össze.
A következő kísérletsorozatban savópor oldatból készített modellszennyvíz
ultrahangos kezeléssel kapcsolt membránszűrését vizsgáltam. A mérések során a
szűrést 3 és 10 kDa vágási értékű regenerált cellulóz mebránokkal végeztem.
Mértem a zavarosság - és szárazanyag visszatartást, valamint a vezetőképesség
változását is. Az utóbbi két paraméter esetében nem volt számottevő visszatartás,
a zavarosságot okozó anyagokat azonban 98-99%-ba visszatartja a membrán.
A kísérletek során a membránellenállások változását is megvizsgáltam. A
membrán saját ellenállása (RM) az ultrahangos kezelések hatására kismértékben
csökkent. Az eltömődési (fouling) ellenállás (RF) mindkét membrán esetén
kismértékben növekszik, bár ezek az értékek nem szignifikánsan magasabbak,
mint az ultrahang nélküli értékek. A gélréteg okozta ellenállást (RG) sikerült a
leghatékonyabban csökkenteni az ultrahangos kezelésekkel, több mint 60%-os
ellenállás csökkenést tapasztaltam mindkét membrán esetén. A korábbi
eredményekből következik, hogy a membrán teljes ellenállása (RT) is
nagymértékben csökkent.
Eredményeim alapján elmondható, hogy az ultrahanggal kapcsolt membrán
ultraszűrő készülék alkalmas a membrán ellenállások, azon belül is a gélréteg
okozta ellenállás hatékony csökkentésére.
63
DESINGING AND TESTING OF ULTRASONICALLY
ASSISTED ULTRAFILTRATION EQUIPMENT
Gábor Vigchert
University of Szeged, Faculty of Engineering, Moszkvai krt. 9, H-6725 Szeged,
Hungary
The aim of this work was designing and testing an ultrafiltration equipment built
together with an ultrasonic device. During the work the effect of ultrasound on
the filtration parameters during ultrafiltration of whey solution was investigated.
In preliminary experiments it was found the increase in temperature in the
combined treatment of filtering of pure water and ultrasonic, and the application
of ultrasound itself cause increasing of permeate fluxes. Because of this the
measured fluxes were corrected to 20°C temperature, and subsequently compared
these adjusted data.
The next series of experiments, whey solution as model wastewater was
produced, and was filtered by an ultrafiltration equipment combined with and
ultrasonic device. During measurements, the experiments were performed 3 and
10 kDa cutoff regenerated cellulose mebranes. Turbidity, solids retention, as well
as changes in the conductivity as were measured. In case of the latter two
parameters not significant retention were observed, but the substances causing
turbidity can be eliminated with rejection 98 to 99%.
During the experiments, the changes in membrane resistances were analyzed.
Membrane resistance (RM) during the ultrasonic treatments decreased slightly due
to the effect of ultrasound. The fouling resistance (RF) in both membrane
increases slightly, although these values are not significantly higher than the
values without ultrasound. The gel layer resistance (RG) was effectively decreased
during ultrasonic treatment. More than 60% decrease in both membrane was
observed. In consequence of these results the total membrane resistance (RT) also
was greatly reduced.
On the basis of these results it can be concluded that the ultrasound device
connected to membrane ultrafiltration membrane is effective for reducing the gel
layer resistance.
64
UTICAJ pH VREDNOSTI NA EFIKASNOST ADSORPCIJE TEŠKIH
METALA IZ VODE
Mina Jandrić
Univerzitet u Novom Sadu, Tehnološki fakultet, Bul. Cara Lazara 1,
21000 Novi Sad, Srbija
E-mail: [email protected]
Voda, kao jedan od najvažnijih uslova za život, izložena je negativnom uticaju
koji imaju industrija i druge delatnosti za koje je odgovoran ĉovek. Jedna od
posledica ovog uticaja je i visoka koncentracija teških metala koji dospevaju u
vode putem otpadnih tokova iz raznih ljudskih delatnosti. Teški metali su toksiĉni
i nisu biodegradabilni. Njihova karakteristika je sposobnost akumulacije u
tkivima i iz tog razloga su opasni za živi svet, jer mogu da dovedu do hroniĉnih
oboljenja, trovanja, itd. Biosorpcija je jedan od najĉešće ispitivanih procesa koji
se koriste za uklanjanje jona teških metala iz otpadnih voda, pomoću prirodnih
materijala, odnosno biomase. U ovom procesu dolazi do nakupljanja materije na
graniĉnoj površini izmeĊu rastvora i ĉestica biosorbenta. Za uklanjenje teških
metala se koriste razliĉiti biosorbenti, supstance koje na svojoj površini imaju
aktivne centre na koje se joni teških metala vezuju. Aktivni centri su razliĉite
funkcionalne grupe, najĉešće: hidroksilna, karboksilna, amino, estarska, itd.
Mehanizam vezivanja jona teških metala za aktivne centre zavisi od brojnih
faktora, kao što su vrsta aktivnih centara na adsorbentu, odnosno vrsta i
karakteristike adsorbata, veliĉine ĉestica adsorbenta, vremena kontakta
adsorbenta i adsorbata, kao i od pH vrednosti, jonske jaĉine rastvora itd. Jedan od
najznaĉajnijih faktora koji utiĉu na ceo proces biosorpcije je pH vrednost, koja
utiĉe na jone teških metala, kao i na funkcionalne grupe aktivnih centara koji se
nalaze na biosorbentu. Pri višim pH vrednostima dolazi do formiranja hidroksida
metala koji se izdvajaju u vidu taloga, što predstavlja otežavajući faktor kod
ispitivanja fenomena adsorpcije. U ovom radu je ispitan uticaj pH vrednosti na
adsorpciju jona teških metala, na primeru jona bakra, pomoću izluženih rezanaca
šećerne repe. Za podešavanje pH vredosti korišćeni su hidroksid i razliĉiti puferi
da bi se što bolje sagledao uticaj same pH vrednosti i doprinos stvaranja
hidroksida na ukupno uklanjanje jona bakra iz rastvora tokom adsorpcije.
65
INFLUENCE OF pH VALUE ON ADSORPTION EFFICIENCY OF
HEAVY METALS FROM WATER
Mina Jandrić
University of Novi Sad, Faculty of Technology, Bul. Cara Lazara 1,
21000 Novi Sad, Serbia
E-mail: [email protected]
Being one of the crucial conditions of life, water is exposed to negative influence
by industry and other activities performed by the humans. One of the
consequences is high concentration of heavy metals that come from waste
streams resulting from different human activities. Heavy metals are toxic and non
biodegradable. One of the main characteristics of heavy metals is their ability to
accumulate in tissue and for this reason they are dangerous for the living world,
because they can cause chronic diseases, poisoning, etc. Biosorption is one of the
most researched processes used for the removal of heavy metal ions from
wastewater by natural materials, namely biomass. Within this process, materials
accumulate on interface between solution and biosorbent particles. The different
biosorbents, the substances with active sites on the surface to which heavy metal
are bonding, can be used for this purposes. Active sites include different
functional groups, mostly hydroxyl, carboxyl, amino, ester, etc. The bonding
mechanism of heavy metal ions to active sites depends on various factors, such as
type of adsorbent active sites, namely adsorbate type and characteristics, contact
time of adsorbent and adsorbate, adsorbent particle sizes, as well as pH value,
ionic strength of solution, etc. One of the key factors that influence the process of
biosorption is pH value, which affects heavy metal ions, as well as functional
groups of active sites on biosorbent. Metal hydroxide is formed at higher pH
values and it forms precipitate, which is hindering factor in examination of the
phenomenon of adsorption. On the example of copper ions, this paper examines
the influence of pH value on the adsorption of heavy metal ions by sugar beet
shreds. The adjustment of pH values was done by the use of hydroxide and
different buffer solutions in order to investigate influence of pH value, and
contribution of hydroxide formation, on the removal of copper ions from solution
during adsorption.
66
ADSORPCIJA JONA BAKRA IZ VODE MAGNETNO TRETIRANOM
PILJEVINOM DRVETA
Dubravka Malenić
Univerzitet u Novom Sadu, Tehnološki fakultet, Bul. Cara Lazara 1,
21000 Novi Sad, Srbija
E-mail: [email protected]
Teški metali su opasne zagaĊujuće materije, koje nisu biorazgradive i većina je
toksiĉna. Oni dospevaju i životnu sredinu preko otpadnih gasova od sagorevanja,
otpadnih voda i ĉvrstog otpada koji ih sadrži. Pogoni za površinsku zaštitu metala
su jedan od znaĉajnih izvora emisije teških metala. Pre ispuštanja u recipijent,
koncentracija teških metala u otpadnoj vodi se mora smanjiti ispod propisima
dozvoljene vrednosti. To se može postići: taloženjem, jonskom izmenom ili
adsorpcijom. Adsorpcija je proces nakupljanja jona metala na graniĉnoj površini
izmeĊu rastvora i ĉvrstog adsorbenta, najĉešće aktivnog uglja. Poslednjih godina
je nauĉno-istraživaĉka pažnja posebno usmerena na razvoj jeftinih adsorbenata na
bazi otpadne biomase tj. biosorbenata (Ahluwalia i Goyal, 2007). Piljevina drveta
je široko rasprostranjen otpadni materijal, koji se zbog svog sastava može
primeniti kao adsorbent. Najvažnija karakteristika nekog adsorbenta je njegov
adsorpcioni kapacitet. On se može poboljšati razliĉitim hemijskim ili fiziĉkim
predtretmanima. Ispitan je potencijal primene netretirane piljevine drveta hrasta,
bagrema i topole, kao adsorbenata za uklanjanje jona bakra iz model vode, i
potencijal ovih biosorbenta nakon magnetnog predtretmana. Magnetni
predtretman piljevina je izveden magnetnim nanoĉesticama od 11 nm
(Monsiniewicz-Szablewska i sar., 2007) na Department of Biomagnetic
Techniques, Institute of Systems Biology and Ecology, Ceske
Budejovice.Ustanovljeno je da su kapaciteti adsorpcije za jone bakra netretiranih
piljevina drveta hrasta, bagrema i topole, izraženi preko Langmuirove konstante
qm, 13,74 mg/l, 9,17 mg/l i 3,04 mg/l, a magnetno tretiranih piljevina 5,64 mg/l,
4,73 mg/l i 4,63 mg/l, respektivno. Zakljuĉeno je da se magnetnim tretmanom ne
postiže znaĉajno povećanje adsorpcionog kapaciteta ispitivanih piljevina drveta,
te se ovaj tretman ne preporuĉuje.
Literatura
Ahluwalia S.S., D. Goyal, 2007, Microbial and plant derived biomass for removal
ofheavy metals from wastewater, Bioresource Technology, 98, 2243-2257.
Monsiniewicz-Szablewska E., M. Safarikova and I. Safarik: Magnetic studies of
ferrofluid-modified spurce sawdust, Journal of Physics D: Applied Physics, 40,
2007.
67
ADSORPTION OF COPPER IONS FROM WATER WITH MAGNETIC
TREATED WOOD SAWDUST
Dubravka Malenić
University of Novi Sad, Faculty of Technology, Bul. Cara Lazara 1,
21000 Novi Sad, Serbia
E-mail: [email protected]
Heavy metals are dangerous pollutants, which are not biodegradable, and most
are very toxic. They come to the enviroment as waste gases from combustion,
waste waters and solid waste that are contain it. Electroplating factories are major
sources of heavy metals emision. Prior to discharge into the recipient the level of
heavy metal ions in wastewater must be reduced under the values alowed by
relevant regulations. This can be achieve by: precipitation, ion exchange or
adsorption. Adsorption represents accumullation of metal ions on interface
between solution and solid adsorbent. The most common adsorbent is acive coal.
In recent years, the attention is foccused on developing low-cost adsorbents,
based on waste biomass, i.e. biosorbents (Ahluwalia and Goyal, 2007). Sawdust,
as an abundant waste material can be used as adsorbent due to its structure. The
most important characteristic of an adsorbent is its adsorption capacity. It can be
improved using various chemical or physical pretreatments. The potential of
applying oak, black locust and poplar sawdust, with and without magnetic
pretreatment, as adsorbents for removal of copper ions from model water is
examined. The magnetic pretreatment of sawdusts is done using magnetic
nanoparticles of 11nm (Monsiniewicz-Szablewska and sar., 2007) on the
Department of Biomagnetic Techniques, Institute of Systems Biology and
Ecology, Ceske Budejovice. It was established that the adsorption capacities for
copper ions of non-treated oak, black locust and poplar wood sawdusts,
expressed by Langmuir constant q m are 13,74 mg/l, 9,17 mg/l i 3,04 mg/l, and for
magnetic treated sawdusts 5,64 mg/l, 4,73 mg/l i 4,63 mg/l, respectively. It is
conclueded that magnetic treatment has no major efects on increasing of
adsorption capacities of investigated wood sawdusts, thus this treatment is not
recomendable.
Literature
Ahluwalia S.S., D. Goyal, 2007, Microbial and plant derived biomass for removal
ofheavy metals from wastewater, Bioresource Technology, 98, 2243-2257.
Monsiniewicz-Szablewska E., M. Safarikova and I. Safarik: Magnetic studies of
ferrofluid-modified spurce sawdust, Journal of Physics D: Applied Physics, 40,
2007.
68
UZROCI ZAGAĐENJA VELIKOG BAĈKOG KANALA
Tijana Nović
Univerzitet u Novom Sadu, Tehnološki fakultet, Bul. Cara Lazara 1,
21000 Novi Sad, Srbija
Veliki Baĉki kanal je igraĊen u periodu od 1794. do 1801. godine i zamišljen
je kao važna transportna vodena veza kojom se “put soli” sa Karpata ka Beĉu
skraćivao za nekoliko nedelja, a uz to, služio je za isušivanje inaĉe vrlo
moĉvarnog zemljišta u ovom delu Baĉke. Dugaĉak je 118 km, širok 17 m, a pri
vrhu je širok oko 25 m. Proseĉna dubina kanala je 3 m. U XVIII veku to je bio
najveći graditeljski poduhvat u Evropi. Veliki baĉki kanal je u meĊuvremenu
nazivan i Kišov kanal. Naime, idejni otac i graditelj kanala bio je ugarski
plemić i inženjer Jožef Kiš.
Ubrzana industrijalizacija uz nebrigu za preĉišćavanje industrijskih i
komunalnih otpadnih voda basena Vrbas-Kula-Crvenka tokom druge polovine
XX veka pretvorila je Veliki Baĉki kanal u kolektor otpadnih voda, te je danas
najzagaĊeniji vodotok u Srbiji, pa i u Evropi. Identifikovani su zagaĊivaĉi:
šećerana “Crvenka“, fabrika alkohola “Panon“, fabrika biskvita “Jaffa“,
fabrika štofova “Sloboda“, fabrika kože “Eterna“, fabrika sanitarnih armatura
“Istra“, šećerana “Baĉka“, mesna industrija “Carnex“, svinjogojska farma
“Farmacoop“, uljara “Vital“ kao i komunalne otpadne vode naselja Vrbas,
Kula i Crvenka.
Ispitivanjem je utvrĊeno da je na najugroženijoj deonici kanala (od prevodnice
do triangla u dužini od 6 km) istaloženo 400000 m3 mulja kontaminiranog
teškim
metalima,
policikliĉnim
aromatiĉnim
ugljovodonicima
i
termotolerantnim koliformnim bakterijama.
Najznaĉajniji zagaĊivaĉi u ispitivanom industrijskom basenu su dve šećerane.
One zajedno ĉine oko 78% ukupnog organskog opterećenja (1,23 t HPK/h ili
0,60 t BPK5/h), 52,7% ukupnog opterećenja suspendovanim materijama i
49,5% ukupnog opterećenja azotnim materijama u industrijskom basenu
Vrbas-Kula-Crvenka.
Znaĉajana koliĉina zagaĊenja potiĉe i od svinjogojske farme i klanice. Ova dva
zagaĊivaĉa ĉine od 15,9-17,4% ukupnog organskog zagaĊenja u ovom basenu,
u zavisnosti od toga da li je opterećenje raĉunato preko HPK ili BPK 5, zatim
oko 25 % ukupnog opterećenja suspendovanim materijama i 32 % ukupnog
opterećenja azotnim materijama.
69
CAUSES OF POLLUTION OF GREAT BAĈKA CANAL
Tijana Nović
University of Novi Sad, Faculty of Technology, Bul. Cara Lazara 1,
21000 Novi Sad, Serbia
The Great Baĉka Canal was built between 1794 and 1801 and was conceived
as an important connection of water transport in which the “Path of salt” from
the Karpat towards Vienna was shortened for a few weeks, and, furthermore,
it was used for drying out a very swampy land in this part of Baĉka. It is
118 km long and 17 m wide, and the top of the channel is about 25m wide.
The average depth of the Canal is 3m. In the eighteenth century, this was the
largest construction enterprise in Europe. The Great Baĉka Canal in the
meantime was known as Kis‟ Canal. The founding father and builder of the
Canal was a Hungarian nobleman and engineer Jozsef Kis.
Accelerated industrialization, with disregard for the treatment of industrial and
municipal wastewater of the Vrbas-Kula-Crvenka basin during the second half
of the twentieth century transformed the Grand Baĉka Canal into a wastewater
collector and is now the most polluted waterway in Serbia, and also in Europe.
Identified polluters are: sugar factory "Crvenka", alcohol factory "Pannon",
biscuit factory "Jaffa", textile factory "Sloboda", leather factory "Eterna",
factory for sanitary fittings "Istra", sugar factory "Backa", meat industry
"Carnex" , pig farm "Farmacoop", oil producer "Vital", and municipal
wastewater of settlements Vrbas, Kula, and Crvenka.
The study found that the most vulnerable section of the channel (from the lock
to the triangle in the length of 6 km) is composed 400000 m3 of the sludge
contaminated with heavy metals, polycyclic aromatic hydrocarbons, and
thermo-tolerant coliform bacteria.
The most harmful polluters in that industrial basin are two sugar factories.
Together, they account for about 78% of the total organic load (1.23 t HPK /h
or 0.60t BPK5/h), 52.7% of the total load of suspended matters and 49.5% of
the total nitrogen load in the industrial basin Vrbas-Kula-Crvenka.
A significant amount of the pollution comes from the pig farm and
slaughterhouse. These two polluters contribute from 15.9% to 17.4% of the
total organic pollution in the basin, depending on whether the load is
calculated via HPK or BPK5, and furthermore about 25% of the total load of
suspended matters and 32% of the total nitrogen load.
70
SUPERPRO DESIGNER
Radovan Omorjan
Univerzitet u Novom Sadu, Tehnološki fakultet, Bul. Cara Lazara 1,
21000 Novi Sad, Srbija
E-mail: [email protected]
Bioprocesses are complex processes that require large amounts of time
experimenting with different settings in order to understand the phenomena that
accompany them. Sometimes it is inevitable to use software packages - processes
simulators in order to design new processes and perform simulations of the
existing ones.
SuperPro Designer (SPD) is a modern process simulator which includes
modeling, cost analysis, debottlenecking, environmental impact of biochemical,
chemical and pharmaceutical processes in the chemical, food, pharmaceutical,
wastewater treatment, etc. Used in more than 400 companies and 500 universities
around the world (including 18 of the top 20 pharmaceutical and 9 of the top 10
biopharmaceutical companies) .
Free trial (demo) version can be downloaded from the company website
Intelligen (http://www.intelligen.com) that this software produces, maintainies
and distributes. This trial version is fully functional like the student and
commercial versions. The only difference (limitation) of between this trial and
comercial versions is limitation to only two unit procedures per simulation.
Therefore, this free version is very suitable for educational purposes as well as
for the initial introduction and use of SPD. The student version is available at
relatively low cost with the limiting number of 25 unit procedures per new
simulations.
UVOD
Bioprocesi su veoma kompleksni procesi koji zahtevaju izuzetno velik utrošak
vremena eksperimentisanja sa razliĉitim parametrima, kako bi se došlo do
razumevanja fenomena koje prate takve procese. Jedno od pomoćnih sredstava u
tom smislu je korištenje softverskih paketa - simulatora procesa, odnosno
simulacije bioprocesa u cilju projektovanja novih procesa i simulacije postojećih.
SuperPro Designer (SPD) je moderan procesni simulator koji obuhvata
modelovanje, analizu troškova, otklanjanje uskih grla u procesu, procenu uticaja
na okolinu biohemijskih, hemijskih i farmaceutskih procesa u hemijskoj,
prehrambenoj, farmaceutskoj, oblasti obrade otpadnih voda itd. Koristi se u više
od 400 kompanija i 500 univerziteta širom sveta (ukljuĉujući i 18 od 20 vodećih
farmaceutskih i 9 od 10 vodećih biofarmaceutskih kompanija).
Besplatna probna (Demo) verzija se može preuzeti sa internet sajta firme
Intelligen (http://www.intelligen.com) koja ovaj softver proizvodi i distribuira.
Ova probna verzija je potpuno funkcionalna kao što su i studentske i komercijalne
verzije. Jedina razlika (ograniĉenje) ove probne verzije je da se pri formiranju
71
novog procesa mogu koristiti samo dve jediniĉne procedure. Zbog toga je ova
verzija veoma pogodna u edukativne svrhe kao i za poĉetno upoznavanje i
korištenje SPD. Studentska verzija je dostupna po relativno niskoj ceni, pri ĉemu
je ograniĉenje svedeno na maksimalno 25 jediniĉnih procedura.
INSTALACIJA
Instalacija probne verzije je relativno jednostavna. Sa Internet stranice se u
Downloads sekciji izabere Demo. Unesu se zahtevani podaci i onda se može
preuzeti probna verzija odnosno izvršna verzija za Windows operativne sisteme SPDInstalEval*.*.exe. Ova datoteka se može preuzeti i sa direktnog linka
http://www.intelligen.com/demo.html. Dvoklikom na ovu dadoteku se probna
verzija instalira. U zavisnosti od operativnog sistema, instalacioni folder se nalazi
na sledećim lokacijama WINDOWS XP C:\ Documents & Settings \ All Users \
Documents \ Intelligen \ SuperPro Designer...
WINDOWS Vista and 7 C:\ Users \Public \ Public Documents \ Intelligen \
SuperPro Designer \
WINDOWS 8 C:\ Program Files\ Common Files \ Intelligen \ SuperPro Designer
\
Iako nije neophodno, veoma je preporuĉljivo instalirati i Help sistem direktno sa
linka http://www.intelligen.com/downloads/SPDHelp_v9.zip.
Ova se arhiva raspakuje i Help fajl se jednostavno prebaci u instalacioni folder
SPD, odnosno u folder gde se nalazi fajl Designer.exe. Na taj naĉin će se moći
pozvati Help sistem prilikom korištenja SPD
Pored toga, preporuĉljivo je skinuti i obiman SPD Tutorijal u PDF formatu sa
linka http://www.intelligen.com/downloads/SPDEBook_v9.zip ili verziju za
štampanje sa linka
http://www.intelligen.com/downloads/SPDManualForPrinting_v9.zip.
U trenutku pisanja ovog materijala, aktuelna verzija je v9.0. Autori preporuĉuju
da se prvi koraci u SPD odrade pomoću ove probne verzije i primera sa dve
jediniĉne procedure: reaktora i ploĉastog ramskog filtra.
Detaljni koraci prilikom formiranja ovog procesa se mogu naći na više naĉina:
- Posle startovanja SPD u Help sistemu i opcija Tutorial
- SPD u PDF verziji u drugom poglavlju Tutorial
- Video prezentacija koja se nalazi na Intelligen stranicama:
http://www.intelligen.com/videos-DesignerTutorial-1.html,
http://www.intelligen.com/videos-DesignerTutorial-2.html.
72
UVODNI PRIMER
Ovaj primer dve jediniĉne procedure: reaktora i ploĉastog ramskog filtra,
demonstrira kljuĉne poĉetne i analitiĉke korake u modelovanju procesa
koristeći SPD. Osnovni koraci i analitiĉke karakteristike prikazani u ovom
primeru su isti kao i koraci i karakteristike koji se koriste tokom kreiranja bilo
kog drugog tipa procesa. Navedeni koraci predstavljaju pregled standardnog
naĉina razvijanja procesnog modela.
Pokretanje novog procesnog fajla opcijom Start a New Process File;
Iniciranje procesnog modela odabirom vrste rada postrojenja (šaržno ili
kontinualno), registrovanjem ĉistih komponenti i smeša i ako je postrojenje
šaržno, definisanje rasporeda;
Formiranje procesnog dijagrama dodavanjem procedura i crtanjem tokova
koji ih povezuju;
Dodavanje operacija procedurama. Razliĉite procedure mogu sadržati
razliĉite operacije. Šaržne i polušaržne procedure mogu imati jednu ili više
operacija, dok su kontinualne procedure ekvivalentne operacijama;
73
Završavanje analize procesnog podela rešavanjem masenih i energetskih
bilanasa, klasifikacijom protoka u razliĉite kategorije (sirovine, proizvod,
otpad) i izraĉunavanjem ekonomskih procena;
Generisanje grafika i analiza rezultata i izveštaja.
Analiza procesnog modela
Pomoću opcije za rešavanje masenih i energetskih bilansa Solve M&E Balances
se izvodi simulacija tj. program će izvršiti proraĉune masenih i energetskih
bilansa za ceo proces. Ukoliko nema grešaka može se nastaviti dalje sa
analizom tj. SPD će proceniti veliĉinu opreme i modelovati raspored za svaku
jedinicu opreme. Nakon završene simulacije, mogu se videti sledeći podaci:
Podaci za tokove Stream Data - Izraĉunati protoci, sastavi, temperatura,
pritisak itd. prelaznih i izlaznih tokova.
Podaci za procedure Procedure Data - Vreme poĉetka, kraja i trajanja
ciklusa, kao i rezultati analize uĉinka procedura.
Podaci za operacije Operation Data - Izraĉunati parametri operacija.
Sadržaj opreme Equipment Contents - Sadržaj jedinice opreme u funkciji
vremena.
Izveštaj tokova i materijalnog bilansa Streams & Material Balance Report,
SR -Izveštaj o sirovinama, sadržaju i protocima tokova, kao i ukupnom
masenom bilansu. TakoĊe sadrži pregled procesa, listu potrebnih sirovina,
sadržaje svih tokova u ukupni bilans komponenti. Ovi izveštaji se dobijaju
iz glavnog menija izborom Reports
Podaci o opremi Equipment Data - Izraĉunati broj i veliĉina jedinica
opreme.
Ekonomske analize i uticaj na okolinu
U cilju ekonomske analize i analize uticaja na okolinu, tokovi u procesu se
definišu kao sirovine, proizvodi i otpadni tokovi.
Analiza troškova i ekonomska analiza procesa se sprovodi u SPD na ĉetiti
nivoa, gde se podešavaju razni ekonomski parametri.
- nivo operacije, Operation data i izborom Labor etc. za svaku operaciju
- nivo ureĊaja, Equipment data i izborom Purchase Cost i Adjustments
- nivo sekcija, ukoliko se ceo proces podeli na sekcije (skup ureĊaja za neku
namenu) tada se i ekonomki parametri mogu podešavati za sekcije (videti Help)
- nivo celokuonog procesa, Edit-Process Options-Economic Evaluation
Parameters,
Ovde se nećemo baviti ekonomskim aspektima procesa. Za detalje finansijske
analize procesa konsultovati Help.
Na kraju se može spomenuti i Ekološki uticaj procesa, odnosno uticaj na okolnu
sredinu. Ako se dvoklikne na neku struju u procesu i izabere stavka
Env.Properties dobijaju se parametri uticaja date struje na okolinu.
74
Izveštaji
U glavnom meniju pod Reports, SPD može da generiše veoma obimne izveštaje
o posmatranom procesu. Na primer, što se uticaja na okolinu datog procesa tiĉe
SPD generiše dva izveštaja, Environmental Impact (EIR) i . Izborom ReportsOptions se može podesiti kako će ti izveštaji izgledati. Na primer za EIR izgled
opcija je sledeći.
ZAKLJUĈAK
SuperPro Designer (SPD) je veoma kompleksan simulator hemijskih i
biohemijskih procesa. Prezentovana Demo verzija je sasvim dovoljna da se
studentima prikažu mogućnosti ovog simulatora. U okviru standardnih
kurseva hemijskog i biohemijskog inženjerstva se akcenat u većoj meri stavlja
na ureĊaje prisutne u tehnološkim procesima (jediniĉne procedure, operacije).
Pri tome pored upoznavanja sa fenomenima koje prate ove procese i funkcija
pojedinih ureĊaja, studenti obavljaju proraĉune na osnovu uglavnom relativno
jednostavnijih matematiĉkih modela. Relativno se reĊe pojavljuju kursevi koji
75
posmatraju modelovanje celokupnog tehnološkog procesa kao celine. Razlog
tome je povećana kompleksnost ovakvog problema i neophodnost upotrebe
raĉunarski podržanih simulatora procesa, koji su ĉesto nedostupni zbog visoke
cene. Raĉunarska industrija trenutno omogućava korišĉenje ovakvih
simulatora, što se pre nekoliko decenija nije moglo ni zamisliti. Treba imati u
vidu da SPD simulator procesa odlikuje tzv. princip “crne kutije”. Naime,
celokupan proces se ne posmatra kao skup jednaĉina modela dostupnih
korisniku, nego kao skup jediniĉnih ureĊaja sa već predefinisanim
jednaĉinama modela i takvi se ureĊaji povezuju meĊusobno gradeći
posmatrani proces. To, u krajnoj meri, olakšava samo korišĉenje simulatora
koje se svodi na pravilno povezivanje ureĊaja, tokova izmeĊu njih i
ubacivanjem ulaznih parametara sa krajnjim ciljem formiranja analize
ponašanja takvog procesa kao celine. MeĊutim, kako simulatori procesa
prikazuju idealizovanu sliku stvarnih ureĊaja i procesa u manjoj ili većoj
meri, tako da ukoliko korisnik ne poznaje svrhu svakog pojedinaĉnog ureĊaja
u dovoljnoj meri kao i fenomena pojedinih procesa, oblike jednaĉina modela
koje stoje iza pojedinih procesa, rezultati simulacije mogu biti potpuno
beskorisni. U smislu edukacije studenata sa simulatorima procesa za analizu
postojećih i projektovanje novih procesa, potreban je usaglaĊenost izmeĊu
poznavanja funkcije ureĊaja, fenomena koje ih prate, modelovanja ureĊaja i
procesa kao i rešavanja postavljenih modela. Efikasnost korištenja simulatora
i prihvatanja rada sa njima se povećava ukoliko se pojedini matematiĉki
modeli procesa reše primenom nekih od numeriĉkih softvera. Pored toga,
veoma je bitno da se studentima istovremeno omogući i prikaz i analiza
stvarnih procesa kako u laboratorijskim tako i industrijskim uslovima.
76
This document and event has been produced with the financial assistance of the
European Union. The content of the document and event is the sole
responsibility of Faculty of Technology, University of Novi Sad, and can under no
circumstances be regarded as reflecting the position of the European Union
and/or the Managing Authority.
Ova publikacija i skup je odštampan i organizovan uz finansijsku podršku
Evropske unije. Za sadržaj ove publikacije i skupa je odgovoran iskljčivo
Tehnološki fakultet Univerziteta u Novom Sadu i sadržaj ovog dokumenta i skupa
ne odražava zvanično mišljenje Evropske unije i/ili Direktorata.
Ez a dokumentum és a konferencia az Európai Unió pénzügyi támogatásával
valósult meg. A dokumentum és a konferencia tartalmáért teljes mértékben
aTechnológiai Kar, Újvidéki Egyetem, vállalja a felelősséget, és az semmilyen
körülmények között nem tekinthető az Európai Unió és/vagy az Irányító Hatóság
állásfoglalását tükröző tartalomnak.
CIP – Каталогизација у публикацији
Библиотека Матице српске, Нови Сад
628.3.034.2.(082)
502.1(082)
CROSS-border network for knowledge transfer and innovative development in
wastewater treatment „Waterfriend“. Students Meeting (1; 2014 ; Novi Sad)
Industry wastewater treatment and environmental protection: book of
abstracts and lectures / 1st HUSRB Students Meeting of the Project Cross-border network
for knowledge transfer and innovative development in wastewater treatment
„Waterfriend“ HUSRB/1203/221/196, Novi Sad, March 27-29, 2014; [edited bz Marina
Šdiban ...et al.]. – Novi Sad : Faculty of Technology, 2014 (Budisava : Krimel). – 77 str. :
ilustr. ; 24 cm
Radovi na engl., srp. i mađ. jeziku. – Tiraž 100. –
Bibliografija uz svaki rad.
ISBN 978-86-6253-033-2
I WATERFRIEND project. Students meeting (1 ; 2014 ; Novi Sad) v. Cross-border network
for knowledge transfer and innovative development in wastewater treatment
„Waterfriend“. Students meeting (1 ; 2014 ; Novi Sad)
a) Отпадне воде, индустријске – Пречишћавање – Зборници
b) Животна средина – Заштита – Зборници
COBISS.SR-ID 283492871
77
Download

industry wastewater treatment and environmental protection