COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA
Rudarski radovi je časopis baziran na bogatoj
tradiciji stručnog i naučnog rada u oblasti
rudarstva, podzemne i površinske eksploatacije,
pripreme mineralnih sirovina, geologije, mineralogije,
petrologije, geomehanike i povezanih srodnih oblasti.
Izlazi dva puta godišnje od 2001.godine, a
od 2011. godine četiri puta godišnje.
Glavni i odgovorni urednik
Prof.dr Mirko Ivković,viši naučni saradnik
Komitet za podzemnu eksploataciju
mineralnih sirovina Resavica
E-mail:[email protected]
Tel:035/627-566
Zamenik glavnog i odgovornog urednika
Doc.dr Jovo Miljanović
Rudarski fakultet Prijedor,Republika Srpska
Urednik
Vlado Todorović
Prevodilac
Vasa Garača
Dražana Tošić
Štamparija:Grafomet,Kragujevac
Tiraž:100 primerka
Internet adresa
www.jppeu.rs
Izdavanje časopisa finansijski podržavaju
Ministarstvo za prosvetu, nauku i tehnološki
razvoj Razvoj Republike Srbije
Komitet za podzemnu eksploataciju
mineralnih sirovina Resavica
ISSN 1451-0162
Indeksiranje časopisa u SCIndeksu i u ISI
Sva prava zadržana
Izdavač
Komitet za podzemnu eksploataciju
mineralnih sirovina Resavica
E-mail:[email protected]
Tel:035/627-566
Naučno-tehnička saradnja sa
Inženjerskom Akademijom Srbije
ČASOPIS MEĐUNARODNOG ZNAČAJA VERIFIKOVAN POSEBNOM ODLUKOM
MINISTARSTVA M24
No.2-3,2013
1
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA
Uređivački odbor
Akademik dr Milenko Ljubojev,naučni savetnik
Institut za rudarstvo i metalurgiju Bor
Akademik Prof.dr Mladen Stjepanović
Inženjerska akademija Srbije
Prof dr Vladimir Bodarenko
Nacionalni rudarski univerzitet,
Odeljenje za podzemno rudarstvo, Ukrajina
Prof.dr Milivoj Vulić
Univerzitet u Ljubljani, Slovenija
Akademik Prof.dr Jerzy Kicki
Državni institut za mineralne sirovine i energiju,
Krakov, Poljska
Prof.dr Vencislav Ivanov
Rudarski fakultet Univerziteta za rudarstvo i geologiju
„St. Ivan Rilski“Sofija Bugarska
Prof. Dr Tajduš Antoni
Stanislavov univerzitet za rudarstvo i metalurgiju,
Krakov, Poljska
Dr Dragan Komljenović
Nuklearna generatorska stanica G2, Hidro –Quebec,
Kanada
Dr Ana Kostov, naučni savetnik
Institut za rudarstvo i metalurgiju Bor
Prof.dr Dušan Gagić
Rudarsko-geološki fakultet Beograd
Prof.dr Nebojša Vidanović
Rudarsko-geološki fakultet Beograd
Prof.dr Neđo Đurić
Tehnički institut, Bijeljina,Republika Srpska
Prof.dr Vitomir Milić
Tehnički fakultet Bor
Prof. Dr Rodoljub Stanojlović
Tehnički fakultet Bor
Dr Miroslav R. Ignjatović, viši naučni saradnik
Privredna komora Srbije
Dr Mile Bugarin, viši naučni saradnik
Institut za rudarstvo i metalurgiju Bor
Dr Dragan Milanović, naučni saradnik
Institut za rudarstvo i metalurgiju Bor
Dr Ružica Lekovski, naučni saradnik
Institut za rudarstvo i metalurgiju Bor
Prof. dr Kemal Gutić
RGGF-Univerzitet u Tuzli, BiH
COMMITTE OF UNDERGROUND EXPLOITATUONOF THE MINERAL DEPOSITS
No.2-3,2013
2
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
MINING ENGINEERING is journal based od the rich tradition of expert and scinetific work
from the field of mining, udergound and open-pit mining, mineral processing geology, petrology,
geomechanics, as well as related fields of science.
Since 2001, published twice a year, and since 2011 four times year.
Editor-in-chief
Ph D. Mirko Ivković, Senior Research Associate committee of Undergoind Exploitation of the
Mineral Deposits Resavica
E-mail: [email protected]
Phone: +38135/627-566
Co-Editor
Ph.D.Jovo Miljanović
Faculty of Mining Prijedor, RS
Editor
Vladimir Todorović
English Translation
Vasa Garača
Dražana Tošić
Printed in: Grafopromet Kragujevac
Web site:
www.jppeu.rs
MINING ENGINEERING is financially suported by
The Ministry of Education, Science and Tehnological Development of the Republic Serbia
Committee of Underground Exploitation of the Mineral Deposits Resavica
ISSN 1451-0162
Journal interxing in SCIndex and ISI
All righs reserved.
Published by
Committee of Exploitation of the Mineral Deposits Resavica
E-mail: [email protected]
Phone: +38135/627-566
Scentific-Tehnical Cooperation with the Engineering Academy of Serbia
JOURNAL OF INTERNATIONAL IMPORTANCE, VERIFIED BY SPECIAL
DECISION ON THE MINISTRY M24
COMMITTE OF UNDERGROUND EXPLOITATUONOF THE MINERAL DEPOSITS
No.2-3,2013
3
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Editorial Board
Academic Ph D.Milenko Ljubojev, Principal Reasearch Fellow, Associate member of ESC
Mining and Metallurgy Institute Bor
E-mail: [email protected]
Phone:+38130/454-109, 435-164
Academic Prof.Ph.D. Mladen Stjepanović
Engineering Academy of Serbia
Prof.Ph.D. Vladimir Bodarenko
National Mining University, Deportment of Deposit mining, Ukraine
Prof. Ph.D. Milivoj Vulić
University of Ljubljana, Slovenia
Prof.Ph.D. Jerzy Kicki
Gospodarki Suworkami Mineralnymi i Energia, Krakow, Poland
Prof.Ph.D.Vencislav Ivanov
Mining Fakulty, University of Mining and Geology
„St.Ivan Rilski“ Sofia Bulgaria
Prof.Ph.D. Tajduš Antoni
The Stanislaw University of of Mining and Metalhurgy, Krakow, Poland
Ph.D.Dragan Komljenović
Nuclear Generating Station G2, Hidro-Qwebec, Canada
Ph.D. Ana Kostov
Principal Research Felow Mining and Metalhurgy Institut Bor
Prof.Ph.D. Dušan Gagić
Faculty of Mining and Geology Belgrade
Prof.Ph.D.Nebojša Vidanović
Faculty of Mining and Geology Belgrade
Prof.Ph.D.Neđo Đurić
Tehnical Institute, Bijeljina, Republic Srpska
Prof.Ph.D.Vitomir Milić
Tehnical Faculty Bor
Prof.Ph.D. Rodoljub Stanojlović
JOURNAL OF INTERNATIONAL IMPORTANCE, VERIFIED BY SPECIAL
DECISION ON THE MINISTRY M24
No.2-3,2013
4
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
COMMITTE OF UNDERGROUND EXPLOITATUONOF THE MINERAL DEPOSITS
Ph.D.Miroslav R.Ignjatović
Senior Research Assoicate Chamber of Commerce and Industry Serbia
Ph.D.Mile Bugarin
Senior Research AssoicateMining and Methalurgy Institute Bor
Ph.D.Dragan Milanović
Senior Research AssoicateMining and Methalurgy Institute Bor
Ph.D. Ružica Lekovski
Senior Research AssoicateMining and Methalurgy Institute Bor
Prof.Ph.D.Kemal Gutić
MGCF-University of Tuzla B&H
JOURNAL OF INTERNATIONAL IMPORTANCE, VERIFIED BY SPECIAL
DECISION ON THE MINISTRY M24
No.2-3,2013
5
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
SADRŽAJ
CONTENS
Nenad Anžel
MINING IN MEDIEVAL EAST SERBIA (14TH to 16th Century)…………………… 7
Mirko Ivković, Svjetlana Ivković
STANJE MEHANIZOVANOSTI TEHNOLOŠKIH FAZA RADA
PODZEMNE EKSPLOATACIJE U RUDNICIMA JP PEU.........................................14
THE STATE OF MACHANIZATION OF TEHNOLOGICAL FAZES IN
UNDERGROUND EXPLOITATION IN THE MINES OF JP PEU
Jovo Miljanović. Neđo Đurić, Mirko Ivković, Žarko Kovačević
PRIMJENA TEHNOLOGIJE KOMBINOVANOG PODGRAĐIVANJA
RUDARSKIH PROSTORIJA U RMU“SOKO“..........................................................20
USING OF COMBINET TECHNOLOGYS IN ROOF SUPPORTING IN
UNDERGROUND MINE “SOKO”
Jovo Miljanović. Dražana Tošić, Tomislav Miljanović, Mirko Ivković
VERIFIKACIJA POUZDANOSTI I EFIKASNOSTI SISTEMA
ODVODNJAVANJA NA PK „BUHAČ“…………………………………………….31
VERIFICATION OF RELIABILITY AND EFFICIEN CY OF THE
DRAINAGE SYSTEM ON THE OPEN PIT „BUHAČ“
Slobodan Majstorović, Vladimir Malbašić. Jelena Trivan,
Ljubica Figun, Miodrag Čelebić
ASPEKTI BEZBJEDNOSTI I ZAŠTITA ŽIVOTNE SREDINE PRILIKOM
UPOTREBE ANFO EKSPLOZIVA U RUDNIKU „SASE“ SREBRENICA............42
SAFETY AND ENVIRONMENT PROTECTION BY USE OF ANFO
EXPLOSIVES IN MINE „SASE“ SREBRENICA
No.2-3,2013
6
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
UDK: 330.1:622:061,5(045)=861
doi:10.593/rudrad 1301175S
*Nenad Anžel
MINING IN MEDIEVAL EAST SERBIA (14TH to 16th C entury)
Abstract:
This study is an attempt to help in clarifying complex issues concerning the history of medieval
mining in Eastern Serbia. Historical sources from the Middle Ages show that there were mining
activities in several places in eastern Serbia and that the ores mainly excavated were iron, copper,
lead and silver. However, the mines of eastern Serbia did not become as famous as the mines in
the other regions of Serbia and did not have the same significance. In eastern Serbia, mining
activities took place in areas of Kučajna, Ridan, Raškovica, Petakovica, and villages Rakova
Bara, Ćovdin and on Mali Bubanj. . Also, there were mining activities in Resava region, on the
mountan of Stara Planina and in the vicinity of Majdanpek, and there is data about gold panning
in the Pek river. Unfortunately, contemporary works at active mining sites threaten to
permanently destroy the material remains of immense historical and archaeological importance.
Key words: Eastern Serbia, mining, Middle age, material remains
Introduction
Eastern Serbia is a very diverse mountainous-basin region, which stretches from Djerdap in the
north to the Zaplenjsko-luznicka valley and the Ruj mountains to the south. In the West it leans
against the Pomoravlje area and in the east to the borders of Bulgaria and Romania. During the
Middle Ages, from the formation of the Serbian medieval state until the fall to the Ottoman
Empire, the territory of present-day eastern Serbia and its boundaries were subject to frequent and
rapid changes. Expansion or withdrawal of the Serbian authorities in these areas was necessarily
conditioned by strengthening or weakening of the power of the Serbian state, as much as the
strength and weakness of its eastern neighbors. It is important to point out that the extreme east,
along the basin and along the Timok, Negotin Krajna and part of the great bend of the Danube in
Djerdap, has never been an integral part of the Serbian medieval state, but the region was often
exposed to its powerful influence, primarily because of the ethnic composition of the population
in these areas.
Historical sources from the Middle Ages show that in several places in the east Serbia, mining
was the main and that the main mining operations were of iron ore, copper, lead and silver.
However, the mines in eastern Serbia have not reached fame and did not have such an important
role as the mines in other Serbian areas had. A rich treasury of the Dubrovnik archives, which
gives us the most information related to mining in medieval Serbia, gives very little information
about mining in this part of Serbia.
*Filozofski fakultet Niš, [email protected]
It is known that the Dubrovnik merchants did not often travel often to the areas east of the Great
and South Morava, because of their distance and the lack of economic interests. The only
exception being the Kučevo and Branicevo areas because of its rich mining operations, therefore
we have more information on these areas.
No.2-3,2013
7
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Based on the geological composition of the soil, terrain, altitude, and other natural factors, and
primarily the mild climate (warmer autumn than spring), the region of eastern Serbia is optimal
for mining activities for great part of the year. Due to their significance, prehistoric mining in
eastern Serbia, especially the remains of the mine Rudna Glava near Majdanpek, and are among
the world's oldest European registries of arheo-metalugic centers, dating back to the time of the
Gradac phase of the Vinca culture. Arheometalurgi: the Serbian medieval archeology is a new
field of work, so that the study of the mines throughout archaeological research has no tradition in
our science. It is very rare that modern mines, with only the remains of old works, performed
technical recording, let alone archaeological research. Therefore a unique opportunity to
reconstruct the image of a medieval mine has been missed. Minimal remains of the underground
mining archeology, tools and equipment for the mining and processing of ore, traces of
settlements and cemeteries, communications and fortifications, are collected and recorded in a
small number of places exclusively thanks to the supporters of the profession. Only recently the
need for the collection of available data was found. 1988 can be marked as the year when serious
archaeological researches on medieval mining and metallurgy began.
Serious and detailed research of the remains of mines in eastern Serbia, will give concrete
answers and the results of this rich but economically neglected area of the medieval Serbian state.
When it comes to sites with traces of ancient mining in eastern Serbia, one should bear in mind
that it is not easy to determine the exact boundaries of the area, because it does not match the
current geographic representations. The accepted division is that of V. Simic five zones: Negotin
Region, potes Tupužnica-Rtanj, Kucajna with the surounding area, Resava and Stara Planina.
Kučajna
Rudište Kucajna belongs to the Homolje ore field, with mines Ridan and Rešković, and is a direct
continuation of the Banat mines and the mines around Dognacke and Moravice. Since ancient
times, the mining industry in this region has been very developed, as evidenced by numerous
caved shafts, and the remains of ancient and medieval period settlements.
The history of the Kučajna mines is a long and reliable and it dates back to Roman times.
However, it is possible that there were mining activities before the Romans, during the time of the
exploitation of gold mines in the valley and its tributarie Peka. Roman mining works in Kucajna
were very extensive. They appear to have gone down to 80 m in depth. Certainly, the main
objects of exploitation were gold, silver and copper. Above the Kuceva of today, there was a
Roman town Guduskum, which was the center of the mining operations in the area.
It is likely that in Kucajna there was a continuity between the Roman and medieval mining.
Already in the 10th century the Arabian geographer Masudija writes about Klašaninu (Kucajna)
as a live trading site. In the view of V. Simic, this trade could not rely on anything else but on the
mining probucts. During the medieval Serbian state, Kucajna is not mentioned explicitly, but in
written documents we encounter a place called Zeleznik near Kučeva, as the trading post for iron,
copper and lead, which are also visited by merchants from Dubrovnik.
At the beginning of the 1359. The Dubrovnik Grgo Skrinić, wrote "in Selesnich in Chuceua" to
its government to lead a single consignment merchants from Dubrovnik, seized Prince Vojislav
Vojinovic. Another interesting mention of Dubrovnik is found in the 1363, where the will of
Dubrovnik Domanje Peter Sparks mentioned two residents Zeleznik, brothers and Hvaloje
Dobrohval. Zeleznik .This should not be confused with Recic Zeleznik, west of Majdanpek,
where we find the gold-bearing wire, since there was no lead ore present. Question Kučevo field
No.2-3,2013
8
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
position in the Middle Ages, and therefore the position of the aforementioned square and mine
Reflex Kucevo caused in our historiography a lot of controversy and confusion. Only recently has
the enigma been successfully resolved. Today Kučevo is a town and municipality in the center of
the Branicevo; Peck on the river, which is located in the former medieval parish Zvižd.
South of the present day Kučeva is a well known mine, the subject of our investigation - Kucajna.
It was difficult to locate Kucevo, mentioned in the Dubrovnik sources and thus the mine of
Zeleznik. On the basis of the Ottoman defter of Smederevo Sandzak, particularly on the basis of
that from 1476/8, we conclude that the nahija of Kučevo, and therefore the area adjacent to the
medieval Braničevo countriside, but not in the mountainous regions of east Kučajske mountains,
as it was long considered, but west, respectively on the left bank of Velika Morava. The Imperial
has of Zeleznik was listed in 1476/8. The coal basin Kosmaj and Avala, the westernmost part of
the area with mines Kučevo, Zeleznik gave primarily silver and lead, with operation continuing
since ancient times, the Middle Ages and the Ottoman period to the present day.
In the Middle Ages Kucajna was called Kuchou, Cuciaena, Caciena. Between 1459 and 1521 it
was the seat of government for the whole region, and at that time referred to as the Kočanji,
Kucevo and Cucievo. In Kucajna there was also a Dubrovnik settlement. The charter of Knez
Lazar from 1381 refers to "mount Kucajna" and "Saski num" while Hrisovulja of despot Durda
Brankovic mentions "the village Sasu" in Kučeva.
In Kucajna lead, copper and iron were produced, and it is interesting that the production of gold
and silver, whih was done very abundantly, was never mentioned. The great content of precious
metals in ores in Kučajna probably could not remain undetected by skilled metallurgist that the
Sass were. Dubrovnik’s mentioned in his letters Kucajna for the last time in 143 ,when the mine
has almost certainly ceased to woek because it is no longer visited by their merchants. In the
Middle Ages in Kucajna, and the other Serbian mines coins and weapons were produced. During
knez Lazar here was a mint (a place where coins areproduced) on coins and weapons, supported
by the data from various traditions. Aspro has been forged here at the end of the reign of Sultan
Suleiman II. After the fall to the Ottomans in 1458, it was on the Hungarian border area almost
for a century, and subject to constant hostilities, and in such circumstances it was difficult to
organize mining production. After winning the Banat area in 1551 and 1552 , the border is moved
to the north and then begin extensive works, which led to the opening of Kucajna in 1553.
Kucajna.The decision of Porte made the center a kadiluk, to serve the new mine and surrounding
imperial whose landed estates allocated 48 villages, whose inhabitants worked in the mines,
delivering wood, ore transporting, guarding roads and more. Then a mass immigration to Kucajna
began, and among many ethnic communities special position and role had Jews. They moved to
Kucajna 1551 or 1552, and have dealt mainly with financial matters. As skilled traders and
financiers, they eventually took the lease of the mine, which was greatly influenced by the
recovery and restoration of pre Turkish production volume, in the second half of the sixteenth
century.
Ridan
The remains of the old smelter are placed around Golubac, in the village of Dvorište, and these
are are the remains of the old smelter - and in places Ridan remains of old mining works - mostly
shafts which were made to depths up to 15 meters. The surface was covered with these works is
almost 3 acres. Based on archaeological research the shafts belong undoubtedly to the medieval
period. On Ridan in the Middle Ages, iron ore and minerals that are mined are melted in the
village of Dvorište.
No.2-3,2013
9
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Reškovica (Oreškovica)
This mine is named after a small river or Oreskovici or Reškovici (newer name), which spreads
from the western branch of the Homoljske mountains and close to Mali Laola flows into Mlava.
And this one mine isone of those very uknown to our history. Based on the traces of old mining
operations and the amount of residual slag the volume of work on this mine was of greater
importance. From here the ores of iron, and copper and lead with gold and silver were mined.
Analysis, carried out only partially, indicates only the production of iron. The ore was mined on
both sides of the river Rešković. That the iron ore was mined is certifirmed also by the name of
the hill Plavčevice, toponyms, which is characteristic for the production and processing of iron.
Majdanpek
The Majdanpek mine has a lot of tradition and quite an interesting historical development.
Opened back in Roman times, worked during the Roman times, the Middle Ages, during the 20
year Austrian rule in the 18th century (1718-1738). Re-opened the 1847 and has been working
continuously up to this day. We can say that the Majdanpek mine has worked in all periods of our
mining operations. However, while our medieval mines have become famous for their richness,
any metal was developed by trade and handicrafts, Majdanpek remained in the shadow of it, and
we have very little information from the time. According to V. Simic, Majdanpek has always
been a small mine, regardless of the prism of observation: the old, or middle of the new century.
In the Middle Ages, when the Serbian mining was then famous throughout Europe, and many of
our mines are mentioned in charters, chronicles and guided correspondence between Dubrovnik,
Venice and our mines, there is no trace of Majdanpek. Its current name is of Arabic origin
(Maden-metal), and was created at the time of the Turks.
As for the minerals that are present in the region of Majdanpek, we find copper and iron. The
presence of Sasa miners in this region testifies the name of the river Sask. On this river there were
many medieval smelting points, as evidenced by the remains of old waste grounds.Old
underground works that were found, whose shapes and dimensions comply with the medieval
period (dimensions ranging from 0.6 to 1 meter) , provide testimony about mining in this region
in the Middle Ages. In addition to these material remains, in many ancient works of Majdanpek
well preserved medieval wooden trough were found which were later on used for the transfer of
ore and waste rock, and in many places preserved wooden support, which undoubtedly proves the
existence of mining activities on the site in the middle ages. Unfortunately, at the present time,
work on the exploitation of ore deposits in the Majdanpek are of such proportion that almost
nothing of the old works was left. It is unlikely that future archaeological and geological
investigations at the site may make some new and important historical discoveries.
Petakovica (Melnica)
In the surroundings of the villages of Melnice there used to be a large deposit of old slag and
plenty of lead ore, and they are still found in small traces even today. A variety of mountain
streams (Melnick, and Vitanovačka Branicki river, stream Petkovic and others), gave the power
for the smelter. The deposit of iron ore, lead and silver is located about 8 kilometers south of
Kucajna. In the neighboring village of Vitanovac, there is a monastery which, according to
tradition, was built by King Milutin, and that was probably built becouse of the surrounding
mines.
No.2-3,2013
10
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Rakova bara, Ćovdin, Mali Bubanj
At the village of Rakova Bara, in Sumedj, large amounts of old slag were found, which prove that
in their neighborhood there were smelters. Since there was no trace of mining shafts, it is
considered that the ore was brought to the smelter from one of kučajna mines.
On the western side of the Crnog Vrha, towards Ćovdin, the shoots thicker wire hematite ore are
noticed as well as the remains of old mines, which were likely to serve for the mining of iron
ores, hematite and limonite. In this area there are no remains of troskišta, but it is assumed to be
in the vicinity.
In the village of Ranovca, northwest of Kucajna, on Mali Bubalj, there were noticed remains of
hematite with limonite "which in the form of bulky rocks are sticking out of the grass." In the
immediate vicinity of the site we have not uncovered troskišta, which does not mean that the ore
was not mined. V. Simic believes that it is unlikely that the medieval miners, especially
experienced Sass, a so favorable ore occurrence near a mining center what was Kucajna, could
have remained unknown. The ore from there could be transferred to a suitable place for melting,
where there was plenty of water and fuel.
Resava
The Resava area is divided into Lower (includes the villages of Medvedja - Subotica, down to
the river to Velika Morava), Middle (from the village of Medvedja to Despotovac and both banks
of the Resavica River) and Upper (an area from Despotovac to the springs of the rivers Resava
and Resavica). Turkish census mentions Branicevo Resava as a separate nahija. Since the nahija
Resava includes the basin of the river Resava, and in Braničevski subašiluk there were five
districts that corresponded to medieval parishes (Lucica, Homolje, Pek, Zdrelo and Zvizd), the
conclusion that the district who were referred by the rivers (Resava) were named after the former
medieval parishes. In the case of Resava this conclusion is almost certain.
To the old mining operations in Resaca the first to drew attention was Felix Hofman. During the
70s of the nineteenth century he examined this region twice: For the first time in 1874 and he
described the borders of the fields with the advent of coal betwean Crnica and Resavica for the
first time in 1874, and for the second second time in 1879 he examined the occurrence of ore and
coal, which gravitate to the track with just established Moravian railway. Both times he came
upon the remains of former mining of copper and as he noted "residual ore heaps and hills of slag
in the valley of Crnica, then the old mining around Crvene Jabuke and finally slag at Grza and
Resavica". Bulk slag was observed in the Valley of the Bigreničke River, then in the region of
Dubrave. Thies according to him were the remains of a former copper mine, whose ore was
mined in red sandstone.
In 30s of the twentieth century, a new mining researchers in Resava could not find Hoffmans
sites. It was probably used as a building material, but they survived many medieval mining
toponyms: Rupni stream, Gumnishta, Majdan, Kolišta, Rupčine, Kovanica, Mačevac. Beside
them were found the remains of mining operations (village Sladaja, Stenjevac, Strmosten, Vrlane,
Roćevci, Troponje), and there were even found tools and lamps, coins, pottery in the villages
(Gložanj, Troponje, Svilajnac, Medvedja). Interestingly according to tradition from the vilage of
Strmosten, in which the Sass lived in Seliste and Serbs in Staaro Selo. At both locations whose
pottery was found on the remains of mining tools and money, and there are other small churches.
No.2-3,2013
11
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
The village Židilje, in several places, Hoffman was first to discover the occurrence of iron ore. In
the wider area of about 3 km limonite ore strands were found about 8 feet thick, in which the Fe 2
O 3 (iron) is present even at 84%, and with no harmful ingredients. Examples of these ores were
displayed in 1885, on the mining exhibition in Budapest. Certainly, such a high-quality ore could
not remain unnoticed during the Middle Ages, especially in an area that is rich in metallurgical
resources (forests and mountain streams).
Troskišta which Hoffman observed, at least in most cases, are not from melting copper ore.
According to the recent studies, the red sandstones were not able to supply copper ore in that
number, because it has smaller copper reserves. V. Simic believes that most of these troskišta are
from smelting iron ore. Although discovered in the second half of the nineteenth century, about
the old iron mining in Resava, very little is known. It was only hinted at, though it was
undoubtedly present.
During the reign of Despot Stefan Lazarevic, when it Resava fortresses and monasteries Manasija
were built, there was a need to revive the production and processing of iron, which certainly
existed before. The center of the state shifted to the north, and the manufacture of iron was
needed not only to build the fort, but also to defend the country against the Turks. Manasija was
in his own estate, and probably had its own iron mines and a village blacksmith, as other
monasteries in Serbia. In Veliki Popovic, in the early twentieth century there was still a small
blacksmith, and whose descendants carry the surname Kovac, Kovacevic, Kovacic.
Stara Planina
Of all the medieval mining district in eastern Serbia, there is the least information related to Stara
Planina Mountains, which does not necessarily mean that there was a minimum of mining
activities there. The traces of iron mining has been detected in the village of Topli Do, just below
Midzor, in the heart of Stara Planina, been detected.
Geologist and university professor Sava Markovic observed in the river basin of Toplodolska
river, troskišta of iron smelters near running water, which means that these were medieval and
Ottoman. Mines from which ore is melted were not observed. Heritage Museum in Knjaževac
during 1986 conducted investigations of the ancient mining on Stara Planina. And received data
for about 30 sites (mines, slag dumps present, processing, etc.) and they all testify to the ruins of
ancient mining. However, the fact is that most of the slag dumps are present next to mountain
rivers and streams indicate that here, except in antiquity, mining was also performed in the
Middle Ages. On this site it is necessary to make additional research.
In the period from 1956 to 1962, the pioneer of our modern geology and one of those most
important scholars dealing with our mining history,V. Simic, performed the research on the soil
terrains of eastern Serbia, namely the gold-bearing area of the river Pek. On this occasion, he
encountered many remnants of old mining activities and production of gold, of which the most of
them were destroyed. These remains were various hills and mines, barely noticeable traces of
water and water tanks, and more.
Old mining works at gold-bearing quartz works on most wires were covered again, and the old
gold mining works were destroyed both by time and people. The remains of these old works
especially destroyed in the twentieth century, when intensive construction of roads and railways
through the valley of Pek has begun. Each new work inflicted destruction among new mounds,
remaining in the place of former mines.
No.2-3,2013
12
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
River Pek
In parts of eastern Serbia gold production has never ceased. Its residents, regardless of the time
when they lived here, were always ready to after heavy rains gather by streams and collect the
gold that was washed with water in large mountain areas. Nearly five thousand years, and
probably more, it is the addition of gold beads and leaves. The best example of this is the River
Pek, where the old works stretch from north to south, a distance of about 30 km. Besides Pek, and
its tributaries, Porecka river and Timok were used for washing and collecting of gold.
Most of these works is of ancient origin. To enable the smooth operation of the Romans around
the gold-bearing areas of eastern Serbia they erected numerous castles. Beside them was a
permanent Roman guard. The remains of one of the watchtowers were found in the region of
Pekka at Mark's Tavern. The Roman town Pincum (Veliko Gradište), that the mane itself
originates from , was probably the center they poured to all the gold obtained in the region of Pek.
The Roman presence in the region is confirmed by many remains of materials: ceramic vessels,
tools of bronze and iron, money, and more. There is no data on the organized production of gold,
in the period of the Middle Ages, in the area. However, unorganized, incidental and secret
production must have existed. It conducted by miners, when it was worth more now argue cause
and get gold, farmers or agricultural laborers, when they had no other work in the field or around
the house.
Organized production could be achieved in gold mines, as they were still in Roman times
excavated up to 50 feet of deep. In addition, the Romans were not only rich, but almost all goldbearing placers roomier gold-bearings. Mining in Peka in the Middle Ages is very poorly
documented. There are few written sources that say something specific about the mining sector.
Gold production in general is not mentioned, but this is not surprising because this metal is not
specifically mentioned in another mining areas.
Conclusion
Mining in the region of Eastern Serbia in the Middle Ages is mainly related to mining and
processing of iron ore, on a smaller scale lead and silver and copper and very little washing
auriferous particles in rivers. Based on archaeological research in the region of Eastern Serbia
many remains of iron and slag dumps were found. Smelters were located next to many rivers,
whose fortune was the driving force of production. They were used in the Middle Ages and in the
early period of Ottoman rule. Further archeological research requires specialized research
division of the old slag dumps, which were unfortunately carried out in a small number of cases.
Based on the survey, we can conclude that in the region of Eastern Serbia mining activities were
carried out in the areas of Kucajna, Ridana, Reškovića, Petakovice and villages Rakova Bara,
Ćovdi and on Mali Bubanj. Mining operations were also carried out in the area of Resava and in
the area of Stara Planina. Recent research testifies to the rich mining activities around Majdanpek.
Unfortunately, the threat to the remains of medieval mining operations has become more
pronounced. Modern works in active mines, mining exploitation in the field, are the main culprits
in the destruction of remains of immense historical and archaeological importance. It remains our
hope that, in the future, we can develop an awareness of the necessity to preserve these precious
monuments of Serbian culture and the material in the region can continue to be test, which will
give a full and clear picture of the medieval history of mining in the region of Eastern Europe.
No.2-3,2013
13
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
UDK: 65.05:519,21:330.23 (0,45)=20
YU ISSN:1451-0162
UDK:622
doi:10,5937/rudrad 13011553S
Mirko Ivković*, Svjetlana Ivković **
THE STATE OF MECHANIZATION OF TECHNOLOGICAL FAZES IN
UNDERGROUND EXPLOITATION IN THE MINES OF JPPEU
Abstract
Work in underground coal mines is currently based on hard physical labor, with regards to the
fact that procurement of equipment was lacking. Practically the current work resembles that of 50
years ago, so that the work jeald is low despite the efforts of the miners.
The last mechanized wide seam stooped working in 1991, the machines for merchandised
development of mining facilities is not present in any mine for more then 20 years, and no mine
has loading equipment.
For the last twenty years the transport equipment in procured in parts so that brace downs are
frequent and work delays, which has as a direct result a reduced yeald in production.
PROBLEMS IN PRODUCTION AND EQUIPMENT MAINTENANCE
1. The equipment for the development of mining facilities
Currently in the mines of JPPEU there is no working equipment of this type. How ever
unbelievable that seams we can conclude that we are, in terms of using mechanization in the
development of mining facilities, far below the level at which we were more then 30 years ago,
which means that we have rapidly dearest. We have to mention that over the past years according
to the program of operations, procurement of this type of equipment was planed but never
completed. It is clear that thirty years ago we have developed mining facilities in a more modern
fashion and if all around us in the region modern machinery is employed, we have a problem to
first of all get back to the level at which we once were and then to follow the modern
developments and use of this type of equipment as to achieve adequate levels in this aspect.
In different times it was attempted to make functional two machines of this type the ALPINA
F6A and the AM50. The first was even functional for a short period of time in 1995, but as it was
made functional with inadequate parts produced in coordination local developers which was
evident in the quality and reliability in the machine operations, this machines work was of short
duration and marked with frequent delays and other problems, all thou the results, while the
machine was operational were acceptable, and better then the classical method of developing
mining facilities.
*Prof.dr Mirko Ivković, JP PEU –Resavica
**Svjetlana Ivković, Ugaljprojekt-Beograd
No.2-3,2013
14
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
2. Equipment for mechanized coal exploitation
In the nineties of the last century in some of the mines which are now part of JPPEU there was
mechanized steal hydraulic support of different world developers.
This equipment worked with high production levels which resulted in higher production and
financial results. The equipment was operated and maintained by workers which, with the help of
developers and foreign experts were trained specifically for this task.
As of 1992 there have bean no further attempts in introducing technology of mechanical
exploitation because of inadequate finances.
3. Transport equipment for the transport of men and coal
Racкe Transporters
Racke Transporters are transport equipment which is most prevalent in the mines of JPPEU and it
is deployed in the transport of coal close to the excavation points. In our country there are no
more companies, of the type GEOMASINE, which completely develop this type of equipment,
therefore we are forced to complete these machines ourselves by buying separate parts from
different vendors. This type of equipment works closest to the excavation points, therefore it is
subject to the greatest pressures and therefore the most breakdowns, and it is hence the subject of
constant monitoring and repair. The repair of these machines is mostly done in house. Because of
grate problems with the transport beds we have started the production of these beds with grater
quality of metals, with positive results. And in two cases two complete transporters were acquired
with a so called sigma profile which has also given positivity results especially in the investment
mines where the majority of the work is in dirt.
Transporters with a rubber transport cloth
With these types of transporters it has to be mentioned that in the mines of JPPEU there are
mostly long transport paths, where transports of this type are employed.
These transports are formed in the mines themselves from different parts acquired from different
vendors. The problem is also that in our country there are no vendors that produce complete cloth
transports which can be overcome in short distance region tracks.
For cloth transports of grater length (over 350 meters) there are no local producers in regards to
the production of transport stations.
The good in this part is that these transport distances are already covered with existing
transporters from an earlier period, so that this problem can somewhat be overcome but the
problems with there maintenance arise every day and present grater and grater working problems.
The transport of manpower is not adequately resolved in any mine.
No.2-3,2013
15
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Rail Transport
This type of transport has a very low transport capacity because the locomotives are older then 50
years and their maintenance is difficult and brace downs are very common because the railways
are in a very pore stare.
Because the locomotives are electrically powered we have to focus on grater use of diesel
machines.
Equipment for the transport of materials
In JPPEU different types of this equipment are in use: delivery system with a endless rope and
hanging rail, delivery system with a diesel locomotive with an upper rail, rail locomotive
transport, as well as a new system of delivery combining wire and endless rope which was first
used in the Tadenje mine and after in some other mines and which will be in ever grater use.
A cable system of the SARF type work in the mines of Rembas, Soko, Jasenovac. While in RMU
Stavaljh there is a similar system of the type ECO Velenje. In the Lubnica mine there is also a
similar cable system which was produced in our country from imported parts and parts produced
in our country. The systems are reliable and acceptable for use in mines and by its use the supply
of the mines with materials has bean greatly simplified. The reliability of these systems is
connected to constant maintenance and everyday rail corrections by direction and height, by the
maintenance and replacement of the rope...
The diesel locomotive of the SARF type with the upper rail operates in the Bogovina mine and
there are a lot of problems. Namely the machines are weary old of which one is out of use and the
other is under constant repair with constant working delays.
The vitlovska delivery is done by the use of Bitlova (most commonly it is the PV11/15 of local
manufacture) with the upper rail and rope which is in use in all the mines of JPPEU. A special
problem with the cable car and vitlovske equipment is the lack of reliable backing systems
because the current manufacturer did not pay enough attention to this system besides numerable
interventions so that a different solution needs to be found.
Water extraction equipment
As the other equipment in JPPEU so to is this type of system relatively old and as an example we
need to mention that in this year no new pumps were acquired although the problem of water in
the mines is more pronounced then before. The water from the mines is pumped by the use of
centrifugal and submersible pumps, by PVC or metal pipelines. As well as the pumps which are
weary old there is also the problem of an old and rundown pipeline. In the past years a lot of
effort has bean spent to unify the pumps working in JPPEU and certain results were achieved so
that today the majority of the pumps is of the VPN type form the “Jastrebac” Nis manufacturer.
Which are good for extracting mine water which contains hard particles because they work with a
low number of rotations and are massive.
No.2-3,2013
16
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Equipment for the production of compresed air and equipment that work on compressed air The
production of compressed air for the use in the mines and out of them is done in stable
compressor rooms which are placed in the entrances of the mines. The compressors in JPPEU are
mostly produced by UNITEX or FAGRAM Smederevoand are all pistoned except the vijcan
compressor in Bogovina. As a problem in their operation there is the service of the machines after
a set number of working hours which is usually not done on time which results in delays later on.
On the basis of a detailed analysis it can be derived that t in the mines of JPPEU that all the
equipment form all five drupes is weary old, so that its maintenance is exponentially harder. The
conditions need to be made so that the equipment which is weary expensive to maintain because
of its long working history, needs to be replaced by newer equipment. This work did not examine
the equipment in the mines themselves, separation buildings, heating buildings... but the situation
of the mentioned equipment can be made as universal for all the equipment in the company and
that the problems are similar if not the same.
Example of an investment in a new mine
To illustrate the needed investments for opening a new mine we will use the example of a mine in
Melenci for which a study of has been prepared. The complete cost of the project were calculated
to be 44 million euros of which for the equipment in the mine 17 million euros are allocated. The
complete capacity of production would be achieve in 4 years after finishing the initial investment.
Here it is discussed of a mine field with an estimated 35,5 million tones of coal A and B reserves
estimated to be 10 million tones. The grater part of the field would be mined by the mechanized
wide shaft method and a part by the mechanized column method. The capacity of one wide shaft
is estimated to be 450000 tones per year and for the mechanized column method 150000 tones
per year.
On the basis of the developed method of the cost of one ton production it is derived that the
operative cost is 26,7 euros per tone or based on the awerage heat jeald of 12,8 GJ per tone we
arrive at a cost of 2,1 euros per GJ the cost is derived without the cost of VAT which is
changeable so that the cost assessment is simpleminded.
Too show the lack of investment in active mines in the tables below we have given the
investments in active coal mines ower the period 2002 – 2009.
No.2-3,2013
17
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Table 2. Shows the planed and the realised investment values for the period 2002 – 2009
by srtucture.
% Part
USD/t
4
21,6
5
4,0
6
0,41
27.191.677
42,7
63,8
6,56
2.604.366
48,1
6,1
0,62
Services
Structure
Planed
Realised
Relation
(USD)
(USD)
3/2
1
2
7.892.381
3
1.705.992
63.692.308
Geological
Operations
Mining
Operations
Construction 5.413.119
Operations
Equipment
29.310.070
9.845.057
33,6
23,1
2,37
Other
Services
15.635.142
1.305.933
8,4
3,1
0,32
Sam Total
121.943.020
42.653.025
35.0
100
10,28
Table 3. Shows the planed and realised investment values for the period 1995 – 2009 by
structure
USD/t
Planed
Realised
Relation
% Part
Services
(USD)
(USD)
3/2
Structure
1
Geological
Operations
Mining
Operations
2
11.365.381
3
5.997.472
4
52.8
5
6,1
6
0,72
121.924.308
70.216.865
57.6
71,6
8,23
3.812.068
27.1
3,9
0,44
Construction 14.083.119
Operations
Equipment
59.181.070
16.153.185
27.3
16,5
1,89
Other
Services
24.866.142
1.892.758
7.6
1,9
0,22
Sam Total
231.420.020
98.072.348
42,4
100
11,50
No.2-3,2013
18
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Conclusion
All the projects, analysis and studies which were conducted to define the expansion directions of
underground exploitation of coal in the Republic of Serbia, were achieved on the basis of
objective situations and conditions which characterize the state of active mines, to the conclusion
that without grate measures on the sector of investments there can be no further successful
operation. Because of constant problems with production and the lack of investments in the
needed level, the mines are financially spade and register a reduction in the capacity of
production and a ever grater problem to maintain the level of production and extraction.
A special problem for underground exploitation is the lack of technical development which is a
result of the lack of mechanization and modernized technological phases, and this besides
production has a negative effect on safety in the mines. Without the modernization of equipment
the mines cannot count on development, and the continued existence of certain mines is in
question.
With all this in mind, it is necessary that the state as the owner of the mine, and with acceptance
of the arguments given for the need to maintain the underground exploitation of coal, by
providing the necessary funds needed to put the mines on a path to optimize the necessary
technical-thenological system elements.
No.2-3,2013
19
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
UDK:622.83:55,8.013(0,45)=861
doi:105937/rudrad 1301037P
Jovo Miljanović *, Neđo Đurić **, Mirko Ivković***, Žarko Kovačević*
USING OF COMBINED TECHNOLOGYS IN ROOF SUPPORTING IN
UNDERGROUNG MINE ‘’SOKO’’
Abstract
Complexed mining-geological conditions of coal mining, as they are in mine Soko require
continuous work on the research of new technical solutions development and supporting of
mining underground rooms.
A special chapter in this work is detailed manner the existing techniques and technologies and
supporting of mining facilities at the mine Falcon.
Test sidewise support underground mining premises EH-(-60 )z in undergound mine "Soko"
combined frame support as shown in this work was performed under the applicable Additional
exploitation of coal mining project of K - 24 to R-10 faults in the excavation area OP-4 north
wing, of the Western mining Field "Soko" .
Describes the development of new solutions and technologies supporting in function to increase
the stability of the mining space, extending their service life, functionality and elimination of
standing and difficult reconstruction of the premises in underground mine "Soko".
INTRODUCTION
The stability of underground rooms and other mining facilities is one of the main problems that
accompany underground coal mining. The mining-geological conditions of exploitation, such as
the Falcon mine , mine construction investment for the most part ( in time and costs) related to
the development of underground rooms. Thus, finding optimal solutions development and support
the underground passageways , basic preparation and excavation has special significance and
impact on the overall investment. [1]
The mine Soko prevazileženja to these problems , and the right choice of technology
development and supporting of mining facilities , work began on the introduction of new
technology , whose main goal is the improvement of the general condition of underground
chambers and improve the quality, timbering and thus increasing their lifetime , and creating the
conditions for a safe and secure work [ 2], [ 3].
Design solutions related to the test sidewise support underground mining premises EH- (-60 )z in
underrmine "Soko" define the parameters of the combined frame support and activities related to
the introduction of new technologies Soko mine timbering AT hanging support .
Voltage conditions and experiences, and suggest that the mining areas exposed to intense
pressures and strains, and therefore reduces their service life and as a result there is a need for
Constantine maintenance facilities .
*
Faculty of Mining Prijedor, e.mail: [email protected]
** Tehnical Institute of Bijeljina.
***JP PEU Resavica
No.2-3,2013
20
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
ENGINEERING-GEOLOGICAL
RELATED ROCKS
CHARACTERISTICS
YU ISSN:1451-0162
UDK:622
OF
COAL
LAYER
AND
From the engineering- geological point of view , the rocks that make up the deposit "oko" and his
immediate environment can be classified into three groups (related rocks, semi-cohesive and nonrelated rocks).
Ing to coal seam starts basal limestone breccia and conglomerate over which lie sandy clays and
shales, marly - sandy clays, sandy marl and lime - flutter sandstones. Immediate floor of coal
seam consists of carbonaceous clay that make the transition from the footwall shale to coal.
The coal seam is a complex lithological composition of the permanent dirt bands carbonaceous
clay, clay, marl and tuff.
Roof of coal seam is made of marl, sandy marl and clay and shale, clay and marl friable
sandstone and sand, gravel in places.
Figure 1. Geologialc column of Sokobanja tertiary basin
Tests of physical- mechanical properties of rocks were carried out on samples from the coal seam
and direct Podine and the withdrawal of coal seam , 1974 / 75th year.
ROOF SUPPORTING SYSTEM IN UNDERMINE ''SOKO''
The mine Soko work environment are mostly marl overlying sandstones and to a lesser extent
coal and marl ( overlying and underlying stratum ), and sand and carbonaceous clay. Mining
areas in the mine through a long period of exploitation were imported through all kinds of rock
material.
No.2-3,2013
21
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Figure .2 Classification of facilities by type of rock
materials in which the work of the mining areas
Excavation preparation, which consists of excavation hall, podgrađivana a trapezoidal wooden
frames on the "sor" reinforced beams. Usually distance podgradnih framework for the preparation
of excavation is 0.8 m.
Circular steel lining was applied for opening sidewise support facilities and basic preparation ,
stretching from the export and ventilation shafts and appropriate navozista that Podgraden cast
concrete frame support, up to the level of floor hallway .
Lining of cast concrete was used for the export sidewise support and ventilation shafts and their
associated.
Shapes and dimensions of the cross section of the room opened and basic preparations are quite
uniform. The cross sections are generally circular cross-section area of 9.62 m2 and 12:56. In
addition to the circular cross section of underground rooms , navozišta export and ventilation
shafts, a low arched shape.
a)
b)
Figure 3. Classification of premises a) the type of construction of supporting
b ) the shape of the cross section
The technology of the existing methods and supporting of mining areas
Making room in the mining pit shall be semi mechanized and discharge profile is done drilling
and blasting operations, shipping odminiranog materials is done by hand excavation and removal
as head of the site is carried out using a double strand grabuljastih carriers.
The facilities were made through coal, and mining using the methane explosives safety while
initiating explosives shall millisecond electric detonators.
No.2-3,2013
22
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Figure 4. Steel circular permissive lining with necessary
dimensions and values
APPLICATION OF COMBINED TECHNOLOGY SUPPORT OF THE EXAMPLE OF
MINING ROOM EH- (-60 )Z
Combination lining includes a steel roof supports and AT hanging support , which will act in
concert as a whole underground mining premises EH-(-60 ) z in mine "Soko" [ 4].
Way of support has steel support underground rooms is done according to the prescribed
methodology and practices for underground coal mining.
Rehearsal rooms sidewise support EN (-60 )z in undermine "Soko" is the initial activity of the
application of technology supporting by AT hanging support .
Action at the hanging support is based on the principle of preventing the spread of the contour
deformation layers of underground facilities and to prevent the spread of deformation in fractured
communities and at the same time particulary cracks creating a zone of increased mass in the
vicinity of underground facilities.
It can be said that AT hanging support active support units , or to enter into effect before the
contour deformation underground rooms. Compared with AT anchors, steel support is passive
suburb
or
receives
load
after
forming
the
contours
of
the
room.
Contact spacing and mass along the entire length of the well is important to prevent the spread of
strains in the depth range.
This type of support is due to the characteristic mode of action , in the literature no longer listed
as the type of lining , but as a system ojačenja , since their actions "changes " physicalmechanical properties of the mass in the vicinity of metro station, in the zone that corresponds to
the length of the installed anchors AT .
Experimental verification of the effects of AT hanging support consists of three phases:
-Site Investigation
No.2-3,2013
23
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
-Test sidewise support
-Confirmation of the solution
For the location of the trial supporting in undermine "Soko" is selected underground chamber EH
( 60 ) z , which will be carried out during the first phase of testing and research.
Activities in the first phase are:
The purpose of a trial installation of elements hanging support to determine the suitability of
equipment for drilling wells and installing ankerskih anchors into precise conditions.
Test pulling briefly associated anchors, which is performed to measure the links strenght adopted
system hanging support in terms of competing [ 4].
TERMS AND TECHNOLOGY OF SUPPORT AND APPLICATION AT NANGING
SUPPORT AND FOLOXING THE STRESS AND STRAIN
The initial activity of the first phase of the technology requires the choice of location of mining
areas where detailed studies were made of rock massif in the past.
The methodology used to select the appropriate solution for support the hanging support is based
on the measurement and monitoring of certain parameters "in situ" and that after the beginning of
the systematic application.
Once on the basis of measurement and monitoring scheme established with the installation of
anchors that achieves successful control of the massive , it is possible to make changes and
corrections of the existing method supporting by steel supports. This , like any other modification
, whether in the way of installing AT hanging support, either in the form and amount of installing
steel support is necessary to confirm the results of measuring and monitoring the behavior of the
massive share of 30 to 60 m, with a minimum interval of about two weeks [ 4].
During the third phase of the trial for support the need for measuring and monitoring results
confirm the massive support has approved manner.
Based on the monitoring behavior of rock mass around an underground room - strain and burden
which they are exposed AT anchors determines the effectiveness of the solution.
Changes in stratigraphy and environmental changes in the stress state of underground rooms ,
which can be determined by measuring devices and monitoring may lead to a situation when you
need to change the way - for support the solution.
Given procedure is more reliable compared with analytical or empirical approach where the load
bearing capacity of the lining and the mass calculated in order to reach certain assumptions about
the behavior and effectiveness of mass support. It is important to emphasize that these
assumptions may be incorrect, specially in sites with varying characteristics.
Load transfer characteristics of the mass over the cured two-component mixture at anchor, in
terms of the ability to accept bolt load, and in terms of evaluation of effectiveness, will be
determined by installing anchors with a measuring tape .
The next step is the analysis of data obtained from monitoring and measuring, as well as
No.2-3,2013
24
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
information about the tests pulling briefly associated anchors, to determine the effectiveness of
the solution and if necessary modified to improve.
These changes may be related to the profiles of underground facilities (for example, the transition
from the ring to the trapezoidal profile), or increasing the axial distance between the steel frame ,
and reduce the amount of steel lining.
Ongoing monitoring - monitoring of the behavior of the massif is made using sonic extensometers
and strain gauge two-height.
Equipment for use anchors with two-component mixture in coal mines with underground mining
include special pneumatic or hydraulic rotary drills and accessories make the anchor rods,
cartridges with two-component mixture, steel or plastic mesh, etc.. [ 4].
After placing the cartridge with two-component mixture into the well , carried out by injection
anchors its rotation for mixing components. As the anchor installed to the bottom of wells , drill
stops to fast hardened mixture.
Two-component mixtures are based on this system timbering. The basic component is a resin based material , and the second catalyst , which is a smaller cartridge, inside the first.
These compounds are classified according to the time that harden at :
- faster ,
- slower and
- mixtures which harden in the interval between the first two.
For two-component mixtures are related to two properties that are important for their proper
installation and supporting of the system's reliability. These are: the time (period) to the time of
initial curing and hardening.
Time to cure is the time during which the mixture can be confused without a significant change in
viscosity , or prior to a change in state of the mixture from a liquid to solid. The beginning of this
interval is the start of mixing of the components , and not a moment when the entire length of the
anchor installed .
a)
b)
Figure 5. Effect of temperature of the working environment on the two-component mixture (
EXCH )
a) faster mixture , b) slower mixture
No.2-3,2013
25
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Methods for measuring and monitoring the stress state and deformation
The main objective of the applied solution timbering is to confirm the parameters of the solution,
including detailed monitoring of the behavior of the massif around the room and measure the
response of anchor to load the massif.
Current measuring and monitoring should also ensure a safe working environment by pointing to
possible changes in behavior that require massive additional roof supports or supporting of a
different way .
Control of stress state and strain contours underground chamber system for supporting of AT
anchors is critical, as exceeding certain values affect the stability of anchors and requests
promptly take appropriate measures (installation of additional AT anchors, placing steel support,
etc.).
A certain number of anchors with strain gauges installed under the scheme of installation of
anchors and sonic extensometers are weighing station, through which confirms the effectiveness
of the scheme of installing anchors.
Reading is done the appropriate instrument that is designed for use in methane mode , and also is
equipped with a memory unit that stores sensed data. Data analysis is done on the computer using
specialized software, with the possibility of graphical interpretation aksijanlnog loads and
bending moments anchors.
They can be described as a wire extensometers . Each pointer - an indicator was hanged on an
anchor which is placed at a certain depth in the borehole .
Figure 6. Schematic diagram of strain gauge
No.2-3,2013
26
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Asymmetric deformation point is simple konsktrukcije and is an integral part of the system of
support has , easily prepared and relatively inexpensive, and because of this relatively often
installed along the underground room . In this way it provides the opportunity for continuous
visual signal level of the massive deformation of the making of the room. The undermine "Soko",
these devices were installed at a distance of 10 m during the trial supporting of the room.
COMBINED CONCEPTION IN
UNDERGROUND MINE "SOKO"
SUPPORT
OF
COMBINED
SUPPORT
IN
Activities related to the first phase of technology transfer support has hanging support AT
undermine "Soko" were made in order to be able to implement the second phase of transfer:
systematic installation of AT hanging support . The test results of the first phase were used for the
selection and installation verification scheme preleminarne AT hanging support, which is the
subject of this project.
When a specific solution installation AT hanging support to provide satisfactory results in
measuring and monitoring obtained by sonic eksenzometara and anchor with tape measure, can
be accessed by any change of the way of support has steel support [5].
The result of the second phase of the trial of support has to be a way for support the underground
rooms combined support (steel and AT hanging support) .
Start installing AT hanging support the EH- room (60) z in undermine "Soko" was carried out
according to the initial schedule of installation, while maintains the existing method of support
has a steel frame support permissive circular diameter of 3.5 meters, which are installed on the
axial distance of 0, 7 to 1.0 m.
In order to obtain reliable data measurements of rock mass deformation takes from 30 to 60 m
face advancement EH- site facilities (60) z and installation of lining combined with a minimum
interval of two weeks. After this period, on the basis of the results to an optimal scheme of
installation ankara and possible correction applied steel lining.
Any change in any method of installation AT hanging support, either in the form and amount of
built-in steel support, confirming the results of measuring and monitoring the behavior and mass
support.
The aim of introducing AT hanging support (in combination with steel support) in the undermine
"Soko" is to improve the control of massive prolongation of the room and reduce the need for
reconstruction of the room - EN (60) z or reconstruction of floor hallway [6].
In Figure 7, shows the initial installation scheme AT anchor in an underground room EN- (-60) z
, of the room in a circular cross -section, which is podgrađuje circular steel frame support
permissive 3.5m.
No.2-3,2013
27
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Figure 7. Home installation scheme AT hanging anchors the room EH-( -60) z
To begin installation of the recommended density of elements hanging support - number of
anchors per square meter of surface contours of underground rooms should be at anchor 1.2
anc/m2.
Home installation scheme AT anchors in room EN- ( -60 ) z is provided with a relatively high
density of - 1.2 ankera/m2 . With the beginning of the systematic installation of anchors in the
second phase are carried out additional tests , which will be the measurement data indicate the
need for further improvement schemes installation.
As the figure shows five anchor length 1.8 m, overlying the anchors, only the central axis of the
room should be built vertikanlno while the other four anchors to be installed at an angle of 10th
The distance between the mounting points overlying anchors should be at 0.76m.
Depending on the results of monitoring and measuring behavior results roofing and subsequent
testing possible improvements and optimization methods timbering will result in reducing the
number of anchors in the scheme of installation and increasing the axial distance between the
steel support frame.
After each modification for support the way, in order of their confirmation , you will need to
advance the forehead site from 30 to 60 m, with a minimum interval of stabilization massive two
weeks in order to obtain reliable measurement results. Commitment to the underground rooms of
the second phase of the trial was used for support the steel mesh.
Steel mesh is made of wire diameter 3-6 mm at a distance of 50 mm. Just rows and columns of
the network through which the post anchors should have a wire at a distance of 75 mm.
No.2-3,2013
28
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Figure 8.Steelnetworks for advocacy room
Figure 9. The order of installation of steel mesh panels
of the room in EH (60 )z with a circular profile
4. CONCLUSION
Previous studies of the state of stress in the mine Soko, indicating that the mining areas subjected
to intense pressure and deformation, and therefore reduces their service life.
In addition to stability produced a manufacturing system is a very important and timely
development of facilities in order to maintain the continuity of the production process, the
production process of new excavation unit. The current way of creating and supporting of the
rooms showed more limited especially in terms of increased underground pressures affecting the
mining deformation space smaller or greater intensity.
In order to overcome these problems and a proper choice of technology development and
supporting of mining facilities, the mine ''Soko'' test was performed to introduce a new
technology, whose main goal is the improvement of the general condition of underground
chambers and improve the quality, timbering and thus increase their lifetime, and creating the
conditions for a more secure and safer operation.
Tehnoogija installation AT hanging support and test sidewise support underground mining
premises EH- ( -60 ) z in undermine "Soko" combined frame support was performed in
accordance with the present design solutions .
Based on the solutions presented in this paper can be concluded as follows:
• New technology AT hanging support can be successfully applied for the sidewise support
mining areas combined support (steel and AT hanging support), and that can create conditions for
the development of mechanized underground spaces, which significantly increases the effects of
these technologies timbering.
• The introduction of AT hanging support the mine Hawk provides a rationalization of support the
underground rooms as well as the extension of service life and reliability and functionality.
• AT hanging support in combination with steel support Meaningful for Soko mine because it
provides greater stability of underground rooms which positively affect the safety and
humanization of work in harsh underground mining conditions.
No.2-3,2013
29
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
REFERENCES
[1] Jovanovic P.: Design and calculation of the horizontal underground openings support,
Mining and Geology faculty, Belgrade 1994.
[2]
Miljanović J., The maximum step advencement defiwing with mechanized hydraulic
(MHRS) within conditions of mine „Strmosten„ journal Arehives for Tehnical Sciences
7/2012, Tehnical Institute of Bijeljina.
[3] Ivković M., Eexamination and to form harmful injfluence on natural environment from effect
underground exploation coal., journal Arehives for Tehnical Sciences 1/2009, Tehnical
Institute of Bijeljina.
[4] URP of support testing in underground opening EH-(-60)z in RMU with the combined
support, Faculty for Mining and Geology, Belgrade 2010.
[5] Ljubojev M., Popovic R., Rakic D.: The basis of mechanical models settings of support
interaction with rock mass, The Mining works journal no. 1/ 2006, Bor, 2006.
[6] Trivan J.,analysis of infuencing factors in the selection of the underground tehnological
process in the coal layers, journal Arehives for Tehnical Sciences 6/2012, Tehnical Institute
of Bijeljina.
No.2-3,2013
30
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
UDK:622.272(0,45)=861
doi:10.5937/rudrad 1301085M
Jovo Miljanović,* Dražena Tošić*, Tomislav Miljanović**,Mirko Ivković***
VERIFICATION OF RELIABILITY AND EFFICIENCY OF THE DRAINAGE SYSTEM
ON THE OPEN PIT "BUVAČ"
Abstract
Monitoring and evaluation of the drainage system of effectiveness and reliability on open pit
"Buvač" include surveillance, monitoring and recording of the all constructed drainage facilities,
and an analysis of the overall functionality of the drainage system on open pit "Buvač".
The purpose of monitoring the drainage system has been striving at all times have access to state
of the water flows and hydrodynamic processes in order to create a controlled system of the work
of all structures for mining of groundwater and surface water.
Based on the results of monitoring and recording of rainfall and the groundwater level
measurements, it is possible to make a final assessment of the efficiency and reliability of the
entire drainage system
Keywords: drainage mining, monitoring, the drainage facilities.
INTRODUCTION
Drainage in the mining includes a number of complex measures that imply a constant control of
the underground and surface waters in the all phases of mine development and mineral deposits
exploitation. The surface and groundwater waters endanger the mining facilities and disrupt the
work in them.
The drainage facilities in mining are the hydroelectric facilities used for drainage and protection
of water inflow.
With increased depth of exploitation, the conditions of surface drainage of open pits are more
complex, which results in an increased number of drainage objects. This applies especially to iron
open-cast mines, with a large coefficient of water abundance, such as mine "Buvač" mine.
In order to successfully solve the problem of drainage must be especially detailed knowledge of
the hydrological and hydro-geological characteristics of the deposit and its surrounding rocks, as
well as physical- mechanical properties of rocks and tectonic disturbances, which are often
medium of water.
After identification of the possible water threats to mine, the protective measures introduce which
for specific conditions represent a rational solution in terms of safety and cost.
The reliability and efficiency tests of the drainage system shall be carried out through the control
of drainage facilities made for the surface and groundwater protection through the monitoring of
the water flows and the hydrodynamic processes.
*Faculty of Mining Prijedor, e-mail: [email protected]
* Faculty of Mining Prijedor, e-mail: [email protected]
** PD Kolubara
*** JP PEU –Resavica, e-mail:[email protected]
No.2-3,2013
31
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
The main goal of monitoring is to determine precisely the reliability of the existing drainage
facilities and to modify or customize the new regime of drainage conditions in the open pit.
THE CHARACTERISTICS OF ORE DEPOSIT OMARSKA
According data from meteorological station in Prijedor, deposit area is a region of moderate
continental climate, which is characterized by a sudden rises in temperature in the spring, by
minimum of winter precipitation, by moderate cold winters, and hot summers and frequent
incursions of cold air.
In the wider area of the open pit "Buvač", terrain slope is generally from east to west and from
north to south, with the existence of watersheds to the north of the mining areas, which are
directed towards to the mine and the water that drains from a large area to the contour of
exploitation area.
The terrain morphology is suitable for discharge of main pipeline and providing of gravity
drainage of pumped water because it does not require additional work on the dam construction
and the uniform and peak flows of pumped from water drainage wells, which directly affects the
cost of drainage.
Hydrogeological complex - a complex of permeable and impermeable layers made of: clay,
sands, which are occasionally interspersed with the fine-grained sands, either laterally or
vertically, and belong to the Pliocene sediments.
The geological conditions and relationships between the properties of the rock of collectors and
insulators caused the hydrogeological characteristics of the exploration area. Within of terrain are
the properties of the rock mass with the characteristics of the hydrogeological collectors and
isolators.
RELIABILITY TESTING OF THE DRAINAGE SYSTEM
Modern approach to the process of managing drainage system and monitoring the effects of
works, provides that in all stages of the development of the open pit applies the controlled
operation of all facilities and the overall system to protect the mine from surface water and
groundwater, and continuous monitoring of the water flows and the hydrodynamic processes.
The goal of these activities is to determine the safety of drainage facilities and their effects on
lowering of groundwater levels, as well as through the hydrodynamic tests provide the reliable
hydrogeological parameters to updated hydrodynamic model to provide the efficient and effective
support to the management of drainage system.
As the process of dewatering depends upon a number of natural factors (precipitation, flows,
temperature regime of groundwater and surface water in the pit background, etc.), so that is
necessary a good knowledge of these parameters regime.
Monitoring will include the following:
- Measurement of the water levels in the alluvial layer,
- Measurement of the water level in the ore body,
- Measurement of the water levels of river Gomjenica,
- Measure of the amount of precipitation,
- Monitoring of pump hours and the amount of pumped water.
No.2-3,2013
32
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
THE ACTIVE
PROTECTION
HYDROTECNICAL
FACILITIES
YU ISSN:1451-0162
UDK:622
FOR
OPEN
PIT
"BUVAČ"
Open pit "Buvač" in order to protect the flow of water in the exploitation area, the relocation of
the river Gomjenica, and circumferential channel are made that accepts all water and gravity
leakage through the two culverts on the east side of the "eastern water collector".
In order to protect the open pit of shallow alluvial water was done as follows:
- from the southeast side are made the waterproof screens , Dk -1 and Dki -1, with a total length
of 2000 m,
-from the north is made drainage trench Du 2 a length of 900 m.
For the protection of deep underground water from the ore bodies, 6 wells were drilled in the ore
body and made a reconstruction of these two old wells.
The main water collector consists the two tanks used for mud settling and discharge of clean
water in the river Gomjenica.
In accordance with the progress of mining operations, the temporary sumps were made.
On open pit "Buvač " in the 2012 were active:
- 8 wells Eb 1-8, located on the west side of the mine,
- Drainage trench, Du 2, from east - west,
- 6 wells in the ore body, Bu 138, 282, 291, 11, 30 and 275,
- Water sump in the southwest part of the mine, at the first position of crusher at elevation 132 m,
- Water sump in the southern part of the E 130.
Figure 1 Layout of the designed facilities of mine
protection by groundwater and surface water.
MEASUREMENT AND OBSERVATION OF PROTECTION SYSTEM BY INFLUENCE
OF UNDERGROUND AND SURFACE WATERS
In determining the system effectiveness it is necessary to carry out the systematic measurements
of flow stations and groundwater levels in wells, cuttings, drainage, drainage channels and
monitoring wells, from the moment of activation of drainage facilities until their liquidation or
until such time as no longer needed for their work. By regular measurements will define the speed
of reduction of groundwater level and to determine the reference level at which reduced the flow
of the well. Provision of such information will be achieved by timely replacement of pumps by
which drainage system bring into a state that uses only the necessary and sufficient amounts of
electricity, while maintaining the efficiency and reliability.
No.2-3,2013
33
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
By comparing the pumped surface waters from drainage system and well system over a long
period of time, can make some conclusions about reliability and efficiency of drainage wells, and
knowing the total amounts of pumped water and the amount of excavated overburden define the
abundance coefficient of deposit.
The measurement points of the observation and monitoring of the groundwater regime are
practically all locations of wells with piezometers in the fill, piezometric wells in the immediate
and wider area of the open pit, the working levels of the open pit and waste disposal, drainage
cuts, the drainage channels, river Gomjenica.
Monitoring of the groundwater regime and the effects of this system is a drainage expert task for
surveillance, monitoring, measuring and processing of data required is a well organized and
equipped with the service.
THE MONITORING RESULTS ON HYDROTECHNIC FACILITIES
EQUIPMENT FOR OPEN PIT "BUVAC" IN THE PERIOD 2010-2012
AND
Responsible personnel for the organization of monitoring of the developed plan at regular
intervals carry out their activities in domains such as mapping of bench and waste disposal,
measuring the groundwater levels and flows in well, measure of rainfall, record the water levels
of rivers, and upon the completion of certain work completed report.
CONTROL OF THE RAINFALL AMOUNTS AND THE GROUND WATER LEVELS
After the construction of drainage facilities in the open pit "Buvač" as they are put into
exploitation the regularly observing, monitoring and recording of rainfall were made, the NPV of
over 30 locations, the hours of work stations and their capacities over the amount of water
pumped.
Groundwater level is measured at more than 30 facilities (the wells and piezometers) every
Monday, and the amounts of precipitation measured every day, if any, so that the analysis can be
performed and make some conclusions about the impact of the change in precipitation of the
groundwater levels.
Daily precipitation amounts are added and observed in dependence of the changes in the level of
water in the alluvial part of each monitoring well especially the weekly rainfall.
 The measured values of rainfall and groundwater levels in 2010
In Table 1 and in Figure 2 the graphical representation of the total amount of rainfall for the total
amount of rainfall per month in 2010.
Table 1 Amounts of precipitation in 2010
MONTH January February March April May No.2-3,2013
Month
amount
(l /m)
precipitation
71,5 114,5 108,9 73,1 153,3 34
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
June Jul August September October November December TOTAL YU ISSN:1451-0162
UDK:622
224,8 57 61,2 143,7 73,7 106 66,6 1254,3 Figure 2 Graphical layout of the total
quantity of precipitation for 2010
The analysis covers the period from march to July 2010, because, as seen in this period recorded
the highest amounts of rainfall, a total of 560.1 l / m.
Be observed dependence on changes in the level of water in the alluvium of the dependence of
daily precipitation.
The water level is controlled once at week, and precipitation monitored every day, if any.
Based on these results, an analysis at the measured water levels in drainage facilities and using
data on daily rainfall, if any.
Piezometer Po 1 located between the screen wells beyond the contours of the pit and away from
river Gomjenica about 300 m.
In the period without rainfalls, there is no change in water levels.
With the first quantities of precipitation, the water level rises slightly, then again stagnated until
new snowfall, when rise.
 The values of precipitation and groundwater levels in 2011
Table 2 shows the total precipitation in the 2011 and in Figure 3 graphical representation of the
total rainfall in 2011.
Table 2 Rainfall amounts in 2011
Month
January
February
March
April
May
June
July
August
September
No.2-3,2013
Month precipitation
amount (l / m)
28
24
34,9
41,6
42,2
57,5
63,5
15,8
32
35
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
October
November
December
TOTAL
YU ISSN:1451-0162
UDK:622
70,4
5,8
86,1
501,8
Figure 3 Graphical display of the total amount
of precipitation in 2011
As in the period from October to December 2011 recorded the highest rainfall, total 162,3 l/m,
this period will be analyzed in detail.
Figure 4 Piezometer Po1
The diagram shows that with increased rainfall, the water level slightly rises.
 The values of precipitation and groundwater levels for 2012
Table 3 Amounts of rainfall in 2012
Month
January
February
March
April
May
No.2-3,2013
Month precipitation
amount (l / m)
47
73,3
10,7
78,9
121,4
36
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
June
July
August
September
October
November
December
TOTAL
YU ISSN:1451-0162
UDK:622
46,6
52
8
86,4
84,8
87,5
121
817,6
Figure 5 Graphical display of the total quantity
precipitation in the 2012
In the period October- December recorded the highest amount of rainfall of 293.3 l / m.
Figure 6 Piezometer Po1
Based on the conducted measurements and the NPV and their analysis can be drawn the
following conclusions:
-
The water level in the observation objects near the river Gomjenica largely influenced by
the amount of rainfall and water level of river Gomjenica, and with distance from the
Gomjenica that influence became a weak.
The functionality of the drainage of the cut (cassette),
Functionality of the part of the screen with a geomembrane.
QUANTITY OF PUMPED WATER FROM THE PERIOD 2010 - 2012
By analyzing of daily hours of the pump operation on open pit "Buvač", taking into account the
effective time of pump, mechanical and technical delays, as well as the capacity of available
pumps, produced the data on the quantities of water pumped for the period of 2010-2012.
No.2-3,2013
37
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Tables 4.19 and 4.20 or 4.21 in the pictures 4.31, 4.32 and 4.33 shows the amount of water
pumped per month in 2010, 2011, and 2012.
Figure 7 Graphical display of the total quantity of
precipitation on the 2012 by months
 Achieved effects of well
 The drainage wells
By work of well the groundwater level in the ore body was in September 2008. to May 2012 was
reduced from 147.3 meters above sea level to 92 meters above sea level or 55.3 m.
The condition of requirement that the water level in the ore body is at least 10 m below the
working floor is satisfied.
After the inclusion of all new wells and Bu 275 Bu and Bu 30, less than three months from
2.3.2012. - 21.5.2012 groundwater level was lowered by an average of 14 meters.
No.2-3,2013
38
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Figure 8 Summary of monthly groundwater level
of open pit "Buvač" for the period
September 2008 - May 2012
Groundwater level in the well Bu 271 is significantly higher than the other measurement sites
because it is the edge of the ore body is irregular bottom, is situated at a height of 100, but it's a
pretty small area and does not have a significant impact on the drainage pit entirely.
- The screen wells
The main purpose of the display is well to prevent the flow of water in the working area of the
mine from alluvial layer to the west and north. Predicted depth of the well is 13.3 to 48.5 m and 5
m below the hydrogeological collector.
The wells were drilled to a depth of 760 mm to 5 m after which he built a steel jacket column
diameter of 600 mm and continues drilling diameter of 500 mm to a final depth of the well, after
which the installation of well executed design, solid construction and filter wire diameter of 273
mm, and piezometric construction 5/4 ".
After installing the mounting structure made of quartz filter pour about 4-8 mm and remove of the
jacket of the column, followed by cleaning, rinsing, development and testing of the crafted well.
Figure 9 The hours of screening wells during of
2010 to 2012
No.2-3,2013
39
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Figure 9 The hours of screening well during of
2010 to 2012
CONCLUSION
The monitoring establishment of drainage system is a professional task for surveillance,
monitoring, measuring and processing of data required is a well organized and equipped with the
service.
Successful technical implementation of the monitoring program depends mainly on the following
factors:
- Responsibilities of the service responsible for conducting monitoring,
- The quality of the presented technical preparation,
- The systematic implementation of monitoring,
- Equipment, technical means, and
- Interpretation of the measured results, and the responsiveness to specific changes.
In this article are present the overall analysis of established monitoring that included control of
structures for the open pit of surface and ground water, control of hydrodynamic processes and
thus the necessity for the reliability and efficiency of the entire drainage system on open pit
"Buvač".
Upon completion of the construction of drainage on open pit "Buvač" and putting them into
operation is performed regularly observing, monitoring and recording of rainfall, groundwater
levels, the hours of work stations and through their capacity and the amount of water pumped.
Groundwater level is measured at over 30 sites (piezometers and wells), and the amount of
precipitation measured every day, if any, so that the analysis can be performed and make some
conclusions about the impact of rainfall on the change of the ground water.
After completion of the overall analysis established monitoring that included control of structures
for open pit from surface and underground water, we can state the following:
 The water level in the observation objects near the river Gomjenica largely influenced by
the amounts of rainfall and water level in river Gomjenica, and by the distance from the
Gomjenica this influence became a weak, indicating the clayed alluvium and small
coefficient of filtration,
 By work of well the groundwater level in the ore body for the period decreased by 55.3
m, by which satisfies the condition that the water level in the ore be at least 10 m below
the working bench.
 Functionality of the wells, drainage cuts, screens and other hydraulic structures and
equipment is satisfactory.
Overall rating based on the perceived overall monitoring results is that the drainage system and
the condition of all hydraulic structures satisfying which means that the established system are
No.2-3,2013
40
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
reliable and functional to provide safe conditions for carrying out exploitation operations in the
open pit.
REFERENCES
[1] Technical design of the drainage of first water bearing layer and surface water -Book 3
[2] M. Ivkovic, Drainage in mining, Belgrade, 2005.
[3] R. Simic, V. Kecojevic, Drainage facilities of water in the open pits, Belgrade, 1997
[4 ] R. Simic , Mrsović D., Pavlovic V., Drainage of surface mines, Belgrade, 1984
No.2-3,2013
41
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
UDK:65.015:519,21:330,322(0,45)=861
doi:105037/rudrad 13001103S
Slobodan Majstorović*, Vladimir Malbasic*, Jelena Trivan* , Ljubica Figun *,
Miodrag Celebic*
SAFETY AND ENVIRONMENT PROTECTION BY USE OF ANFO EXPLOSIVES IN
MINE "SASE"
Abstract
In the mineral exploitation in the Bosnia and Herzegovina the AN-FO explosives
primarily were used in the surface exploitation. In last time, the companies with underground
exploitation analyzed the possibilities of using these types of explosives in underground
exploitation and technological development and improvement of blast technical characteristics of
the AN-FO explosives on global experience in creating of optimal ratio AN/fuel oil, with the aim
of operating costs decreasing and to begin with bulk usage of these explosive in the underground
production.
The mine of lead and zinc ore "Sase" is one example in order to begin with common and
bulk usage of AN-FO explosives in lead and zinc exploitation performed analysis of possibility of
these explosives in the underground exploitation of polymetallic mineral ore with solid rocks in
the working environment, with detailed processing of technical, technological, economic and
safety aspects of this analysis.
In this article are presented the safety aspects of this analysis, where in addition of
determination of all the risks, regulations and safety measures at drilling and blasting operation,
in order to protect personnel, determined the post detonation effects of the all potential hazards
which may results from AN-FO explosives using.
In this paper were analyzed the working environment, AN-FO explosives which are
available on the local market, their activation mode and detailed review of all possible
phenomena after explosion. This analysis is based on the world experiences related to use of ANFO explosives in the underground exploitation.
Key words: AN-FO explosives, underground exploitation, solid rock, the safety aspects.
INTRODUCTION
Current development of underground exploitation of the non stratified deposits or
underground exploiatation deposits in the solid rocks is based on several aspects:
- the available mineral deposits are at the more deeper levels and for most of them there no
the conditions for their surface exploitation,
- technological development in the equipment production and technology of excavation
provides the economical excavation with large capacity and less working staff, and
finaly,
- ecological awareness of humanity and threatening of planet's collapse strongest favoring
the underground exploitation of mineral deposits [1].
In the underground exploitation, apart from direct effects of drilling and blasting operation to
loading and haulage of equipment and realization of projected and planned capacities on loading,
shape and size of blasted materials, the organization of this tecnological phases has a very large
proportion in the total costs of exploitation. In this concrete case of lead and zinc exploitation in
the "Sase" mine the drilling and blasting costs exceeds 40% of the total exploitation costs.
No.2-3,2013
42
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
*
YU ISSN:1451-0162
UDK:622
University of Banjaluka, Faculty of Mining Prijedor e-mail: [email protected]
The mine of lead and zinc ore "Sase" in order to begin with common and bulk usage of ANFO explosives in lead and zinc exploitation was done the analysis of possibility of these
explosives in the underground exploitation with detailed processing of technical, technological,
economic and safety aspects of this analysis. A plan of activities are made with coordinated terms
and with the all drilling and blasting parameters from test blasting with notice that drilling
operations carried out according to the existing project solutions but with use of the new types of
explosives. This analysis is needed to justify the use of AN-FO explosives in the "Sase" mine
according to the all technical-technological and techno-economic and safety aspects, which is the
subject of this paper.
The safety aspects of AN-FO explosives use in the "Sase" mine include a determination of all
the risks, regulations and safety measures in working environment during of drilling and blasting,
identifying the post detonation effect or definition the all potential hazards after the usage of ANFO explosives.
1. COMPOSITION AND THE CHARACTERISTICS OF TOXIC FUMES AFTER
ANFO EXPLOSIVES DETONATION
The explosives with a different components has a certain the blast-technical characteristics
which have a specific role as [2]:
- Nitrate of potassium and sodium included in the explosive composition as potential
medium of oxygen.
- The sensitizers, the materials that are added to the explosives because increasing of their
sensitivity and capacity to explode (trotil, nitroglicol, jellied nitroglycerin, ect.).
- The combustible materials in solid or liquid state that aid combustion and increase the
quantity of energy ( the metal powders, retort coal, etc.).
- The deterrents (flegmatizators), the materials that reduce the explosive sensitivity, on
such a way that with a layer of inert material covering the crystals of explosive materials,
that prevents contact of the crystals and mutual friction.
- The materials that are enabling suspension stability and viscosity. In explosives added the
materials that are easily hydrolyzed and commonly used sodium salt,
carboxymethylcellulose, soot. etc.
A considerable amount of toxic fumes formed after explosion. If the explosives had a positive
or zero balance of oxygen, and if the disintegration performed during a normal explosion,
generated gases are: nitrogen, carbon dioxide, water vapor and possibly some amount of oxigen.
Composition of gas products after blasting no only depends on the chemical composition of
explosives but from cover of explosive catridge, the blasting conditions, physical condition of
explozives, rock characteristics, stemming etc. Therefore, in the products of explosive
decomposition may occur a toxic gases, such as: carbon monoxide (CO), carbon dioxide (C02),
oxides of nitrogen-nitric oxide (NO) and nitrogen dioxide (N02), the sulfur gases-sulfur hydrogen
(H2S) and sulfur dioxide (S02) and rarely the mercury and lead vapors. The sulfur gases are not
the products of explosion because modern explosives and the means for detonating (except
blasting fuse) not contain the sulphur. These gases are extracted from sulfide minerals by
explosion effect.
No.2-3,2013
43
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
B.D. Rossi (1966) was systemized the causes of toxic gases based on the laboratory tests,
according their primary influences, as follows [2]:
- characteristics of the surronding rocks of explosive charge,
- chemical composition of explosives,
- cover of explosive cartridge,
- the blasting conditions.
Z.G. Pozdnjakov and B.D. Rossi (1971) classified the rocks according to the amount of toxic
gases during of blasting and their research they gave the following conclusions [2]:
- At the greater strength of the rocks creates a larger quantity of CO.
- Pneumatic charging of blast hole significantly reduced the harmful emissions.
- The position of initial cartridge in blast filling and direction of initiating have influence to
composition and quantity of toxic gases.
- The minimum amount of toxic gases is eliminated if the initial cartridge lay on the
blasthole bottom.
- Gap between the blast cartridge and hole diameter have influence to toxic gases. The
minimum quantity of toxic gases created at the minimum gap.
- Stemming material type significantly affects the individual and total quantity of toxic
gases. The largest quantities of toxic gases are created by stemming of clay material.
Using NaCl, water, solution Km and 04, NaHCO3 gel, reducing an individual quantity of
toxic gases [2].
The following table presents the values of the maximum allowable quantities of certain gases,
mg/m3.
Table 1- The maximum allowable quantities of the certain gases, mg/m3
Carbon monoxide (CO) Nitric oxide (NO) Nitrogen dioxide (NO2) Sulfur hydrogen (H2 S) Sulfur dioxide (SO2) The lead fumes (Pb) The mercury vapors (Hg) -
-
5,8 3,0 9,0 10,0 10,0 0,15 0,10 Carbon monoxide (CO), allowed amount of carbon monoxide in a mine atmosphere is
0.02 mg/l (0.0016% of the volume).
The oxides of nitrogen (NO, NO2) allowed concentration is 0.005 mg/l or 0.001 % of the
volume.
Sulfur hydrogen (H2S), at concentration of 0.1 H2S, in the air after a short time leading to
the death. When mixed with air at temperature of 600° C is combustible, and at content
of 4,5% with air formed an explosive mixture. This gas occurs in the process of decaying
of organic material which contains the sulfur.
Sulfur dioxide (SO2), if concentration in the air is about 0.03% it is a dangerous for life.
The allowed concentration in the atmosphere is 0.0007% of the volume.
Hydrogen (H2), Hydrogen mixed with air or with oxygen produces a strong explosion
mixture. The explosion effects are the strongest at 28.6% H2 in the air.
No.2-3,2013
44
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
-
YU ISSN:1451-0162
UDK:622
Mercury vapors, Mercury and the least amounts of mercury vapors in the air are toxic
and harmful for health. The poisoning signs are nervousness and trembling. These vapors
harmful acts on the stomach and mucous glands [2].
1.1. The chemical and physical factors which affecting the formation of nitrogen oxides nox
with usage of the anfo explosives
The toxic gases like CO and NO are products of explosion detonation. The implications and
possibilities of these products reducing was studied for decades by many institutions and
researchers.
In this study presented the only some of them which generally provide the basic information
about the chemical and physical factors that affect the toxic gases from the explosion of ANFO
explosives.
The National institute for professional safety and health ( The National Institute for
Occupational Safety and Health - NIOSH) was in the level of laboratory tests identified the
factors which can to have influence of nitrogen oxides (NOx) in the non ideal conditions for
blasting and the non ideal explosives. The explosive mixture are mixed with crushed material
after blasting process, loss of fuel oil and ammonium nitrate fuel oil (ANFO), ammonium nitrate
dilution with water, the grade of explosive density, ANFO density and critical diameter are
identified as influential factors for better explosion. The experiments were done to research of
effectiveness of various additives in reducing of NOx from ANFO.
Aluminum powder, coal dust, urea and excess of fuel oil in ANFO were tested and determined
the dependence in the process of nitrogen oxide (NO) and nitrogen dioxide (NO2).
The gas detonation products depend on the composition of explosives and the surrounding
conditions during usage but carbon dioxide, water vapor, nitrogen is still producing. In addition
to, CO, NO, NO2, methane (CH4) and hydrogen (H2) can be in the smaller or larger quantities.
The all explosives produce CO and NO, with appearance of CO in some cases even the greater
amount of them and NO4. The commercial explosives are usually generated between 6 to 31 l/kg
of explosives CO in the air. Balans of oxigen in the explosives (including packing), generally
controls appearance od CO and NO. Excess of fuel or negative oxigen balance increases CO and
reduces NO. On the other hand, fuel deficiency or positive oxigen balance basically reduce CO
and increase NO. Elshout notes the three reactions from oxidation process of NO in NO2 [3]:
(1)
2NO + O2  2NO2
(2)
NO +O3  NO2 + O2
NO + RO2  NO2 + RO (3)
Elshout suggested that the above mentioned reactions possible:
- in an atmosphere that contains the high concetrations of reactive hydrocarbons -3,
- in the presence of high UV radiation -2, and
- the reactions at low NO concentration in the presence of ozone -for test in the air -1.
ANFO (94/6) produces an average 13.8 ( 4.5) l/kg CO and 25.5 ( 5.1) l/kg NO. As
expected with increasing of diesel fuel to 8% , CO increases 2.5 times at 35.1 ( 6.4) l/kg, with a
reduction of 14% NO to 22.0 ( 5.1) l/kg. Adding aluminum powder in 94/6 ANFO mixture
gently increases CO to 23.3 ( 6.9) l/kg whereas gently decreases NO to 16.2 ( 5.5) l/kg [3].
In non ideal detonation identified the several factors: weak overburden, which significantly
reduces the required charge density; significant infiltration of water in the long intervals between
the explosive charge, which change the composition of explosives; the long holes, which produce
No.2-3,2013
45
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
the hydrostatic pressure at the hole bottom and reduce the possibities of successful propagation of
detonation; overloading explosive due to humidity of waste and the veins of clay.
The researches have shown that the grade of explosive charge consistency and blasted
materials both have significant influence on gases appearance. As a result of the study it was
concluded that the measurements of gases during blasting at a one mine may not be relevant for
different operating conditions and blasting at another mine. The tests with a small quantities with
a better control of the variables requred to define the factors and induce a minimization of
problem [4].
Grain size in ANFO - in the test chambers was done the test for comparing the emissions
from detonation of ANFO / granular or prills.
With the same grade of consistency, NO2 from prilled AN was 4 times lower than the amount
from standard granulated ANFO. CO and H2 from detonation of prilled ANFO is 2 times lower
and NO was 30% lower than granulated ANFO. With CO2 have no a significant difference. With
prilled AN, in the case of granules the ammonium nitrate is probably intimately mixed with the
oil. A more intimate contact between the ammonium nitrate and oil causes the more complete
reactions of decomposition. With the granules, reaction of dissolution in the granules of nitrate
produces a more NO after detonation .
Picture 1. The effects of relative consistency
consisteny at CO,
at NO and NO2 products in ANFO detonation,
detonation
the emulsions and mixtures 50/50 (5),
Picture 2. The effect of relative
CO2 and H2 products in ANFO
the emulsions and mixtures 50/50 (5)
NO and NO2oxidation in the air depends on initial NO concetration at the time. Concetration
and NO and NO2 were added and the sum is NOx concentration. NOx shows a significant increase
with decreasing of consistency (bulk density). In this case the grain size of explosives is probably
the most important. The explosives as ANFO have the disintegration properties with products of
NOx.
The critical diameter of ANFO explosives - in the many test were determined dependence of
detonation velocity and diameter of these explosive. Explosive with diameter 100 mm can have
3048 m/s detonation velocity, diameter 150 mm about 3658 m/s and diameter 400mm about 4877
m/s. It is also found that the diameters of less then 30 mm reduced detonation velocity by 60%.
No.2-3,2013
46
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Picture 3. Detonation velocity of ANFO
in dependence of charge diameter [5]
The content of ANFO aditive / supplements - As result of thermal reaction is set a postexplosive NO2 (to create the conditions for the ideal detonation products), which results in an
increase of NOx. NO component oxidized to a visual orange cloud which is characteric for NO2
when emited in an atmosphere.
With adding the various additives from ANFO were conducted and compared the quantities of
NO and NO2. The excess of diesel fuel (8%) reduce NO2 with lower level of NO reduction.
Adding 3% of Pittsburgh pulverized coal (PPC), dust on the 6% fuel oil (FO) is effective in such
a relation. 3% FO (fuel oil) + 3% PPC (coal) produce less NO2 than mixture with 6% FO - fuel
oil, with increase of NO. In the some explosives improvement obtained with some additives with
lower density will be lost. It is compromise in the cases of borehole long intervals and their
charging and initiation in the cases of ANFO dissolution in water or loss/ decline of fuel oil
participation through operation of cord connecting along the borehole walls. In many cases, the
borehole composition should be protected from the effect of water and absorption of oil with
surronding material in the borehole. It is basic function of the WR additives [5].
The material for stemming - Within the analysis of additives, stemming with water (the
water plugs) should potentially reduce of NO2 by dissolving the soluble acidic gases in water with
increased basic material as sodium carbonate (Na2CO3). The one liter mixed with 10 grams of
Na2CO3 reduces measurable NO2 at 48% with a small reduction of NO. The practical stemming
with water can be difficult to use in situ. One of the requirements is to ensure that water not
leaking/draw in the lower boreholes over a longer period between charging and their activation.
Adding of the gelatin agents in water can minimize its influence. Humidity in the blasting zones
influence to ignition, NO2 absorption and reduction of dispersed dust during blasting process [5].
The contents of fuel oil/fuel and AN dissolution - A common explanation for the postdetonation gases of NO2 from ANFO is a mixture with a lower oil content (positive balans of
oxygen) or the boreholes were wet. If it is a reduced oil content the nitrate oxides appear because
of incomplete reduction of nitrate. Balanced ANFO formulation may become to oil free if oil
leaks in the borehole walls [5].
The contents of blasting agents for density - 2% of Cabosil* (gas silicon dioxide) is added
to a fuel component and quickly mixed with the AN granules. Cabosil prevent the fuel leaking
between the granules. Consistent fuel significantly reduces the loss of fuel leaks, but did not
reduce a loss of AN when placed in the simulated boreholes with 8% of water.
WR conditioner 260, ANFO gelatin like blasting agent, was added to the ANFO because the
conditioners slowing down the loss of AN. Since AN take out water from the borehole walls, WR
conditioner induces the gelatin of water near the borehole walls so reduces the ratio of AN
dissolution.
Basically, the compact explosive chargings (density-consistency) have a more regular detonation
and less contents of NO and NO2. The additives as a coal dust and a higher percentage of fuel
mixed with ANFO sligthly reduce the NO while urea and WR conditioner 260 slightly increase in
a ratio at 6% of ANFO.
No.2-3,2013
47
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
The all ANFO additives that have been tested reduces NO2. The test with reduces quantities
indicate that increased content of fuel (8%) in AN reduces NO2 and the other additives including
coal dust. The laboratory results indicate that dry, soft and porous rocks can take the significant
amounts of oil from ANFO in the period between charging and ignition of the explosive. The
degree of oil loss is higher in the boreholes with smaler diameters. Also in the waste rocks with
moisture of 8% have influence on dissolution AN from ANFO through a time. In practice, it is
important to prevent the oil loss in situ and dissolution of AN in the period between borehole
charging and its activation [5].
In the one paper presented analysis of the toxic gases depending on type of explosive and the
concentrations of certain gases by CFR standard are shown in Table 2.
Table 2. The toxic gases and relative toxicity by CFR standard (3)
Explosive
COa,e,f, l/kg NOb,e,f, l/kg NO2c,e,f, l/kg
The toxic gasesd,e l/kg
ANFO 94/6; 5% Al
25,3
16,2
0,6
68,0
ANFO 94/6
13,8
25,5
0,4
72,3
ANFO 92/8
35,1
22,0
0,1
80,5
Commercial buster
250,8
1,3
0
253,3
-
a,b,c
measured CO, NO and NO2 in argon atmosphere, f - standard deviation.
The toxic gases, l/kg (ft3/lb), converted to standard 30 CFR (part 15 and 20).
Standard 30 CRF (Federal Relative Toxicity Standard 30 CFR Part 15) provides the
allowed gases in the underground exploitation of coal and the other mines with gases.
The total gases does not exceed 155 l/kg in the standard conditions [3].
This Study used the all these tests and the experiences when planned the trial blasting and
working conditions of test blasting in order to obtain more usable and representative data that
would confirm or exclude the possibilities of the ANFO explosives use in the concrete conditions
of mine "Sase".
2. THE RECORDINGS AND ANALYSIS OF TOXIC FUMES AFTER BLASTING
After blasting process in the working environment of underground mine the toxic fumes are
Carbon monoxide, Oxides of nitrogen, Sulfur gases, Mercury and lead vapors, and the
increased concentrations of aggresive mineral dust and non-toxic (inert) gas Carbon
dioxide. Qualitative and quantitative content of toxic fumes in the products of explosion, by
blasting process in the underground working area has a great significance on security and the
economics [6].
To maintain concentration of the toxic gases after blasting below to MDK it is necessary to
take the time for ventilation. That time is unproductive, lost.
In case of insufficient ventilation, early entry of personnel at the working site after blasting,
retaining the workers in toxic environment and deficient of the measures of neutralization of toxic
gases the toxic gases cause not only disease but also the death injuries.
Due to chronic toxication the capacity of workers becomes weak and his working life is reduced.
Because of high number of the professionally diseased workers from toxic gases, ore production
and productivity decline and increase the human, material and social problems.
In the industrial countries the last couple of decades was conducted the research of toxic gases
mechanism during blasting process and studying of the factors which have influence on their
No.2-3,2013
48
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
composition and quantity and it can be concluded that one part of influence has not been
sufficiently explored.
The scientists on these issues are quite contradictory, this is understandable, since the toxic
fumes, their distribution and behaviour during and after blasting are very complex and related to
working activities in the polluted environment of underground mine with the gases and dust.
Furthermore, the studies mostly involving the individual influences and usually based on
laboratory, and the obtained results are considerably different from the results obtained in the
industrial- production conditions. In our country, in industry and laboratory scale this scientific
issue has not been studied.
Insufficient awareness of individual and ecpecially the group dependencies in the world's
scientific practice and the state of mining industry in our country was initiated the necessary to
study of this problem. During the analysis of possible use of ANFO explosives in the lead and
zinc mine "Sase" the study was carry out and in situ observations of the toxic gases influence in
the process of test blasting in this mine.
2.1.
The locations and measuring conditions and testing of the toxic and non toxic gases
in the blasting technological process in "sase" mine
The measurements and testing of toxic gases produced by blasting with the use of ANFO
explosives were carried out 01.10. and 22.10. 2010 during the test blastings. The measurement
points were given in the following test.
2.1.1.
The measurements during test blasting 01.10.2010
MM number 1. BLOCK STOPE 312/2 SD ( sublevel drift) LEFT –PANEL BREAKDOWN
- Used 63 kg of the ANFO exsplosives and 9 kg of powder explosive
- Mining equipment - Machine for mechanical borehole charging located in situ and it was
not in process.
- Personnel- On the site during measurement were 10 workers, of which 4 workers carry
out the heavy works and the other mainly medium heavy works.
- At the measure point no artificial ventilation and air ventilation is naturally done. And 20
minutes after blasting the measurements were done.
MM number 2. BLOCK STOPE 31/5a AE (adit entry) WORKING FOREHEAD
- Used 32 kg of ANFO explosives and 2 kg of powder explosive
- At the measure point no artificial ventilation and air ventilation is naturally done.
- And 20 minutes after blasting the measurements were done.
MM number 3. BLOCK STOPE 312/5a SD Left (sublevel drift) WORKING FOREHEAD
- Used 28 kg of ANFO explosives and 2 kg of powder explosive
- Mining equipment - Machine for mechanical borehole charging located in situ and
- was in process of charging explosive in the boreholes. Underground mining equipment
for loading "TORO" is located near the measure point, but is not working in the time of
measurement.
- Personnel- On the site during measurement were 6 workers, of which 4 workers carry out
the heavy works and the other mainly medium heavy works.
- At the measure point no artificial ventilation and air ventilation is done naturally.
- Working face is located in the drift because that the natural air ventilation is difficult.
- And 20 minutes after blasting the measurements were done.
No.2-3,2013
49
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
The group for measurement a 25 minutes after blasting at 20 m far from measure point
measured the concentration of Carbon monoxide 350 ppm and found that due to high
concentration of smoke it is not able to make the necessary measurements, although it was
equipped with apparatus, because a poor visibility the measured values would not be reliably
done and thus the measured values would not be the same as the measured values in the real
state. In situ evulation was thet the concentration of smoke and gases last for least 180 minutes,
considering the conditions and natural air ventilation because it was decided to teminate the
measurements. For the above reasons after blasting at the measuring point number 3 the
measurements are not made.
Table 3. The conditions of measuring and results [6]
2.1.2. The measurements during test blasting 22.10.2010
MM number 4. BLOCK STOPE 312/2 SD-5 (sublevel drift) LEFT
-
Used 37 kg of ANFO and 0,5 of powder explosive
MM number 5. BLOCK STOPE 312/2 PH-5 (sublevel drift) RIGHT WORKING FOREHEAD
The29measurements
were
done
a 20 minutes
after blasting
- - Used
kg of ANFO and
5 kg
of powder
explosive
- The measurements were done a 20 minutes after blasting.
MM number 6. BLOCK STOPE 312/ SD (Sublevel drift) WORKING SITE LEFT AND RIGHT
- Used 25 kg of ANFO and 4,5 kg of powder explosive
- The measurements were done a 20 minutes after blasting.
Measuremen
ts
Measured
The
meteorologi
cal
conditions
on the
entrance of
mine
The measurements 01.10.2010
(the measurements before blasting, due
charging and 20 minutes after blasting)
MM 1 Block MM 2
MM 3
cave 312/2
Block cave Block cave
SD
312/5a adit 312/5a
drift
SD-1
air temperature:
9,0C
relative humidity:
84%
airflow velocity:
0,58 m/s
direction of air-pozitive
northeast southwest
atmospheric pressure
The measurements before
ventilation)
The
air 14,4C/13temoeratures 15C
Relative air 95,5%/max
humidity
75%
No.2-3,2013
The measurements 01.10.2010
(the measurements before blasting, due
charging and after blasting)
MM 4 Block
MM 5
MM6 Block cave
cave 312/2
Block
312/SD- 6 l/d
SD-5 left
cave
312/2 SD5 desno
IV horizon- drift 413
air temperature:
2,3 C
relative humidity:
84%
airflow velocity:
0,58 m/s
direction of air-pozitive northeast southwest
atmospheric pressure
radioactive radiation
0,18S
blasting due charging : The climatic conditions without ventilation (natural
13,1C/1315C
8895,6%/max
14,4C/1315C
99,3%/max
75%
50
15,5C/1315C
95,0
%/max75%
15,5C/1315C
95,0
%/max75%
15,6C/13-15C
95,0 %/max75%
0,20 m/s/ (max
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
0,27 m/s
Direction of (max 0,5)
air in ratio
of
the Negative
pollution
source
75%
<0,20 m/s
(max 0,5)
Air pressure
960mbara/
1013,25
In trace
Polytest
<0,20 m/s
(max0,5)
Negative
0,20 m/s/
(max 0,5)
Negative
0,20 m/s/
(max 0,5)
Negative
0,5)
972mbara/10
13,25
In trace
972mbara/
1013,25
977mbara/1013,2
5
0,0 ppm/50 Tragovi/50
ppm
ppm
959mbara/1
013,25
Significant
indication
(>12 mm at
measure
tube)
presence of
toxic
supstance
20,8%/min
19,6%
0,00/50
ppm
0,05%
/0,5%
0,06%/0,5
%
0,00%/0,5
%
Traces/0,5%
0,0 ppm/ 4
ppm
0,0 ppm/
25ppm
0,0ppm/7
ppm
0,0 ppm/ 4
ppm
0,0 ppm/
25ppm
0,0ppm/7
ppm
0,0 ppm/ 4
ppm
0,0
ppm/
25ppm
0,0ppm/7
ppm
Nije
mjereno/50
ppm
Nije
mjereno/50
ppm
Nije
mjereno/50
ppm
Traces/4
ppm
0,25ppm/25p
pm
Traces/7
ppm
0,00
ppm/15ppm
Traces/50
ppm
965mbara/
1013,25
In trace
Oxigene 5% 21,0%/min
19,6%
B
Carbon
monoxide
5/C
Carbon
dioxide 0,1
%a
Sulphur
dioxide 1/a
Nitrogen
dioxide 0,5/c
Hydrogen
sulfide 1/c
Carbon
disulfid
Ammonia
5/a
Negative
21,0%/min
19,6%
21,0%/min
19,6%
Traces/50
ppm
The measurements after 20 minutes
min after
60 min
The climatic conditions without ventilation (natural ventilation)
The
air 14,9C/13- 14,9C/13-15C
14,0C/13temperatures 15C
15C
93,5
Relative air 90,5%/max 90,5%/max 75%
<0,20 m/s (max 0,5)
%/max75%
75%
humidity
0,23 m/s/
0,23 m/s
Negative
(max 0,5)
Direction of (max 0,5)
Negative
air in ratio
of
the Negative
pollution
No.2-3,2013
51
10 min after
13,4C/1315C
92,5
%/max75%
0,20 m/s/
(max 0,5)
Negative
20
15,6C/13-15C
94,5 %/max75%
0,20 m/s/ (max
0,5)
Negative
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
source
Air pressure
Polytest
Oxigene 5%
B
964mbara/
1013,25
In trace/20,5%/min
19,6%
0,0 ppm/50
ppm
Carbon
monoxide
5/C
Carbon
0,08%
dioxide 0,1 /0,5%
% /a
Nitroze gase 0,5/a
964mbara
In trace/20,5%/min 19,6%
0,0 ppm/50 ppm
0,17%/0,5%
Sulphur
dioxide 1/a
Nitrogen
dioxide 0,5/c
0,025
0,27ppm/4 ppm
ppm/4 ppm
0,25
0,25 ppm/25 ppm
ppm/25pp
m
Table3. The conditions of measuring and results [6]
972mbara/10
13,25
In trace/20,6%/min
19,6%
1,0 ppm/50
ppm
971mbara/1
013,25
In trace/20,4%/min
19,6%
2,0 ppm/50
ppm
977mbara/1013,
25
In trace/20,2%/min
19,6%
46,0
ppm/50
ppm
0,08%/0,5%
0,1%/0,5%
0,3%/0,5%
Trace/25ppm
0,3ppm/25p
pm
0,3ppm/4pp
m
0,4ppm/25p
pm
2,0ppm/25ppm
0,05ppm/4pp
m
0,4ppm/25pp
m
0,5ppm/4ppm
0,6ppm_/4ppm
2.1.3. Review and analysis of the measured concentrations of toxic gases due test blasting
By analysis of toxic gases concentration after 20-25 minutes due the test blasting with the
ANFO explosives we can determine that the concentrations of gases are below the limit values
according to the CFR standard ( Table 2- toxic fumes and relative toxicity). The recordings were
made before charging of explosive and recorded the initial reference conditions which also show
a little or no concentration of the toxic gases. On the figure 4,5 and 6 are shown the plots of
recorded /observed concentracion and the allowable limit values by CFR standard.
Figure 4. Analysis of CO and NOx
concentration a 20 minutes after blasting with
the ANFO explosives (6)
No.2-3,2013
52
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Figure 5. Analysis of CS2 and NO2
concentration a 20 minutes after blasting
with the ANFO explosives (6)
Figure 6. Analysis of H2S and SO2
concentration a 20 minutes after blasting with
the ANFO explosives (6)
3. THE COMMENTS OF MEASURING AND CONCLUSIONS
In the case of safety and quality of working environment due to use of the ANFO explosives,
it is possible to conclude the certain conclusions based on the results of measurement and
research of influnce of use of the ANFO explosives in the underground mine "Sase":
1. Quantity of the used explosives have no decisive influence on appearance and duration of
the toxic and inert fumes in the working environment.
2. Maximum concentration of the toxic and inert fumes were determined at the location of
measuring without natural ventilation, because of unfavorable disposition of the
horizontal and vertical drifts and unfavorable atmospheric pressure.
3. Diesel powered machinery used in the underground mines also have a negative influence
on the toxic and inert gases and reduction of oxygen, especially in the stope- in the drifts
No.2-3,2013
53
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
with unfavorable natural ventilation so that the toxic and inert fumes due the blasting
even worse influence on the air quality, and in this case of usage diesel equipment and
blasting in the underground mine is necessary to apply the artificial ventilation with
calculation of speed and direction of air movement, or making the project of stope
ventilation.
4. The influence of the toxic and inert fumes on the personnel health in the underground
mine is significantly reduced with a qualitative project of ventilation and excludes the
risks of acute poisoning of workers (cronic poisoning of workers can not entirely
excluded) and significantly reduced the lost time after blasting and entering of workers in
the safe working environment.
REFERENCE:
[1] S.Torbica, N.Petrovic: The methods and technologies of exploitation of the non
stratified deposits, RGF Belgrade, 1997.
[2] N. Purtic: Drilling and Blasting, University text-book, RGF Belgrade, 1900
[3] M.L.Harris, M.J.Sapko, R.J.Mainiero: Toxic fume comparison of a few explosives used in
trench blasting, National Institute for Occupation Safety and Health Pittsburgh Research
Laboratory, 2002
[4] Santis LD, RA Cortese: A method of measuring continuous detonation rates using off the
shelf items. In: Proceedings of the 22nd Annual Conference of explosives and blasting
technique. Orlando, FL: International Society of Explosives Engineers, February 4-8,
1996, 11 pg.
[5] M. Sapko, J. Rowland, R.Mainiero, I. Zlochower: Chemical and physical factors that
influence Nox production - Exploratory Study 2002.
[6] R. Pavic, M. Celebic: Report of the measurements and research of gases in the process of
blasting with ANFO explosives, "Gross" d.o.o Gradiska Srebrenica, december 2010.
[7] V. Cokorilo, J.Miljanovic, D. Bogdanovic, M. Denic: Underground exploitation
development in the world, Journal of Mining Engineering No. 1/2002, Underground
exploitation Committee,Resavica 2001.
[8] M. Stjepanovic: Safety and working protection state in the coal underground mines in
Serbia, Journal of Mining Engineering No. 1/2001, Bor 2001.
No.2-3,2013
54
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
SADRŽAJ
CONTENS
Nenad Anžel
MINING IN MEDIEVAL EAST SERBIA (14TH to 16th Century)
Mirko Ivković, Svjetlana Ivković
STANJE MEHANIZOVANOSTI TEHNOLOŠKIH FAZA RADA PODZEMNE
EKSPLOATACIJE U RUDNICIMA JP PEU
THE STATE OF MACHANIZATION OF TEHNOLOGICAL FAZES IN UNDERGROUND
EXPLOITATION IN THE MINES OF JP PEU
Jovo Miljanović. Neđo Đurić, Mirko Ivković, Žarko Kovačević
PRIMJENA TEHNOLOGIJE KOMBINOVANOG PODGRAĐIVANJA RUDARSKIH
PROSTORIJA U RMU“SOKO“
USING OF COMBINET TECHNOLOGYS IN ROOF SUPPORTING IN UNDERGROUND
MINE “SOKO”
Jovo Miljanović. Dražana Tošić, Tomislav Miljanović, Mirko Ivković
VERIFIKACIJA POUZDANOSTI I EFIKASNOSTI SISTEMA ODVODNJAVANJA NA PK
„BUHAČ“
VERIFICATION OF RELIABILITY AND EFFICIEN CY OF THE DRAINAGE SYSTEM ON
THE OPEN PIT „BUHAČ“
Slobodan Majstorović, Vladimir Malbašić. Jelena Trivan, Ljubica Figun, Miodrag Čelebić
ASPEKTI BEZBJEDNOSTI I ZAŠTITA ŽIVOTNE SREDINE PRILIKOM UPOTREBE ANFO
EKSPLOZIVA U RUDNIKU „SASE“ SREBRENICA
SAFETY AND ENVIRONMENT PROTECTION BY USE OF ANFO EXPLOSIVES IN MINE
„SASE“ SREBRENICA
No.2-3,2013
55
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
UDK: 65.05:519,21:330.23 (0,45)=20 doi:10.5937/rudrad 13011553S
Mirko Ivković*, Svjetlana Ivković **
STANJE MEHANIZOVANOSTI TEHNOLOŠKIH
EKSPLOATACIJE U RUDNICIMA JP PEU
FAZA
RADA
PODZEMNE
Uvod
Rad u podzemnim rudnicima uglja sada se zasniva na teško fizičkom radu, s obzirom da su
izostala ulaganja u nabavku opreme. Praktično radi se na način kako je to rađeno pre više od 50
godina, tako da su i rezultati rada niski uprkos zalaganja rudara.
Poslednje mehanizovano široko čelo je prestalo sa radom 1991 godine, mašina za izradu
prostorija mehanizovano nema nijedan rudnik preko 20 godina, a utovarne mašine neposeduje ni
jedan rudnik.
Poslednjih dvanaest godina praktično se transportna oprema nabavlja u delovima tako da su česti
kvarovi i zastoji u radu a što je direktna posledica smanjen kapacitet proizvodnje.
PROBLEMI RADA I ODRŽAVANJE OPREME
1. Oprema za izradu jamskih prostorija
Sada u jamama JP PEU nije u radu nijedna mašina ovog tipa. Koliko god to izgledalo
neverovatno možemo konstatovati da smo po pitanju angažovanja mehanizacije na izradi jamskih
prostorija daleko ispod nivoa na kome smo bili još pre trideset godina, što znači da smo rapidno
nazadovali. Mora se navesti da je godinama unazad u svakom programu poslovanja bila planirana
nabavka ove opreme ali do nabavke nije došlo. Potpuno je jasno da ako smo nekada pre trideset
godina jamske prostorije radili na jedan savremeniji način i ako su svuda oko nas u okruženju na
istim poslovima angažovane savremene mašine mi imamo problem da se pre svega vratimo na
nivo na kome smo nakad bili a zatim da pratimo savremene tokove razvoja i primene ove vrste
opreme tako bi postigli zadovoljavajuće rezultate u ovom pogledu.Ističe se da je u nekoliko
navrata pokušavano da se osposobe dve mašine ove vrste i to ALPINA F6A i AM50. Čak je
jedno kratko vreme ova prva i radila na izradi jamskih hodnika 1995 godine, međutim kako je
ona osposobljena nedostajućim rezervnim delovima izrađenim u saradnji sa domaćim
proizvođačima što se odrazilo na kvalitet i postojanost u radu, rad tog kombajna je bio kratkog
veka i uz česte zastoje i ostale prateće probleme, mada su rezultati dok je kombajn radio bili
relativno zadovoljavajući, i bolji nego klasičnim sistemom izrade rudarskih prostorija.
*Prof.dr Mirko Ivković, JP PEU –Resavica
**Svjetlana Ivković, Ugaljprojekt-Beograd
No.2-3,2013
56
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
2. Oprema za mehanizovano otkopavanje uglja
Još devedesetih godina prošlog veka u nekim od rudnika koji su danas u sastavu JP PEU radila je
mehanizovano čelični hidraulična podgrada raznih svetskih proizvođača.
Ova oprema je radila sa visokim radnim učincima što se odražavalo na visoku proizvodnju i
vredne finansijske rezultate. Opremom su uz pomoć proizvođača kao i stručnjaka iz inostranstva
rukovali i vrsti održavanja radnici rudnika koji su se prethodno obučavali za tu vrstu poslova.
Od 1992. godine nisu vršeni pokušaji uvođenja tehnologije mehanizovanog otkopavanja s
obzirom na nedostatak finansijskih sredstava .
3. Transportna oprema za prevoz ljudi i uglja
Grabuljasti transporteri
Grabuljasti transporteri su transportna oprema najzastupljenija u rudnicima JP PEU i
angažovana je na transportu uglja znatno blizu samih radilišta.Najviše je u radu dvolančanih
grabuljastih transportera a u tri rudnika rade i jednolančani. U našoj zemlji nema više firmi
(proizvođača) tipa GEOMAŠINE , koji se bave kompletnom izradom ove opreme te smo
prinuđeni da sami kompletiramo ove transportere tako što od raznih proizvođača kupujemo
pojedinačne delove i lance, motore, reduktore, pogonske i natezne stanice. Ova vrsta opreme
radi najbliže samim otkopima te je i izložena najvećim opterećenjima a samim tim i
kvarovima, zastojima i predmet je svakodnevnog održavanja i remonata kako u jami tako i
spolja u mašinskim radionicama. Remont se u najvećem obimu vrši u sopstvenoj režiji. Zbog
velikih problema u postojanosti korita kod ovih transportera pribeglo se izradi korita od
kvalitetnijih limova što je dalo dobre rezultate, a u dva navrata su i nabavljeni kompletni
transporteri od takozvanog livenog sigma profila koji je dao takođe dobre efekte naročito u
uslovima rada na investicionim radilištima gde se radi u jalovini.
Transporteri sa gumenim transportnim platnom
Kod ove vrste transportera mora se istaći da jame u JP PEU , imaju obično veoma duge
transportne puteve, gde su angažovani transporteri ovog tipa.
Transportera i ovi transporteri se formiraju na samim rudnicima od sastavnih delova koji se
nabavljaju od raznih proizvođača. Problem je takođe što u našoj zemlji nema nijednog
proizvođača koji se bavi kompletnom izradom trakastih transportera, što se nekako i prevazilazi
kod kraćih reonskih traka.
Za trakaste trasportere većih dužina (preko 350 m), čak šta više nema nijednog domaćeg
proizvođača u zemlji i to u delu izrade samih pogonskih stanica. Povoljnost u ovom delu je što su
te glavne transportne deonice već pokrivene postojećim transporterima koji su nasleđeni iz
ranijeg perioda, te se taj problem donekle prevazilazi ali se problemi sa njihovim održavanjem
svakodnevno pojavljuju i čine sve veće teškoće u radu.
No.2-3,2013
57
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Prevoz ljudi gotovo ni u jednom rudniku nije rešen na adekvatan način.
Lokomotivski šinski transport
Ovaj vid transporta ima veoma nisku pogonsku spremnost jer je reč o lokomotivama koje su stare
preko 50 godina i čije je održavanje veoma teško a kvarovi po čak i havarije veoma česti jer su
kolosečni putevi u veoma lošem stanju.
S obzirom da se radi o akulokomotivama mora se ići na širu primenu dizel mašina.
Oprema za dopremu repromaterijala
U JP PEU primenjeno je nekoliko vidova ove opreme i to: sistemi dopreme sa beskonačnim
užetom i visećom šinom, sistem dopreme dizel lokomotivom sa gornjom šinom, vitlovska
doprema, šinski kolosečni lokomotivski transport kao i jedan novi vid opreme-kombinacija vitla i
beskonačnog užeta koji je primenjen prvi put u jami Tadenje a zatim i u još nekim rudnicima i
koji će se šire primenjivati.
Žičare tipa ŠARF rade u jamama rudnika RMU Rembas, Soko, Jasenovac, dok je u RMU Štavalj
u radu slična žičara proizvodnje ESO Velenje. U rudniku Lubnica radi takođe slična žičara koja je
proizvedena u našoj zemlji od sastavnih delova iz uvoza i delova proizvedenih u domaćoj
industriji.Ovi sistemi su dosta pouzdani i pogodni za jamske uslove rada i njihovom primenom je
znatno olakšano snabdevanje jama repromaterijalom. Pouzdanost rada ovih sistema vezano je za
redovnost održavanja i svakodnevnim nivelisanjem šine po pravcu i po visini, održavanjem i
blagovremenom zamenom užeta, vodilica užeta (rolen bokova) itd.
Dizel lokomotiva tipa ŠARF sa gornjom šinom je na radu u rudniku Bogovina i tu postoji dosta
problema. Naime reč je o veoma starim lokomotivama, na dizel pogon od kojih je jedna potpuno
van pogona a rad druge je skopčan sa problemima održavanja i veoma često se javljaju zastoji u
radu.
Vitlovska doprema vrši se uz pomoć vitlov, (najčešće je to vitao PV11/15 domaće proizvodnje),
gornje šine i užeta i zastupljena je u svim jamama u JP PEU. Poseban problem kako kod žičare
tako i kod vitlovske opreme je nedostatak pouzdanih kočionih sistema jer dosadašnji proizvođač
nije ovom proizvodu posvetio dovoljno pažnje i pored mnogobrojnih urgencija u tom pogledu, te
se mora iznaći drugo rešenje.
Oprema za odvodnjavanje
Kao i ostala oprema u jamama JP PEU i ovaj vid opreme je dosta zastareo i kao primer treba
istaći da u toku ove godine nije nabavljena nijedna nova pumpa mada je problem sa prisustvom
vode u jamama veći nego ranije.Voda se iz jame ispumpava primenom centrifugalnih i
potapajućih pumpi, putem PVC ili metalnih cevovoda. Osim pumpi koje su dosta stare takođe se
kao problem pojavljuje i starost i dotrajalost cevovoda i to posebno magistralnih cevovoda.
Uloženo je dosta napora zadnjih godina da se izvrši unifikacija pumpi na radu u JP PEU i
postignuti su i određeni rezultati tako da je danas najveći broj pumpi tipa VPN-proizvođača
No.2-3,2013
58
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
„Jastrebac“ Niš, koje su pogodne za ispumpavanje jamske vode u kojoj su prisutne čvrste čestice
jer rade sa malim brojem obrtaja i dosta su masivne.
Oprema za proizvodnju komprimovanog vazduha i uređaji na komprimovani vazduh
Proizvodnja komprimovanog vazduha za potrebe rada u jamama i spolja vrši se u stabilnim
kompresorskim postrojenjima smeštenim ispred ulaza u jame. Kompresori u JP PEU su najvećim
delom proizvodnje UNITEH ili FAGRAM Smederevo i klipni su svi sem vijčanog kompresora u
rudniku Bogovina.Kao problem u radu javlja se blagovremeni redovni servis nakon određenog
broja radnih sati koji najčešće ne uspeva da se ispoštuje što ima za posledicu kasnije zastoje u
radu pa i veće havarije.
Na osnovu detaljne analizemože se konstatovati da da je u jamama JP PEU sada raspoloživa
mašinska oprema iz svih pet grupacija dosta stara, dotrajala i amortizovana , tako da je njeno
održavanje izuzetno otežano.Treba stvoriti uslove da se deo opreme koju je jako skupo održavati
zbog njenog dugogodišnjeg rada rashoduje i da se izvrši nabavka nove savremenije opreme. Ovaj
rad nije razmatrao opremu kao što su uređaji na oknima, separacijama, toplanama kao ni alate i
uređaje posebno potezne naprave, dizalice i ostalo ali može se generalno istaći da se ono što je
rečeno za navedenu opremu odnosi i na ovaj deo i da su problemi sa kojima se srećemo slični .
PRIMER ULAGANJA U OTVARANJE NOVOG RUDNIKA
Za ilustraciju potrebnih ulaganja u otvaranje nekog novog rudnika poslužićemo se primerom
rudnika Melnica za koga je urađena Studija izvodljivosti. Ukupni troškovi izgadnje projektovani
su na oko 44 miliona evra od čega na opremu u jami i površini pripada oko 17 miliona evra
Ovde se radi o ležištu sa utvrđenih 34,5 miliona tona uglja A i B rezervi i procenjenih oko 10
miliona tona.Veći deo rezervi bi se otkopao mehanizovanim širokim čelima, a deo
mehanizovanim stubnim otkopima. Kapacitet jednog širokog čela u radu je dimenzionisan na
450.000 t/god, a mehanizovanog stubnog otkopa 150.000 t/god.
Na osnovu izrađenog modela troškova po toni proizvodnje dobiveno je da ukupni operativni
troškovi proizvodnje iznose 26,7EU/t, odnosno pri prosečnoj toplotnoj moći uglja iz ležišta od
12,8 GJ/t dobijamo 2,1 EU/GJ. U proračun troškova ušlo se bez faktora PDV koji je dosta
promenljiv, tako da je olakšan obračun troškova.
Da bi pokazali zaostajanje u investiranju u aktivne rudnike u narednim tabelama dato je ulaganje
u aktivne rudnike u periodu 2002-2009 godina
No.2-3,2013
59
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Tabela 2. Prikaz planirane i realizovane vrednosti investiranja za period 2002-2009. po strukturi
Struktura ulaganja
1
Geološki radovi
Rudarski radovi
Građevinski radovi
Oprema
Ostala ulaganja
UKUPNO
Planirano
(USD)
2
7.892.381
63.692.308
5.413.119
29.310.070
15.635.142
121.943.020
Realizovano
(USD)
3
1.705.992
27.191.677
2.604.366
9.845.057
1.305.933
42.653.025
Odnos
3/2
4
21,6
42,7
48,1
33,6
8,4
35,0
%
učešća
5
4,0
63,8
6,1
23,1
3,1
100
Pokazatelj
USD/t
6
0,41
6,56
0,62
2,37
0,32
10,28
Tabela 3. Prikaz planirane i realizovane vrednosti investiranja za period 1995-2009. po strukturi
Struktura ulaganja
1
Geološki radovi
Rudarski radovi
Građevinski radovi
Oprema
Ostala ulaganja
UKUPNO
Planirano
(USD)
2
11.365.381
121.924.308
14.083.119
59.181.070
24.866.142
231.420.020
Realizovano
(USD)
3
5.997.472
70.216.865
3.812.068
16.153.185
1.892.758
98.072.348
Odnos
3/2
4
52,8
57,6
27,1
27,3
7,6
42,4
%
učešća
5
6,1
71,6
3,9
16,5
1,9
100
Pokazatelj
USD/t
6
0,72
8,23
0,44
1,89
0,22
11,50
ZAKLJUČAK
Svi projekti, analize i studije koje su rađene sa ciljem da definišu razvojne pravce
podzemne eksploatacije uglja u Republici Srbiji, dolazile su na osnovu objektivnog stanja i
uslova koji karakterišu stanje aktivnih rudnika, do zaključka da bez krupnih mera na sektoru
investicionih ulaganja nema uspešnog nastavka rada. Usled dugogodišnjeg nagomilavanja
proizvodne i poslovne problematike, a uslovljene izostankom investiranja u potrebnom obimu,
rudnici su finansijski iscrpljeni i beleže pad kapaciteta proizvodnje i sve teže održavaju
kontinuitet pripreme i otkopavanja.
Poseban problem za podzemne rudnike je zaostajanje u tehnološkom razvoju
prouzrokovano izostankom mehanizovanja i osavremenjavanja tehnoloških faza, a ovo pored
proizvodnih ima negativne i sigurnosne efekte u radu rudnika. Bez obnavljanja opreme rudnici
nemogu računati na razvoj, a i sam opstanak za pojedine rudnike je neizvestan.
Imajući sve ovo u vidu neophodno je da država kao vlasnik rudnika, a uvažavajući date
argumente o potrebi održanja podzemne eksploatacije uglja, obezbeđenjem finansijskih sredstava
u potrebnom obimu rudnike usmeri ka optimizaciji osnovnih elemenata tehničko-tehnoloških
sistema.
UDK:622.83: 55,8.013(0,45)=861
doi:10.597/rudrad 1301037P
No.2-3,2013
60
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
Jovo Miljanović *, Neđo Đurić
**
YU ISSN:1451-0162
UDK:622
, Mirko Ivković***, Žarko Kovačević*
PRIMJENA TEHNOLOGIJE KOMBINOVANOG PODGRAĐIVANJA RUDARSKIH
PROSTORIJA U RMU „SOKO“
Izvod
Složeni rudarsko-geološki uslovi eksploatacije uglja, kakvi su u rudniku Strmosten, zahtevaju
stalni rad na istraživanju novih tehničkih rešenja izrade i podgrađivanja rudarskih podzemnih
prostorija.
Posebnim poglavljem u ovom radu detaljno je prikazan način postojeće tehnike i tehnologije
izrade i podgrađivanja rudarskih prostorija u rudniku Soko.
Probno podgrađivanje rudarske podzemne prostorije EH-(-60)z u RMU „Soko“ kombinovanom
podgradom kako je prikazano u ovom radu izvođeno je u sklopu važećeg Dopunskog rudarskog
projekta ekspoloatacije uglja od k.-24 do rasjeda R-10 u otkopnom polju OP-4 Sjevernog krila
Zapadnog polja rudnika „Soko„.
Opisana nova rešenja izrade i tehnologije podgrađivanja u funkcij su povećanja stabilnosti
rudarskih prostorija, produženja njihovog veka eksploatacije, funkcionalnosti i eleminisanja
stalnih i otežanih rekonstrukcija prostorija u RMU „Soko“.
UVOD
Stabilnost podzemnih prostorija i drugih rudarskih objekata predstavlja jedan od osnovnih
problema koji prati podzemnu eksploataciju uglja. U rudarsko-geološkim uslovima eksploatacije,
kakvi su u rudniku Soko, investiciona izgradnja rudnika većim delom (po vremenu i troškovima)
odnosi se na izradu podzemnih prostorija. Stoga, iznalaženje optimalnih rešenja izrade i
podgrađivanja podzemnih prostorija otvaranja, osnovne i otkopne pripreme ima poseban značaj i
uticaj na ukupna investiciona ulaganja [1].
U rudniku Soko je u cilju prevazileženja navedenih problema i pravilnog izbora tehnologije
izrade i podgrađivanja rudarskih prostorija započeti su radovi na uvođenju nove tehnologije, čiji
je osnovni cilj unapređenje opšteg stanja podzemnih prostorija odnosno poboljšanje kvaliteta
izrade, podgrađivanja a samim tim i povećanje veka njihovog trajanja, kao i stvaranje uslova za
sigurniji i bezbedniji rad [2], [3].
Projektna rešenja koja se odnose na probno podgrađivanje rudarske podzemne prostorije EH-(60)z u RMU „Soko“ kombinovanom podgradom definišu parametre i aktivnosti koje se odnose
na uvođenje za Rudnik Soko nove tehnologije podgrađivanja AT visećom podgradom.
I naponska stanja kao i stečena iskustva, ukazuju da su rudarske prostorije izložene intenzivnim
pritiscima i deformacijama, pa se zbog toga smanjuje njihov vek eksploatacije a kao posledica
toga javlja se potreba za konstantinim održavanjem prostorija.
INŽENJERSKO-GEOLOŠKE KARAKTERISTIKE UGLJENOG SLOJA I PRATEĆIH
STIJENA
Sa inženjersko-geološkog aspekta, stene koje izgrađuju ležište ”Soko“ i njegovu užu okolinu
mogu se svrstati u tri grupe (vezane stene, poluvezane i nevezane stene).
*
Rudarski fakultet prijedor, e.mail: [email protected]
**Temnički institut u Bijeljina
***JP PEU Resavica
No.2-3,2013
61
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Podina ugljenog sloja započinje bazalnim krečnjačkim brečama i konglomeratima preko kojih
leže peskovite gline i glinci, laporovito-peskoviti glinci, peskoviti laporci i vapnoviti peščari.
Neposrednu podinu ugljenog sloja čine ugljevite gline koje čine prelaz od podinskih glinaca ka
uglju.
Ugljeni sloj je složenog litološkog sastava sa stalnim jalovim proslojcima ugljevite gline, gline,
laporca i tufa.
Povlata ugljenog sloja izgrađena je od laporaca, peskovitih i laporovitih glina i glinaca, glinovitih
i laporovitih slabo vezanih peščara i peskova, mestimično šljunkovitih.
Slika 1. Geološki stub Sokobanjskog tercijernog basena
Ispitivanja fizičko-mehaničkih osobina stijena vršena su na uzorcima iz ugljenog sloja i direktne
podine i povlate ugljenog sloja, 1974/75. godine.
NAČINA PODGRAĐIVANJA RUDARSKIH PROSTORIJA U RMU „SOKO“
U rudniku Soko radnu sredinu čine najvećim dijelom laporoviti krovinski pješčari i manjim
delom ugalj i laporac (krovinski i podinski), i peskovite i ugljevite gline. Rudarske prostorije u
ovom rudniku kroz dugogodišnj period eksploatacije izrađivane su kroz sve vrste stenskog
materijala.
Slika 2. Klasifikacija prostorija po vrsti stenskog
materijala u kome se rade rudarske prostorije
Otkopna priprema, koja se sastoji od otkopnih hodnika, podgrađivana je drvenim trapeznim
okvirima na “šor” ojačana podvlakama. Uobičajeno rastojanje podgradnih okvira kod otkopne
pripreme je 0,8 m.
No.2-3,2013
62
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Čelična kružna podgrada primenjena je za podgrađivanje prostorija otvaranja i osnovne
pripreme, na potezu od izvoznog i ventilacionog okna i odgovarajućih navozista koja su
podgrađena podgradom od livenog betona, do nivoa etažnih hodnika.
Podgrada od livenog betona primenjena je za podgrađivanje izvoznog i ventilacionog okna i
njima pripadajućim navozištima.
Oblici i dimenzije poprečnih profila prostorija otvaranja i osnovne pripreme dosta su ujednačeni.
Poprečni preseci su uglavnom kružnog preseka površine 9.62 i 12.56 m2. Pored kružnog preseka
deo podzemnih prostorija, navozišta izvoznog i ventilacionog okna, je nisko zasvođenog oblika.
a)
b)
Slika 3. Klasifikacija prostorija a) po vrsti podgradnih konstrukcija i
b) po obliku poprečnog presjeka
Tehnologija postojećeg načina i podgrađivanja rudarske prostorije
Izrada rudarskih prostorija u jami vrši se polumehanizovano, odnosno izbijanje profila vrši se
bušačko-minerskim radovima, utovar odminiranog materijala vrši se ručno i odvoz iskopine sa
čela radilišta obavlja se upotrebom dvolančanih grabuljastih transportera.
Prostorije su izrađivane kroz ugalj, a za miniranje koristite se metanski sigurnosni ekspolozivi
dok se iniciranje eksploziva vrši električnim milisekundnim detonatorima.
Slika 4. Čelična kružna popustljiva podgrada sa potrebnim
dimenzijama i statičkim vrednostima
No.2-3,2013
63
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
PRIMJENA KOMBINOVANE TEHNOLOGIJE PODGRAĐIVANJA NA PRIMJERU
RUDARSKE PROSTORIJE EH-(-60)Z
Kombinovana podgrada podrazumeva čeličnu podgradu i AT viseću podgradu, koje će delovati u
sadejstvu kao celina u podzemnoj rudarskoj prostoriji EH-(-60)z u rudniku „Soko“ [4].
Način podgrađivanja čeličnom podgradom podzemnih prostorija vrši se prema propisanoj
metodologiji i praksi za podzemnu eksploataciju uglja.
Probno podgrađivanje prostorije EN(-60)z u RMU „Soko“ predstavlja početnu aktivnost primjene
tehnologije podgrađivanja AT visećom podgradom.
Djelovanje AT viseće podgrade zasnovano je principu sprečavanja širenja deformacija slojeva po
konturi podzemne prostorije i na sprečavanju širenja deformacije u raspucalim sredinama i
istovremeno delemično popunjavanje pukotina čime se stvara zona pojačanog masiva u okolini
podzemne prostorije.
Može se reći da je AT viseća podgrada aktivna podgrada, odnosno da stupa u dejstvo prije nego
što se kontura podzemne prostorije deformiše. U poređenju sa AT ankerima, čelična podgrada je
pasivna podgrada, odnosno prima opterećenja poslije deformisanja konture prostorije.
Kontakt između ankera i masiva po cijeloj dužini bušotine je od značaja zbog sprečavanja
širenja deformacija po dubini masiva.
Ova vrsta podgrade se, zbog karakterističnog načina dejstva, u literaturi više ne navodi kao tip
podgrade, već kao sistem ojačenja, pošto svojim dejstvom „menja“ fizičko-mehaničke
karakteristike masiva u neposrednoj okolini podzemne prostorije, odnosno u zoni koja odgovara
dužini ugradjenih AT ankera.
Eksperimentalna provjera efekata primjene AT viseće podgrade se sastoji iz tri faze:
- Ispitivanje lokacije i preleminarna istraživanja:
- Probno podgrađivanje;
- Potvrda usvojenog rešenja
Za lokaciju probnog podgrađivanja u RMU „Soko“ odabrana je podzemna prostorija EH-(60)z, u
kojoj će se tokom prve faze izvršiti ispitivanja i preleminarna istraživanja.
Aktivnosti u okviru prve faze su:
Svrha probne ugradnje elemenata viseće podgrade je da se utvrdi podobnost opreme za bušenje
ankerskih bušotina i ugradnju ankera u konkrentnim radnim uslovima.
Test čupanja kratko vezanog ankera, koji se vrši kako bi se izmerila čvstoća veze usvojenog
sistema viseće podgrade u konkrentnim uslovima [4].
USLOVI
I PRIMENA TEHNOLOGIJE PODGRAĐIVANJA
PODGRADOM I PRAĆENJE NAPONA I DEFORMACIJA
AT
VISEĆOM
Početna aktivnost prve faze primjene tehnologije zahteva izbor lokacije rudarske prostorije na
kojoj su izvršena detaljna istraživanja stijenskog masiva u prethodnom periodu.
Metodologija koja se koristi za izbor odgovarajućeg rješenja podgrađivanja visećom podgradom
zasnovana je na merenju i praćenju određenih parametara „in situ“ i to poslije početka sistematke
ugradnje.
Nakon što se na osnovu rezultata mjerenja i praćenja utvrdi šema ugradnje ankera sa kojom se
ostvaruje uspešna kontrola nad masivom, moguće je izvršiti izmene i korekcije postojećeg načina
podgrađivanja čeličnom podgradom. Ovu, kao i svaku drugu izmjenu, bilo u načinu ugradnje AT
viseće podgrade, bilo u obliku i količini ugradnje čelične podgrade, potrebno je potvrditi
No.2-3,2013
64
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
rezultatima merenja i praćenja ponašanja masiva na deonici od 30 do 60 m, uz minimalni
vremenski interval od oko dve nedelje [4].
Tokom treće faze probnog podgrađivanja potrebno je rezultatima mjerenja i praćenja masiva
potvrditi usvojeni način podgrađivanja.
Na osnovu praćenja ponašanja stenskog masiva u okolini podzemne prostorije – deformacije i
opterećenje kojima su izloženi AT ankeri utvrđuje se efektivnost usvojenog rešenja.
Promjene u stratigrafiji ili promene naponskog stanja okoline podzemne prostorije, koje se mogu
utvrditi uređajima za merenje i praćenje, mogu dovesti do situacije kada je potrebno promeniti
način – rešenje podgrađivanja.
Dati postupak je pouzdaniji u poređenju sa analitičkim ili empirijskim pristupom kod kojih se
nosivost podgrade i opterećenje iz masiva izračunavaju kako bi se došlo do određenih
pretpostavki o ponašanju masiva i efektivnosti podgrade. Važno je istaći da navedene
pretpostavke mogu biti pogrešne, pogotoou u ležištima sa promenljivim karakteristikama.
Karakteristika prenošenja opterećenja sa masiva preko očvrsnute dvokomponentne smeše na
anker, kako u smislu mogućnosti da anker prihvati opterećenje, tako i u smislu ocene efektivnosti,
će se utvrditi ugradnjom ankera sa mernim trakama.
Sledeći korak je analiza podataka dobijenih praćenjem i merenjem, kao i podataka o testovima
čupanja kratko vezanog ankera, kako bi se utvrdila efektivnost rešenja i po potrebi modifikovala
radi unapređenja.
Ove promjene se mogu odnositi na promenu profila podzemne prostorije (primera radi, prelazak
sa kružnog na trapezni profil), ili povećanje osnog rastojanja između čeličnih okvira, odnosno
smanjenje količine čelične podgrade.
Tekuće praćenje – monitoring ponašanja masiva vrši se pomoću soničnih ekstenzometara i
dvovisinskih merača deformacija.
Oprema za primenu ankera sa dvokomponentnom smešom u rudnicima uglja sa podzemnom
eksploatacijom obuhvata specijalne pneumatske ili hidraulične rotacione bušilice, a pribor čine
same šipke ankera, patrone sa dvokomponentnom smešom, čelična ili plastična mreža i dr. [4].
Posle postavljanja patrona sa dvokomponentnom smešom u bušotinu, vrši se utiskivanje ankera
uz njegovo obrtanje radi mešanja komponenti. Pošto se anker ugradi do dna bušotine, bušilica se
zaustavlja da bi se očvrsnula brzoočvršćavajuća smeša.
Dvokomponentne smeše predstavljaju osnovu ovog sistema podgrađivanja. Osnovnu komponentu
čini materijal na bazi smola, a drugu katalizator, koji se nalazi u manjoj patroni, unutar prve.
Ove smeše se dele prema vremenu za koje očvrsnu, na:
-
brzoočvršćavajuće,
sporoočvršćavajuće i
smješe koje očvrsnu u intervalu između prethodne dve.
Za dvokomponentne smješe vezane su dvije osobine koje su veoma važne za njihovu ispravnu
ugradnju i pouzdanost ovog sistema podgrađivanja. To su: vreme (period) do očvršćavanja i
vrijeme početnog očvršćavanja.
Vreme do očvršćavanja je vreme tokom koga se smeša može mješati bez značajne promene
viskoziteta, odnosno pre promene agregatnog stanja smeše iz tečnog u čvrsto. Početak ovog
intervala je početak mešanja komponenti, a ne trenutak kada se anker ugradi celom dužinom.
No.2-3,2013
65
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
а)
b)
Slika 5. Uticaj temperature radne sredine na dvokomponentnu smešu (Exchem)
a) brzoočvršćavajuća smeša; b) sporoočvršćavajuća smeša
Metode mjerenja i praćenja naponskog stanja i deformacija
Osnovni cilj primenjenog rešenja podgrađivanja je da se potvrde parametri rešenja, a obuhvata
detaljno praćenje ponašanja masiva u okolinи prostorije kao i merenje reakcije ankera na
opterećenje iz masiva.
Tekuće merenje i praćenje takođe treba da osigura bezbedno radno okruženje tako što će ukazati
na eventualne promene u ponašanju masiva koje zahtevaju dodatnu podgradu ili drugačiji način
podgrađivanja.
Kontrola naponskog stanja i deformacija konture podzemne prostorije je za sistem podgrađivanja
AT ankerima od ključne važnosti, pošto prekoračenje određenih vrednosti ugrožava stabilnost
ankera i zahteva pravovremeno preduzimanje odgovarajućih mera (ugradnju dodatnih AT ankera,
postavljanje čelične podgrade i dr.).
Određeni broj ankera sa mernim trakama ugrađenih prema šemi ugradnje ankera i sonični
ekstenzometri čine mernu stanicu, pomoću koje se potvrđuje efektivnost šeme ugradnje ankera.
Očitavanje se vrši odgovarajućim instrumentоm koji je predviđen za primjenu u metanskom
režimu, a uz to je opremljen i memorijskom jedinicom u kojoj se čuvaju očitani podaci. Analiza
podataka vrši se na računarima pomoću specijalizovanog softvera, uz mogućnost grafičke
interpretacije aksijanlnog opterećenja i momenata savijanja ankera.
Ovi uređaji se mogu opisati kao žičani ekstenzometri. Svaki pokazivač – indikator je obešen o
kotvu koja je postavljena na određenoj dubini u bušotinu.
No.2-3,2013
66
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Slika 6. Šematski prikaz dvovisinskog merača deformacija
Dvovisinski pokazivač deformacija je jednostavne konsktrukcije i integralni je dio sistema
podgrađivanja, lako se izrađuje i relativno je jeftin pa se zbog ovog ugrađuje relativno često duž
podzemne prostorije. Na ovaj način se obezbeđuje mogućnost za neprekidno vizuelno očitavanje
stepena deformacije masiva od trenutka izrade prostorije. U RMU „Soko“ ovi uređaji su
ugrađivani na rastojanju od 10 m tokom probnog podgrađivanja prostorije.
KONCEPCIJA PODGRAĐIVANJA KOMBINOVANOM PODGRADOM U RMU
„SOKO“
Aktivnosti vezane za prvu fazu transfera tehnologije podgrađivanja AT visećom podgradom u
RMU „Soko“, su urađene, kako bi se mogla realizovati druga faza transfera: sistematska ugradnja
AT viseće podgrade. Rezultati ispitivanja u prvoj fazi su poslužili za izbor i verifikaciju
preleminarne šeme ugradnje AT viseće podgrade, što je predmet izrade ovog projekta.
Kada određeno rješenje ugradnje AT viseće podgrade pruži zadovoljavajuće rezultate pri merenju
i praćenju dobijene putem soničnih eksenzometara i ankera sa mjernim trakama, može se
pristupiti eventualnoj promeni načina podgrađivanja čeličnom podgradom [5].
Rezultat druge faze probnog podgrađivanja treba da bude način podgrađivanja podzemne
prostorije kombinovanom podgradom (čeličnom i AT visećom podgradom).
Početak ugradnje AT viseće podgrade u prostoriji EH-(60)z u RMU“Soko“ vršen je prema
početnoj šemi ugradnje, pri čemu je zadržan postojeći način podgrađivanja sa čeličnom kružnom
popustljivom podgradom prečnika 3,5 m koja se ugrađuju na osnom rastojanju od 0,7 do 1,0 m.
Da bi se mjerenjima dobili pouzdani podaci o deformacijama stijenskog masiva potrebno je od
30 do 60 m napredovanja čela radilišta prostorije EH-(60)z i ugradnja kombinovane podgrade uz
minimalni vremenski interval od dvije nedelje. Poslije ovog perioda i na osnovu dobijenih
rezultata vrši se optimizacija šeme ugradnje ankara i eventualna korekcija primenjene čelične
podgrade.
Svaka izmena bilo u načinu ugradnje AT viseće podgrade, bilo u obliku i količini ugrađene
čelične podgrade, potvrđuje se rezultatima merenja i praćenja ponašanja masiva i podgrade.
No.2-3,2013
67
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Cilj uvođenja AT viseće podgrade (u kombinaciji sa čeličnom podgradom) u RMU „Soko“ je
unapređenje kontrole nad masivom, produženje veka prostorije i smanjenje potrebe za
rekonstrukcijom prostorije EN-(60)z odnosno rekonstrukcijom etažnih hodnika [6].
Na slici 7. prikazana je početna šema ugradnje AT ankera u podzemnoj prostoriji EN-(-60)z, u
delu prostorije kružnog poprečnog preseka, a koji se podgrađuje kružnom čeličnom popustljivom
podgradom 3,5 m.
Slika 7. Početna šema ugradnje AT visećih ankera u prostoriji EH-(-60)z
Za početak rada preporučena gustina ugradnje elemenata viseće podgrade – broj ankera po metru
kvadratnom površine konture podzemne prostorije treba da iznosi 1,2 ankera/m 2 .
Početna šema ugradnje AT ankera u prostoriji EN-(-60)z je predviđena sa relativno velikom
gustinom – 1,2 ankera/m2. Sa početkom sistematske ugradnje ankera tokom druge faze obavljaju
se dodatna ispitivanja, koja će se sa podacima merenja ukazati na potrebu daljeg unapređenja
šeme ugradnje.
Kao što se sa slike vidi pet ankera dužine 1,8 m, od krovinskih ankera, samo centralni u osi
prostorije treba da se ugradi vertikanlno dok ostala četiri ankera treba ugraditi pod uglom od 10  .
Rastojanje između tačaka ugradnje krovinskih ankera treba iznositi 0,76 m.
U zavisnosti od rezultata praćenja i merenja ponašanja krovine i rezultata naknadnih ispitivanja
moguća unapređenja i optimizacija načina podgrađivanja će se ogledati u smanjenju broja ankera
u šemi ugradnje i povećanja osnog rastojanja između okvira čelične podgrade.
Poslije svake modifikacije načina podgrađivanja, a u cilju njihove potvrde, biće potrebno
napredovanje čela radilišta od 30 do 60 m, uz minimalni vremenski interval stabilizacije masiva
od dve nedelje, kako bi se dobili pouzdani rezultati merenja. Za zalaganje podzemne prostorije od
samog početka druge faze probnog podgrađivanja korištena je čelična mreža.
Čelična mreža izrađena je od žice prečnika 3-6 mm, na rastojanju 50 mm. Samo redovi i kolone
mreže kroz koje će se postavljati ankeri treba da imaju žice na rastojanju od 75 mm.
No.2-3,2013
68
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Slika 8.Čelična mreža za zalaganje prostorije
Slika 9. Redosled ugradnje panela čelične mreže
u delu prostorije EH-(60)z sa kružnim profilom
4. ZAKLJUČAK
Dosadašnja izučavanja naponskih stanja u rudniku Soko, ukazuju na to da su rudarske prostorije
izložene intenzivnim pritiscima i deformacijama, pa se zbog toga smanjuje njihov vek
eksploatacije.
Pored stabilnosti izrađenih prostorija za proizvodni sistem je veoma bitna i blagovremena izrada
prostorija, kako bi se održao kontinuitet proizvodnje uvođenjem u proces proizvodnje novih
otkopnih jedinica. Postojeći način izrade i podgrađivanja prostorija pokazao je više nedostataka
posebno u uslovima povećanih jamskih pritisaka koji su uticali na deformacije rudarskih
prostorija manjeg ili većeg intenziteta.
U nameri prevazilaženja navedenih problema kao i pravilnog izbora tehnologije izrade i
podgrađivanja rudarskih prostorija, u rudniku ’’Soko’’ izvršeno je probno uvođenje nove
tehnologije, čiji je osnovni cilj unapređenje opšteg stanja podzemnih prostorija odnosno
poboljšanje kvaliteta izrade, podgrađivanja a samim tim i povećanje veka njihovog trajanja, kao i
stvaranje uslova za sigurniji i bezbjedniji rad.
Tehnoogija ugradnje AT viseće podgrade kao i probno podgrađivanje rudarske podzemne
prostorije EH-(-60)z u RMU „Soko“ kombinovanom podgradom izvođeno je u skladu sa datim
projektnim rješenjima.
Na osnovu prezentovanih rešenja u ovom radu može se zaključiti sledeće:
 Nova tehnologija AT viseće podgrade sa uspehom se može primenjivati za podgrađivanje
rudarskih prostorije kombinovanom podgradom (čeličnom i AT visećom podgradom), kao i da
se mogu stvoriti uslovi za mehanizovanu izradu podzemnih prostorija, što značajno uvećava
efekte navedene tehnologije podgrađivanja.
 Uvođenjem AT viseće podgrade u rudniku Soko obezbeđuje se racionalizacija u
podgrađivanju podzemnih prostorija kao i produženje veka eksploatacije i pouzdanosti i
funkcionalnosti.
 AT viseća podgrada u kombinaciji sa čeličnom podgradom ima višestruk značaj za rudnik
Soko jer obezbeđuje veću stabilnost podzemnih prostorija čime pozitivno utiče na bezbednost
i humanizaciju rada u teškim jamskim uslovima.
No.2-3,2013
69
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
LITERATURA
[1] P. Jovanović: Projektovanje i proračun podgrade horizontalnih podzemnih prostorija,
Rudarsko geološki fakultet, Beograd 1994.
[2] Miljanović J., Kokerić S., Guberinić R., Definisanje maksimalnog koraka napredovanja
mehanizovane hidraulične podgrade (MHP) za uslove rudnika “Strmosten“ Časopis Arhiv za
tehničke nauke 7/2012, Tehnički institut Bijeljina.
[3] Ivković M., Istraživanje i formiranje evidncije uticaja na životnu sredinu od posledica
podzemne eksploatacije uglja , Časopis Arhiv za tehničke nauke 1/2009, Tehnički institut
Bijeljina.
[4] URP probnog podgrađivanja podzemne prostorije EH-(-60)z u RMU kombinovanom
podgradom, RGF, Beograd 2010.
[5]
Ljubojev M., Popović R., Rakić D. Osnove postavki mehaničkih modela sadejstva
podgrade sa stenskim masivom, Časopis Rudarski radovi br. 1/2006, Bor, 2006.
[6] Trivan J., Analiza uticajnih faktorakod izbora tehnološkog procesa podzemnog otkopavanja
ugljenih slojeva, Časopis Arhiv za tehničke nauke 6/2012, Tehnički institut Bijeljina.
No.2-3,2013
70
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
UDK:622.83:55,8.013(0,45)=861
doi:105937/rudrad 1301037P
Jovo Miljanović *, Neđo Đurić **, Mirko Ivković***, Žarko Kovačević*
VERIFIKACIJA POUZDANOSTI I EFIKASNOSTI SISTEMA ODVODNJAVANJA NA
P.K. „BUVAČ“
Izvod
Monitoring i ocjena efikasnosti i pouzdanosti rada objekata odvodnjavanja na P.K. “Buvač”,
obuhvatao je osmatranje, praćenje i evidenciju rada svih izgrađenih objekata odvodnjavanja, kao i
analiza funkcionalnosti ukupnog sistema odvodnjavanja na P.K. “Buvač”.
Svrha praćenja rada sistema za odvodnjavanje je težnja da u svakom trenutku imamo uvid u
stanje vodnih pojava i hidrodinamičkih procesa s ciljem stvaranja kontrolisanog sistema nad
radom svih objekata za zaštitu kopa od podzemnih i površinskih voda.
Na osnovu dobijenih rezultata osmatranja, praćenja i evidencije padavina kao i mjerenja nivoa
podzemnih voda, moguće je donijeti konačnu ocjenu o efikasnosti i pouzdanosti cjelokupnog
sistema odvodnjavanja
Ključne reči: odvodnjavanje u rudarstvu, monitoring, objekti odvodnjavanja.
UVOD
Odvodnjavanje u rudarstvu obuhvata niz kompleksnih mjera koje podrazumjevaju stalnu borbu sa
podzemnim i površinskim vodama u svim fazama izgradnje i eksploatacije ležišta mineralnih
sirovina. Površinske i podzemne vode ugrožavaju rudarske objekte i ometaju rad u njima.
Pod objektima odvodnjavanja u rudarstvu podrazumevaju se rudarski hidrotehnički objekti koji
služe za odvodnjavanje i zaštitu od voda.
Sa povećanim dubinama eksploatacije, uslovi odvodnjavanja površinskih kopova su složeniji, što
ima za posljedicu povećan broj objekata odvodnjavanja.Ovo se posebno odnosi na površinske
kopove željezne rude, s velikim koeficijentom ovodnjenosti, kakav je i kop „Buvač“.
Da bi se problem odvodnjavanja uspješno rješavao, moraju se prije svega detaljno upoznati
hidrološke i hidrogeološke karakteristike ležišta i okoline, a takođe i fizičko-mehaničke
karakteristike stijena, kao i tektonski poremećaji, koji su često nosioci vode.
Kada se utvrde mogući faktori ugrožavanja rudarskih radova od voda, daju se mjere zaštite, koje
za konkretne uslove predstavljaju racionalno rješenje sa aspekta sigurnosti i ekonomičnosti.
Ispitivanja pouzdanosti i efikasnosti sistema odvodnjavanja sprovodi se putem kontrole rada
izrađenih objekata odvodnjavanja za zaštitu od površinskih i podzemnih voda i preko
monitoringa vodnih pojava i hidrodinamičkih procesa
Osnovni cilj monitoringa upravo i jeste utvrđivanje pouzdanosti rada postojećih objekata
odvodnjavanja i po potrebi mijenjati odnosno prilagođavati režim odvodnjavanja novim uslovima
na površinskom kopu.
*
Rudarski fakultet Prijedor,
Rudarski fakultet Prijedor,
**
PD Kolubara
*** JP PEU-Resavica
*
No.2-3,2013
E.mail: [email protected]
71
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
KARAKTERISTIKE LEŽIŠTA OMARSKA
Prema podacima meteorološke stanice u Prijedoru, područje ležišta spada u oblast umjereno
kontinentalne klime, koja se odlikuje naglim porastima temperatura u proljeće, zimskim
minimumom padavina, srednje hladnim zimama, toplim ljetima i čestim prodorima hladnih
vazdušnih strujanja.
Posmatrajući šire područje površinskog kopa “Buvač” pad terena je generalno od istoka prema
zapadu i od sjevera prema jugu sa postojanjem vododerina sjeverno od eksploatacionog područja,
koje su usmjerene u pravcu kopa i koje odvode vodu sa velike slivne površine do granica
eksploatacionog područja.
Morfologija terena je pogodna za odvodne magistralne cjevovode i obezbeđenje gravitacionog
odvoda ispumpanih voda, jer se ne iziskuju dodatni radovi na izradi nasipa a ujednačene su i kote
uliva ispumpanih voda iz drenažnih bunara, što se direktno odražava na troškove odvodnjavanja.
Hidrogeološki kompleks - kompleks vodopropusnih i vodonepropusnih naslaga izgrađuju:
pijeskovite gline koje se mjestimično smjenjuju sa sitnozrnim pijeskovima, bilo bočno ili po
vertikali i pripadaju pliocenskim naslagama.
Geološki uslovi i međusobni odnosi stijena sa svojstvima kolektora i izolatora uslovili su
hidrogeološke karakteristike istražnog prostora. U sklopu terena nalaze se stijenske mase sa
svojstvima hidrogeoloških kolektora i izolatora.
ISPITIVANJE POUZDANOSTI SISTEMA ODVODNJAVANJA
Savremeni pristup procesu upravljanja sistemom odvodnjavanja i praćenju efekata njihovog
rada, predviđa da se u svim etapama razvoja površinskog kopa sprovodi kontrola rada svih
objekata odnosno cjelokupnog sistema za zaštitu kopa od površinskih i podzemnih voda i
kontinuirani monitoring vodnih pojava i hidrodinamičkih procesa.
Cilj ovih aktivnosti je da se utvrdi bezbijednost objekata odvodnjavanja i njihovi efekti na
sniženju nivoa podzemnih voda, kao i da se, kroz hidrodinamička ispitivanja obezbjede pouzdani
hidrogeološki parametri za noveliranje hidrodinamičkog modela koji će davati efikasnu i
efektivnu podršku procesu upravljanja sistemom odvodnjavanja.
Kako proces odvodnjavanja zavisi od velikog broja prirodnih faktora (padavine, oticaji,
temperature, režim podzemnih i površinskih voda u zaleđu kopa, itd.), to je potrebno dobro
poznavanje režima tih parametara.
Monitoring će obuhvatati sljedeće:
- mjerenje nivoa vode u aluvijalnom sloju,
- mjerenje nivoa vode u rudnom tijelu,
- mjerenje vodostaja Gomjenice,
- mjerenje količine atmosferskih padavina,
- praćenje sati rada pumpi i količine ispumpane vode.
No.2-3,2013
72
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
AKTIVNI HIDROTEHNIČKI OBJEKTI ZA ZAŠTITU P.K. „BUVAČ“ ZA KOJE SE
VRŠI MONITORING
Na površinskom kopu „Buvač“, u cilju zaštite od priliva vode u eksploataciono područje,
izvršeno je izmještanje rijeka Gomjenice,izrađen je obodni kanal koji prihvata vodu i
gravitaciono je vodi kroz dva propusta na istočnu stranu do “istočnog vodosabirnika.
U cilju zaštite kopa od plitkih aluvijalnih voda urađeno je sljedeće:
- sa jugoistočne strane je urađeni su vodonepropusni ekrani, Dk –1 i Dki–1, ukupne dužine
2000 m,
- sa sjeverne strane je izrađen drenažni usjek Du 2 u dužini od 900 m.
Za zaštitu kopa od dubokih podzemnih voda iz rudnog tijela izbušeno je 6 bunara u samom
rudnom tijelu i izvršena je sanacija dva stara bunara.
Glavni vodosabirnik sastoji se iz dva taložnika koji služe za taloženje mulja i ispuštanje čiste vode u
riječno korito Gomjenice.
U skladu s napredovanjem rudarskih radova, izrađeni su privremeni vodosabirnici.
Na površinskom kopu “Buvač”,u toku 2012. godine, bilo je aktivno:
- 8 ekranskih bunara Eb 1-8,lociranih sa zapadne strane kopa,
- drenažni usjek, Du 2, koji se pruža pravcem istok – zapad,
- 6 bunara u rudnom tjelu, Bu 138, 282, 291, 11, 30 i 275,
- vodosabirnik u jugozapadnom dijelu kopa, kod prvog položaja drobilice na koti 132 m,
- vodosabirnik u južnom dijelu E 130
Na slici 1. data je dispozicija projektovanih hidrotehničkih
objekta za zaštitu kopa od
podzemnih i površinskih voda.
Slika 1. Dispozicija projektovanih objekta za zaštitu
kopa od podzemnih i površinskih voda.
MJERENJE I OSMATRANJE
POVRŠINSKIH VODA
SISTEMA ZAŠTITE KOPA OD PODZEMNIH I
Kod utvrđivanja efikasnosti sistema potrebno je sprovesti sistematska mjerenja proticaja pumpi i
nivoa podzemnih voda u bunarima, drenažnim usjecima, drenažnim kanalima i pijezometrima, od
momenta aktiviranja objekata odvodnjavanja do trenutka njihove likvidacije ili do momenta kada
prestaje potreba za njihovim radom.
Redovnim mjerenjima definisaće se brzina sniženja nivoa podzemnih voda i utvrditi referentni
nivo na kojem dolazi do smanjenja proticaja bunara. Obezbeđenje tih informacija postići će se
No.2-3,2013
73
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
blagovremenom zamjenom pumpi čime se sistem odvodnjavanja dovodi u stanje da troši samo
potrebnu i dovoljnu količinu električne energije, zadržavajući pri tom efikasnost i pouzdanost.
Poređenjem količine ispumpanih voda iz sistema površinskog odvodnjavanja i sistema bunara
u toku dužeg vremenskog perioda, mogu se donijeti određeni zaključci o pouzdansti i efikasnosti
sistema drenažnih bunara, a poznavajući ukupne količine ispumpanih voda i količine iskopane
jalovine definisaće se koeficijent ovodnjenosti ležišta.
Mjerna mjesta za osmatranje i praćenje režima podzemnih voda su praktično sve lokacije
bunara sa pijezometrima u zasipu, pijezometarske bušotine u užem i širem području površinskog
kopa, radne etaže površinskog kopa i odlagališta, drenažni useci, drenažni kanali, površinski tok
Gomjenice i dr.
Monitoring režima podzemnih voda i efekata rada drenažnog sitema je stručan zadatak i za
osmatranje, praćenje, mjerenje i obradu podataka neophodna je dobro organizovana i opremljena
služba.
REZULTATI MONITORINGA NA HIDROTEHNIČKIM OBJEKTIMA
I OPREMI P.K. “BUVAČ” ZA PERIOD OD 2010-2012. GODINE
Odgovorna lica za organizaciju monitoringa po urađenom planu u određenim vremenskim
intervalima sprovode aktivnosti iz svog domena kao što su kartiranje etaža i odlagališta, mjerenje
nivoa podzemnih voda i proticaja bunara, mjerenje visine padavina, snimanje vodostaja rijeka, a
nakon završetka pojedinih radova kompletiraju Izveštaj.
KONTROLA KOLIČINE PADAVINA I NIVOA PODZEMNIH VODA
Nakon izgradnje objekata odvodnjavanja na P.K. „Buvač“ kao i njihovog stavljanja u
eksploataciju vrši se redovno osmatranje, praćenje i evidencija padavina, NPV na preko 30
mjesta, sati rada pumpi i preko njihovih kapaciteta količine ispumpane vode.
Nivo podzemne vode se mjeri na preko 30 objekata (pijezometara i bunara) svakog ponedeljka
i vodi se evidencija, a količina atmosferskih padavina se mjeri svaki dan, ukoliko ih ima, tako da
se mogu vršiti analize i donositi određeni zaključci o uticaju padavina na promjenu nivoa
podzemnih voda.
Dnevne količine padavina se sabiraju i posmatra se zavisnost promjene nivoa vode u aluvijonu
na svakom pijezometru posebno od sedmične količine padavina.

Izmjerene vrijednosti padavina i nivoa podzemnih voda za 2010. godinu
U tabeli 1.i na slici 2. . grafički prikaz ukupne količine padavina za ukupne količine padavina
na mjesečnom nivou za 2010. godinu.
Tabela 1 Količine padavina u 2010 godini
Mjesec Januar Februar Mart April Maj No.2-3,2013
2
Količina padavina (l/m ) 71,5 114,5 108,9 73,1 153,3 74
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
Jun Jul Avgust Septembar Oktobar Novembar Decembar UKUPNO YU ISSN:1451-0162
UDK:622
224,8 57 61,2 143,7 73,7 106 66,6 1254,3 Slika 2. Grafički prikaz ukupne količine
padavina za 2010.godinu
Analizom je obuhvaćen period od marta do jula 2010.godine, jer je, kao što se vidi, u ovom
periodu zabilježena najveća količina padavina,ukupno 560,1 l/ m 2 .
Posmatraće se zavisnost promjene nivoa vode u aluvionu u zavisnosti od dnevne količine
padavina.
Nivo vode se kontroliše jednom sedmično,a količine padavina prate se svaki dan,ukoliko ih ima.
Na osnovu dobijenih rezultata,izvršena je analiza posmatrajući izmjereni nivo vode na
objektima odvodnjavanja i koristeći podatke o dnevnim količinama padavina,ako ih je bilo.
Pijezometar Po 1 nalazi se izmedju ekranskih bunara,van konture kopa I udaljen je od Gomjenice
oko 300 m.
U periodu bez padavina,nema promjene nivoa vode.
Sa prvim količinama padavima,nivo vode blago raste,nakon čega ponovo stagnira do novih
padavina, kada je viši.
 vrijednosti padavina i nivoa podzemnih voda za 2011. godinu.
U tabeli 2.prikazane su ukupne količine padavina u 2011. godini a na slici 3. grafički prikaz
ukupne količine padavina za 2011. godinu
Tabela 2. Količine padavina u 2011 goddini
Mjesec
Januar
Februar
Mart
April
Maj
Jun
Jul
Avgust
Septembar
Oktobar
Novembar
Decembar
UKUPNO
No.2-3,2013
Količina padavina
(l/m 2 )
28
24
34,9
41,6
42,2
57,5
63,5
15,8
32
70,4
5,8
86,1
501,8
Slika 3. Grafički prikaz ukupne količine
padavina za 2011. godinu
Kako je u perodu od oktobra do decembra
2011.godine
zabilježena
najveća
količina
75
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
padavina,ukupno162,3 l/m 2 , ovaj period će biti detaljnije analiziran.
Slika 4. Pijezometar Po 1
Na dijagramu je vidljivo da sa povećanom količinom padavina, nivo vode blago raste.
 vrijednosti padavina i nivoa podzemnih voda za 2012. godinu
Tabela 3. Količine padavina u 2012 godini
Slika 5. Grafički prikaz ukupne količine
padavina u 2012. godini
Kao što se vidi, u periodu oktobar-decembar, zabilježena je najveća količina padavina,ukupno
293,3 l/m 2 .
No.2-3,2013
76
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Slika 6. Pijezometar Po 1
Na osnovu vršenih mjerenja NPV i analiza istih mogu se donijeti sljedeći zaključci:
- na nivo vode na osmatračkim objektima u blizini rječnog korita Gomjenice veliki uticaj
ima količina padavina, odnosno vodostaj Gomjenice, i sa udaljavanjem od Gomjenice
uticaj slabi,
- funkcionalnost linije drenažnih usjeka ( kaseta ),
- funkcionalnost dijela ekrana sa geomembranom.
KOLIČINE ISPUMPANE VODE IZ ZA PERIOD 2010 – 2012 godine
Analizirajući dnevne izvještaje o satima rada pumpi na P.K „Buvač“, uzimajući u obzir
efektivno vrijeme rada pumpi, mašinske i tehničke zastoje, kao i kapacitete raspoloživih pumpi,
došlo se do podataka o količinama ispumpane vode za posmatrani period od 2010-2012. godine.
U tabelama 4.19, 4.20 i 4.21 i na slikama 4.31,4. 32 i 4.33 prikazane su količine ispumpane
vode na mjesečnom nivou za 2010. , 2011., i 2012. godinu.
Slika 7. Grafički prikaz ukupne količine ispumpane vode
u 2012. Godini po mjesecima
No.2-3,2013
77
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
 Ostvareni učinci radom bunara
- drenažni bunari
Radom bunara nivo podzemne vode u rudnom tijelu je od septembra 2008. godine do maja 2012.
godine snižen sa 147,3 mnv na 92 mnv ili za 55,3 m.
Zadovoljen je uslov da nivo vode u rudnom tijelu bude minimum 10 m ispod nivoa radne etaže.
Primjetno je da nakon uključivanja u rad novih bunara Bu 275 i Bu 30, za nepuna tri mjeseca, od
2.3.2012. do 21.5.2012. nivo podzemne vode je snižen u prosjeku za 14 metara.
Slika 8. Pregled mjesečnog nivoa podzemne vode na P.K. “Buvač”
za period septembar 2008. – maj 2012. godine
Nivo podzemne vode na bunaru Bu 271 je znatno viši od drugih mjernih mjesta jer se radi o obodu
rudnog tijela koje je nepravilne podine, nalazi se na koti 100, ali je to prilično mala površina i nema
značajniji uticaj na odvodnjavanje kopa u cijelosti.
- Ekranski bunari
Osnovna namjena ekranskih bunara je spriječavanje dotoka vode u radno područje kopa iz
aluvijalnog sloja iz pravca zapada i sjevera. Predviđena dubina bunara iznosi od 13,3 do 48,5 m ,
odnosno 5 m ispod hidrogeološkog kolektora.
Bunari su bušeni 760 mm do dubine od 5 m nakon čega je ugrađena čelična obložna kolona
prečnika 600 mm i nastavljeno bušenje prečnikom 500 mm do konačne dubine bunara, nakon čega je
izvršena ugradnja bunarske konstrukcije, pune i filterske žičane konstrukcije prečnika 273 mm, kao i
pijezometarske konstrukcije 5/4“.
Nakon ugradnje konstrukcije izvršeno je ugradnja filterskog kvarcnog zasipa 4 – 8 mm i vađenje
obložne kolone, zatim čišćenje, ispiranje, razrada i testiranje izrađenih bunara.
Slika 9. Sati rada ekranskih bunara u periodu
No.2-3,2013
78
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
2010 do 2012. Godine
Slika 9. Sati rada ekranskih bunara u periodu 2010 do 2012. godine
ZAKLJUČAK
Uspostavljanje monitoringa sistema odvodnjavanja je stručan zadatak i za osmatranje,
praćenje, merenje i obradu podataka neophodna je dobro organizovana i opremljena služba.
Uspješna tehnička realizacija programa monitoringa zavisi uglavnom od slijedećih faktora:
- odgovornosti zaposlenih u službi zaduženoj za sprovođenje monitoringa,
- kvaliteta izvedenih tehničkih priprema,
- sistematičnosti u realizaciji osmatranja,
- opremljenosti tehničkim sredstvima, i
interpretacije mjerenih rezultata, kao i brzine reagovanja na određene promjene.
U ovom radu urađena je ukupna analiza uspostavljenog monitoringa koji je obuhvatio kontrolu
rada objekata za zaštitu površinskog kopa od površinskih i podzemnih voda, prćenje
hidrodinamičkih procesa a time i sagledavanje neophodne pouzdanosti i efikasnosti cjelokupnog
sistema odvodnjavanja na P.K. “ Buvač”.
Po završetku izgradnje objekata odvodnjavanja na P.K. Buvač kao i njihovog stavljanja u
eksploataciju vrši se redovno osmatranje, praćenje i evidencija padavina, nivoa podzemne vode,
sati rada pumpi a preko njihovih kapaciteta i količine ispumpane vode.
Nivo podzemne vode se mjeri na preko 30 objekata (pijezometara i bunara) o čemu se vodi
evidencija, a količina atmosferskih padavina se mjeri svaki dan, ukoliko ih ima, tako da se mogu
vršiti analize i donositi određeni zaključci o uticaju padavina na promjenu nivoa podzemnih
voda.
Nakon urađene ukupne analize uspostavljenog monitoringa koji je obuhvatio kontrolu rada
objekata za zaštitu površinskog kopa od površinskih i podzemnih voda, može se konstatovati
sljedeće:
 Na nivo vode na osmatračkim objektima u blizini rječnog korita Gomjenice veliki uticaj
ima količina padavina, odnosno vodostaj Gomjenice, i sa udaljavanjem od Gomjenice
uticaj slabi, što ukazuje na zaglinjenost aluvijona i mali koeficijent filtracije,
 Radom bunara nivo podzemne vode u rudnom tijelu za posmatrani period snižen za 55,3
m. čime je zadovoljen uslov da nivo vode u rudnom tjelu bude minimum 10 m ispod
nivoa radne etaže.
 Funkcionalnost bunara, drenažnih usjeka, ekrana i svih drugih hidrotehničkih objekata i
opreme je na zadovoljavajućem nivou.
Opšta ocjena na osnovu sagledanih ukupnih rezultata monitoringa jeste da je sistem
odvodnjavanja odnosno stanje svih hidrotehničkih objekata zadovoljavajuće što znači da je
uspostavljeni sistem pouzdan i funkcionalan tako da obezbjeđuje bezbjedne uslove za izvođenje
eksploatacionih radova na površinskom kopu.
No.2-3,2013
79
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
LITERATURA
[1] Tehnički projekat odvodnjavanja prvog vodonosnog sloja i površinskih voda- knjiga 3.
[2] Ivković M., Odvodnjavanje u rudarstvu, Beograd, 2005. Godine
[3] Simić R., Kecojević V., Objekti za odvodnjavanje voda na površinskim kopovima,
Beograd, 1997 godine
[4] Simić R., Mršović D., Pavlović V., Odvodnjavanje površinskih kopova, Beograd, 1984
godine
No.2-3,2013
80
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
UDK:65.015:519,21:330,322(0,45)=861
doi:105937/rudrad 1301103S
*
*
Slobodan Majstorović , Vladimir Malbasic , Jelena Trivan* , Ljubica Figun *,
Miodrag Celebic*
ASPEKTI BEZBJEDNOSTI I ZAŠTITE ŽIVOTNE I RADNE SREDINE
PRILIKOM UPOTREBE ANFO EKSPLOZIVA U RUDNIKU “SASE”
SREBRENICA
Rezime
AN-FO eksplozivi su, u uslovima eksploatacije mineralnih sirovina u BiH, uglavnom do sada
našli upotrebu u površinskoj eksploataciji. U poslednje vrijeme preduzeća koja vrše podzemnu
eksploataciju analiziraju mogućnosti upotrebe ove vrste eksploziva i u podzemnoj eksploataciji a
tehnološko unaprijeđenje i poboljšanje minersko tehničkih karakteristike AN-FO eksploziva te
korišćenje svjetskih iskustava u kreiranju optimalnog odnosa AN/gorivo ulje, daju za pravo da se
počne njihova šira i masovnija upotreba i u podzemnoj eksploataciji a sve u cilju smanjenja
operativnih troškova proizvodnje na rudniku.
Jedan od primjera je Rudnik olova i cinka “Sase” koji je u namjeri da počne redovnu i masovnu
upotrebu AN-FO eksploziva u eksploataciji rude olova i cinka izveo sveobuhvatnu analizu o
mogućnosti upotrebe AN-FO eksploziva u podzemnoj eksploataciji polimetaličnih mineralnih
sirovina sa čvrstim stijenama u radnoj sredini, sa detaljnom obradom tehničkih, tehnoloških,
ekonomskih I bezbjedonosnih aspekata te analize.
U ovom radu se daju bezbjedonosno-sigurnosni aspekti te analize, gdje se pored determinisanja
svih rizika, propisa i mjera zaštite na radu prilikom vršenja bušačko-minerskih radova, utvrđuju i
postdetonacioni efekti odnosno definisanje svih izvora opasnosti koji mogu nastati upotrebom
ANFO eksploziva u smislu zaštite zdravlja zaposlenih.
Analizirana je radna sredina, AN-FO eksplozivi dostupni na lokalnom tržištu i njihov način
aktiviranja te detaljan prikaz svih mogućih posteksplozivnih pojava. Prilikom analize su
korišćena svjetska iskustva vezana za upotrebu AN-FO eksploziva u podzemnoj eksploataciji.
Ključne riječi: AN-FO eksploziv, podzemna eksploatacija, čvrste stijene, bezbjedonosnosigurnosni aspekti
*
Univerzitet u Banjaluci, Rudarski Fakultet Prijedor e-mail: [email protected]
No.2-3,2013
81
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
UVOD
Podzemna eksploatacija neslojevitih ležišta ili podzemna eksploatacija ležišta u čvrstim stijenama
, danas ima nekoliko aspekata koji omogućavaju njen razvoj:
- raspoloživa ležišta mineralnih sirovina nalaze se na sve većim dubinama i za najveći
broj njih ne postoje uslovi koji bi naveli na razmatranje mogućnosti površinskog otkopavanja,
- tehnološki razvoj u proizvodnji opreme i same tehnologije podzemnog otkopavanja
omogućuje ekonomično otkopavanje sa velikim kapacitetima i malim učešćem ljudskog rada i na
kraju,
- rastuća ekološka svijest čovječanstva i prijeteći kolaps planete najsnažnije favorizuju
podzemnu eksploataciju (1).
Pored direktnih efekata bušačko-minerskih radova na rad utovarno transportne opreme i
ostvarivanje projektovanih i planiranih učinaka na utovaru, oblik i veličina mase odminirang
materijala, organizacija ove tehnološke faze ima u podzemnoj eksploataciji veoma veliko učešće
u strukturi ukupnih troškova eksploatacije. koji u konkretnom slučaju eksploatacije ruda olova i
cinka u Rudniku Sase prelazi 40 % .
Rudnik olova i cinka “Sase” je u namjeri da počne redovnu i masovnu upotrebu AN-FO
eksploziva u eksploataciji rude olova i cinka izveo sveobuhvatnu analizu o mogućnosti upotrebe
AN-FO eksploziva sa detaljnom obradom tehničkih, tehnoloških, ekonomskih i bezbjedonosnih
aspekata te analize. Napravljen je plan aktivnosti pri čemu su usaglašeni termini ali i svi
parametri bušenja i miniranja sa kojim su izvršena probna miniranja uz napomenu da su bušački
radovi izvođeni prema postojećim projektnim rješenjima a novine su unešene samo upotrebom
novih vrste eksploziva. Analiza je trebala da opravda upotrebu ANFO eksploziva u Rudniku Sase
pored tehničko-tehnoloških i tehno-ekonomskih pitanja i sa aspekta bezbjedonosno-sigurnosnih
pitanja, što je predmet ovog rada.
Bezbjedonosni-sigurnosni aspekti upotrebe ANFO eksploziva u Rudniku Sase podrazumijevaju
determinisanje svih rizika, propisa i mjera zaštite na radu prilikom vršenja bušačko-minerskih
radova, utvrđujući i postdetonacione efekte odnosno definišući sve izvore opasnosti koje mogu
nastati upotrebom ANFO eksploziva u smislu zaštite zdravlja zaposlenih.
1.
SASTAV I OSOBINE GASOVA KOJI NASTAJU POSLIJE EKSPLOZIJE ANFO
EKSPLOZIVA
Da bi eksplozivi imali određene minersko-tehničke karakteristike izrađeni su od različitih
komponenti, koje imaju određene uloge kao (2):
- Nitrati kalijuma i natrijuma ulaze u sastav eksploziva kao potencijalni nosioci kiseonika.
- Senzibilizatori, materije koje se dodaju radi povećanja osetljivosti i radne sposobnosti
eksploziva (trotil, nitroglikol, želirani nitroglicerin i dr.).
- Sagorljive materije, u čvrstom ili tečnom stanju, koje potpomažu sagorijevanje i povećavaju
količinu energije (metalni prahovi, retortni ugalj i dr.).
- Flegmatizatori, materije koje smanjuju osetljivost eksploziva, tako što kristale eksplozivne
materije presvuku slojem inertne materije, čime se spračava kontakt kristala i međusobno
trenje,
- Materije koje obezbeduju stabilnost suspenzije i viskozitet. Dodaju se supstance koje lako
hidrolizuju i obično se koriste natrijumova so, karboksimetilceluloze, gar i dr.
No.2-3,2013
82
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Poslije eksplozije obrazuje se znatna količina gasova. Ako je eksploziv imao pozitivan ili nulti
bilans kiseonika, i ako se razlaganje vršilo pri normalnoj eksploziji, gasovi kojI nastaju su: azot,
ugljendioksid, vodena para i eventualno nešto kiseonika. Sastav gasnih produkata poslije
miniranja ne zavisi samo od hemijskog sastava eksploziva, već i od obloge patrone eksploziva,
uslova miniranja, fizičkog stanja eksploziva, karakteristika stijena, začepljenja i dr. Zbog toga se
u produktima razlaganja eksploziva mogu pojaviti i otrovni gasovi kao što su: ugljenmonoksid
(CO), ugljendioksid (C02), oksidi azota-azotmonoksid (NO) i azotdioksid (N02), zatim sumporni
gasovi-sumporvodonik (H2S) i sumpordioksid (S02) i rijeđe živine i olovne pare. Sumporni
gasovi nisu proizvod eksplozije, jer savremeni eksplozivi i sredstva za paljenje mina (izuzev
sporogorućeg štapina) ne sadrže sumpor. Ovi gasovi se izdvajaju iz sulfidnih minerala pod
uticajem eksplozije.
B.D. Rossi je 1966. godine na bazi laboratorijskih ispitivanja sistematizovao uzroke stvaranja
otrovnih gasova, po veličini uticaja kako slijedi (2):
- osobine stijena koja okružuju eksplozivno punjenje,
- hemijski sastav eksploziva,
- omotač patrone eksploziva,
- uslovi izvođenja miniranja.
Z.G. Pozdnjakov i B.D. Rossi su 1971. godine razvrstali stijene, prema količini otrovnih gasova
koji se stvaraju pri miniranju isvojih istraživanja i izveli sledeće zaključke (2):
- Što je veća čvrstoća stijena stvara se veća količina CO.
- Pneumatsko punjenje minskih bušotina značajno utiče na smanjenje štetnih gasova.
- Položaj udarne patrone u minskom punjenju i smjer iniciranja utiče na sastav i količinu
otrovnih gasova.
- Najmanja količina otrovnih gasova se izdvaja ako se udarna patrona stavi na dno minske
bušotine.
- Veličina zazora između minskog punjenja i prečnika bušotine utiče na stvaranje otrovnih
gasova. Najmanja količina štetnih gasova stvara se pri najmanjem zazoru.
- Vrsta materijala za začepljenje znatno utiče na pojedinačnu i ukupnu količinu otrovnih
gasova. Najveće količine otrovnih gasova stvaraju se uz primjenu glinenog čepa. Primjenom
NaCl, vode, rastvora Km i 04, NaHC03 želatinoznog gela, smanjuje se pojedinačna količina
otrovnih gasova (2).
U sledećoj tabeli su date vrijednost maksimalne dozvoljene količine pojedinih gasova, mg/m3.
Tabela 1- Maksimalne dozvoljene količine pojedinih gasova, mg/m3
Ugljenmonoksid (CO)
Azotmonoksid (NO)
Azotdioksid (N02)
Sumporvodonik (H2 S)
Sumpordioksid (SO2)
Olovne pare (Pb)
Živine pare (Hg)
No.2-3,2013
5,8
3,0
9,0
10,0
10,0
0,15
0,10
83
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
- Ugljenmonoksid (CO), Dopuštena količina ugljenmonoksida u rudničkoj atmosferi je 0,02 mg/l
(0,0016% zapremina).
- Oksidi azota (NO, N02), Dopuštena koncentracija je 0,005 mg// ili 0,001% zapremine.
- Sumporvodonik (H2S), pri koncentraciji od 0,1% H2S, u vazduhu posle kratkog vremena nastupa
smrt. U smješi sa vazduhom pri temperaturi od 600°C je zapaljiv, a pri sadržaju od 4,5% obrazuje
sa vazduhom eksplozivnu smješu. Stvara se pri trulenju organskih materija koje sadrže sumpor.
- Sumpordioksid (S02), Ako ga u vazduhu ima 0,03% opasan je po život. Dopuštena koncentracija
u atmosferi je 0,0007% zaprem.
- Vodonik (H2),-. Vodonik pomešan sa vazduhom, odnosno sa kiseonikom stvara jaku
eksplozivnu smešu.Dejstvo eksplozije je najjače pri 28,6% H2 u vazduhu.
- Živine pare; Živa i najmanje količine živinih para u vazduhu su škodljive po zdravije i otrovne.
Znaci trovanja su nervoza i drhtanje. Štetno djeluje na želudac i sluzne žlijezde (2).
1.1. HEMIJSKI I FIZIČKI FAKTORI KOJI UTIČU NA STVARANJE AZOTNIH
OKSIDA NOX PRI MINIRANJU ANFO EKSPLOZIVIMA
Toksični gasovi kao CO i NO su proizvodi detonacije eksploziva. Implikacije i mogućnosti
smanjivanja ovih produkata je ispitivana nekoliko decenija, od strane mnogih institucija i
istraživača. U ovoj Studiji dajemo samo neka od njih, koja generalno daju osnvone informacije o
hemijskim i fizičkim faktorima koji utiču na stvaranje toksičnih gasova pri eksploziji ANFO
eksploziva.
Nacionalni institute za profesionalnu bezbjednost i zdravlje (The National Institute for
Occupational Safety and Health -NIOSH) je u nivou laboratorijskih ispitivanja identifikovao
faktore koji mogu uticati na stvaranje azotnih oksida (NOx) pri neidealnim uslovima za miniranje
i neidealnim eksplozivima. Mješavine eksploziva se miješaju sa drobljenim materijalom nastalim
prilikom bušenja, gubitak gorivog ulja u amonijum nitratu i gorivo ulje (ANFO), razblaženja
amonijum nitrata sa vodom, stepen zbijenosti eksploziva, gustina ANFO i kritični prečnik su
identifikovani kao uticajni faktori za porast stvaranja. Eksperimenti su se izvodili za istraživanje
efektivnosti različitih aditiva u redukciji stvaranja NOx iz ANFO-a (5).
Aluminijumski puder, ugljena prašina, urea, i višak gorivog ulja u ANFO su testirani i utvrđena je
zavisnost prilikom stvaranja azotnih oksida (NO) i azotnih dioksida (NO2).
Gasni produkti detonacije eksploziva zavise od sastava eksploziva i okolnih uslova prilikom
upotrebe, ali ugljen dioksid, vodena para, azot se uvijek produkuju. Pored toga, CO, NO, NO2,
metan (CH4), i vodonik (H2) mogu da se stvore u manjim ili većim količinama. Svi eksplozivi
generišu CO i NO, sa stvaranjem CO u nekim slučajevima i većom količinom od njih i NO4.
Komercijalni eksplozivi obično generišu između 6 do 31 l/kg eksploziva CO u vazduhu.Bilans
kiseonika u eksplozivima (uključujući ambalažu), generalno kontroliše stvaranje CO i NO. Višak
goriva ili negativni bilans kiseonika u osnovi povećava stvaranje CO I smanjuje stvaranje NO . Sa
druge strane, manjak goriva ili pozitivni bilans kiseonika u osnovi rezultuje smanjenjem CO i
značajnim povećanjem NO . Elshout konstatuje 3 reakcije koje nastaju oksidacijom NO u NO2
(3):
2NO + O2 ÷ 2 NO2 (1)
NO + O3 ÷ NO2 + O2 (2)
NO + RO2 ÷ NO2 + RO (3)
No.2-3,2013
84
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Elshout sugeriše da su gore navedene tri reakcije moguće:
-u atmosferi koja sadrži visoke koncetracije reaktivnih ugljovodonika -3
- pri prisustvu visoke UV radijacije -2 i
-reakcije na niskoj koncetraciji NO pri prisustvu ozona- za test u vazduhu-1
ANFO (94/6) proizvodi prosječno CO 13.8 (± 4.5) l/kg i 25.5 (± 5.1) l/kg NO. Kako je i
očekivano povećanjem dizel goriva na 8 %, CO raste 2,5 puta na 35.1 (± 6.4) l/kg , sa
smanjenjem 14 % NO na 22.0 (± 5.1) l/kg . Dodavanjem aluminijumskog pudera u 94/6 ANFO
mješavinu lagano raste stvaranje CO na 25.3 (± 6.9) l/kg dok imamo lagano smanjenje NO na
16.2 (± 5.5) l/kg (3).
Nekoliko faktora se identifikuje u neidealnoj detonaciji: slaba otkrivka, koja značajno smanjuje
potrebnu zbijenosti punjenja; značajna infiltracija vode u dugim intervalima između eksplozivnih
punjenja, koja mijenja kompoziciju eksploziva; dugačke bušotine, koje proizvode hidrostatičke
pritiske na dnu bušotina i smanjenje mogućnosti uspješne propagacije detonacije; prepunjavanje
eksplozivom koja se dešava uslijed vlažnosti otkrivke i žila gline. Istraživanja su pokazala da
stepen zbijenosti eksplozivnog punjenja i materijala koji se minira imaju oboje značajan uticaj na
stvaranja gasova. Kao rezultat istraživanja se došlo do zaključka da mjerenja gasova prilikom
miniranja na jednom rudniku ne mogu biti mjerodavna za drugačije uslove rada i miniranja na
nekom drugom rudniku. Testovi sa malim količinama, sa boljom kontrolom promjenljivih
zahtijevaju u skladu definisanja faktora i indukuju minimizaciju problema (4).
Krupnoća zrna u ANFO - mnoga ispitivanja u testnim komorama je izvedeno radi upoređivanje
gasova iz detonacije ANFO u granulama ili prilovanog .
Sa istim stepenom zbijenosti, stvoreni NO2 iz prilovanog AN je bio 4 puta niži od količine
stvorene iz standardnog granulisanog ANFO. I CO i H2 nastali detonacijom prilovanog ANFO su
niži za 2 puta a NO je bio 30% niži nego kod granulisanog ANFO. Nema značajnih razlika kod
stvaranja CO2. Sa prilovanim AN, amonijum nitrat je vjerovatno intimnije miješan sa uljem u
slučaju granula. Više bliskog kontakta između amonijum nitrata i ulja uzrokuje kompletnije
reakcije dekompozicije. Sa granulama, reakcija rastvaranja u granulama nitrata dalje poslije
detonacije stvara više NO (5).
Slika 1. Efekti relativne zbijenosti na
Slika 2. Efekti relativne zbijenosti na CO,
NO i NO2 produkte prilikom detonacije
CO2 i H2 produkata prilikom detonacije
ANFO,
Emulzije
i
mješavine
50/50
(5)
ANFO,
Emulzije i mješavine
(5) i
Oksidacija NO u NO2 u vazduhu zavisi od inicijalne
NO koncetracije
u trenutku. 50/50
Koncetracije
NO i NO2 su dodate i zbir je dat kao NOx koncentrcija. NOx koncentracija pokazuje značajan
porast sa smanjivanjem zbijenosti (gustine punjenja) . Veličina zrna eksploziva je vjerovatno
najvažnija u ovom slučaju. Eksplozivi kao ANFO koji teže razlaganju i stvaranju NOx.
No.2-3,2013
85
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Kritični prečnik ANFO eksploziva- vršena su mnoga ispitivanja u kojima je pronađena
zavisnsot detonacione brzine i ovih eksploziva od prečnika punjenja. Tako prečnik od 100 mm
može imati 3048 m/s, prečnik 150 mm oko 3658 m/s a prečnik 400 mm do 4877 m/s. Isto tako je
utvrđeno da prečnici manji od 30 mm smanjuju det.brzinu za 60 %.
Slika 3.
Detonacionona brzina ANFO u
zavisnosti od prečnika punjenja (5)
Sadržaj ANFO aditiva/dodataka - Stvaranje post-eksplozivnog NO2 je postavljeno kao rezultat
termičke reakcije (uz uslove za stvaranje idealnih produkata detonacije), koja rezultuje povećanje
NOx. NO komponenta dobro oksidira u vizuelni narandžasti oblak karakterističan za NO2 kada se
emituje u amtosferu.
Vršena su i upoređivanja količina NO i NO2 iz ANFO prilikom dodavanja različitih aditiva.
Višak dizel goriva (8%), redukuje NO2 3 puta sa manjim nivoom redukcije NO. Dodavanjem 3%
Pittsburgh pulverizovanog uglja (PPC) prašine na 6% gorivog ulja (FO) je efektivno u takvom
odnosu. 3% FO (gorivog ulja) + 3% PPC (uglja) proizvodi manje NO2 nego mješavina sa 6%
FO-gorivog ulja, sa porastom NO. Izrada eksploziva bogatih uljem dovodi do redukcije NOx, ali
na račun porasta CO. Poboljšanje dobijeno nekim aditivom sa manjom gustinom će se izgubiti u
nekim eksplozivima I to je kompromis u slučajevima dugih intervala bušotina u njihovog
punjenja i iniciranja u slučajevima rastvaranja AN u vodi ili gubitak/slabljenje učešća gorivog
ulja kroz operaciju povezivanja štapinom uz zidove bušotina. U mnogim slučajevima kompozicija
bušotine treba biti zaštićena od uticaja vode apsorpcije ulja sa okolnim materijalom u bušotini. To
je namjenska funkcija WR aditiva (5).
Materijal za začepljenje- U nastavku analize aditiva, začepljenje sa vodom (vodenim čepovima)
bi trebalo potencijalno da redukuje stvaranje NO2 rastvaranjem rastvorivih kiselih gasova u vodi
povećanim baznim materijalom kao natrijum karbonat (Na2CO3). Jedan litar miješanih sa 10
grama Na2CO3 redukuje mjerljivi NO2 na 48% sa malim smanjenjem NO. Praktično začepljenje
sa vodom može biti teško upotrebljivo na terenu. Jedan od uslova jeste da se obezbijedi da voda
ne curi/teče u niže bušotine u dužem period između punjenja i aktiviranja.
Dodavanjem želiranog agensa u dospjelu vodu moguće je minimizirati njen uticaj. Obaranjem
vlažnosti u zoni miniranja primarno pored paljenja utiče i na apsorpciju NO2 i smanjenje prašine
dispergovane u toku miniranja (5).
Sadržaji gorivog ulja/goriva i AN rastvaranje - Uobičajeno objašnjenje za post-detonacione
NO2 gasove iz ANFO je da je to mješavina sa sniženim sadržajem ulja (pozitivni bilans
kiseonika) ili su bušotine bile vlažne. Ako se radi o smanjenom sadržaju ulja, stvaranje oksida
No.2-3,2013
86
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
azota je radi nekompletne redukcije nitrata . Mogućnost postoji da balansirana ANFO formulacija
može postati siromašna uljem ako se ulje gubi u zidovima bušotine curenjem (5)
Sadržaj agensa za gustinu - Dvoprocentni Cabosil* (gasni silicijum dioksid) je dodan gorivoj
kompnenti I brzo miješan sa granulama AN. Cabosil je spriječio curenje goriva između granula
Progušćeno gorivo značajno smanjuje gubitak goriva curenjem ali ne redukuje gubitak AN kada
je smjesti u simulirane bušotine sa 8 % vode.
WR kondicioner 260, ANFO želirajući agens,je dodan u ANFO jer kondicioner usporava gubitak
AN. Kao što AN povlači vodu iz zidova bušotine, WR kondicioner želira vodu blizu zidova
bušotine, tako redukuje odnos AN rastvaranja. U osnovi teža eksplozivna punjenja (gustinazbijenost) imaju pravilnije detonacije i manje stvaranje NO i NO2 Aditivi kao ugljena prašina i
veći procenat goriva miješani sa ANFO malo smanjuju stvaranje NO dok urea i WR kondicioner
260 blago povećavaju u odnosu na 6% ANFO.
Svi ANFO aditivi koji su testirani ovim ispitivanjima smanjuju stvaranje NO2 . Ispitivanja sa
malim količinama ukazuju da povećan sadržaj goriva (8%) u AN smanjuje formiranje NO2 kao i
drugi aditivi uključujući ugljenu prašinu. Laboratorijski rezultati su pokazali da suve, meke i
porozne stijene ,mogu povući značajne količine ulja iz ANFO u period između punjenja i
paljenja eksplozivnog punjenja. Stepen gubljenja ulja je veći u bušotinama sa manjim
prečnicima. Isto tako u stijenama otkrivke sa vlažnošću od 8 % utiču na rastvaranje AN iz ANFO
kroz vrijeme. U praksi je bitno u radu na terenu spriječiti gubljenje ulja i rastvaranje AN u period
između punjenja bušotine i njenog aktiviranja (5).
U jednom od radova koji se bavio analizom stvaranja toksičnih gasova u zavisnosti od vrste
eksploziva date su veličine koncetracija pojedinih gasova prema CFR standard i prikazane u
tabeli 2.
Tabela 2 -Stvaranje toksičnih gasova i relativna toksičnost prema CFR standard (3)
Eksploziv
COa,e,f, l/lg
NOb,e,f , l/kg
NO2c,e,f , l/kg
Otrovni gasovi d ,e,l/kg
ANFO 94/6; 5
25,3
16,2
0,6
68,0
%Al
ANFO 94/6
13,8
25,5
0,4
72,3
ANFO 92/8
35,1
22,0
0,1
80,5
Komerc. buster
250,8
1,3
0
253,3
a,b,c
izmjereni CO,NO I NO2 u argon atmosferi, f-standardna devijacija
- Otrovni gasovi, l/kg (ft3/lb), preračunati na standard 30 CFR (dijelovi 15 i 20) .
- Standard 30 CFR (Federal Relative Toxicity Standard 30 CFR Part 15) propisuje dozvoljeno
stvaranje gasova u podzemnoj eksploataciji uglja i drugim rudnicima sa gasovima. Zahtjev je
da ukupni gasovi ne prelaze 155 l/kg u standardnim uslovima (3).
Sva ova ispitivanja i iskustva su poslužila i pri izradi ove Studije kada su planirana probna
miniranja i radni uslovi izvođenja probnih minirnja, kako bi se dobili što upotrebljiviji i
reprezentativniji podaci, koji bi potvrdili ili isključili mogućnost upotrebe ANFO eksploziva u
konkretnim uslovima Rudnika Sase.
No.2-3,2013
87
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
2. SNIMANJA I ANALIZA GASOVA POSLIJE MINIRANJA
Prilikom miniranja u podzemnim radilištima u radnu sredinu se izdvajaju toksični gasovi Ugljen
monoksid, Oksidi azota,Sumporni gasovi, Živine i olovne pare, te stvaranje od mineralnog
materijala povišene koncentracije agresivne mineralne prašine i netoksični (inertni) gas
Ugljen dioksid. Kvalitativni i kvantitativni sadržaj toksičnih gasova u produktima eksplozije,
kod izvođenja minerskih radova u podzemnim radilištima ima veliki značaj kako u pogledu
bezbjednosti rada tako i u pogledu ekonomike (6).
Da bi se koncentracija toksičnih gasova poslije miniranja svela na ispod MDK, potrebno je
određeno vrijeme za ventilaciju. To vrijeme je neproduktivno, izgubljeno.
Djelovanje toksičnih gasova je uzrok ne samo oboljenja već i smrtih povreda u slučaju
nedovoljne ventilacije, preranog ulaska radnika na radilište poslije miniranja , zadržavanja
radnika u toksičnoj radnoj sredini i nedostatka mjera neutralizacije toksičnih gasova.
Uslijed hroničnog trovanja radni učinak radnika slabi, a njegov radni vijek se smanjuje . Zbog
visokog broja bolovanja profesionalno oboljelih radnika od toksičnih gasova , proizvodnja
mineralnih sirovina i produktivnost opadaju, a povećavaju se ljudski , materijalni i socijalni
problemi.
Istraživanja mehanizma stvaranja toksičnih gasova prilikom miniranja i izučavanja faktora koji
utiču na njihov sastav i količinu se, u industrijski razvijenim zemljama, sprovode zadnjih par
decenija, i može s konstatovati da jedan dio uticaj do danas nije dovoljno istražen.
Mišljenja naučnika o tim problemima su dosta protivrječna, to je i razumljivo, jer je istraživanje
stvaranja toksičnih gasova , njihove raspodjele i ponašanja prilikom i nakon miniranja , vrlo
složeno i vezano sa radom u gasovima i prašinom zagađenoj atmosferi podzemnih prostorija.
Osim toga izučavanja, uglavnom obuhvataju pojedinačne uticaje i najčešće su zasnovani na
laboratorijskom radu, pa tako dobijeni rezultati znatno odstupaju od rezultata dobijenih u
industrijskim –proizvodnim uslovima. U našoj zemlji ova naučna problematika do sada nije
izučavana u industrijskim , a ni u laboratorijskom obimu.
Nedovoljno osvetljenje pojedinačne, a naročito grupne zavisnosti u svjetskoj naučnoj praksi i
stanje u rudarskoj industriji kod nas u tom pogledu, inicirali su potrebu za izučavanjem ovog
problema. U toku analize mogućnosti upotrebe ANFO eksploziva u Rudniku olova I cinka Sase
izvršena je studija i terenska osmatranja uticaja stvaranja toksičnih gasova u procesu probnog
miniranja u tom rudniku.
2.1.
LOKACIJE I USLOVI MJERENJA I ISPITIVANJA TOKSIČNIH I
NETOSKIČNIH GASOVA U TEHNOLOŠKOM PROCESU MINIRANJA U
RUDNIKU SASE
Mjerenja i ispitivanja gasova nastalih miniranjem sa upotrebom AN-FO eksploziva su vršena
prilikom izvođenja probnih miniranja obavljenih 01.10. i 22.10. 2010. godine. Mjerna mjesta su
bila data u sledećem tekstu.
2.1.1. Mjerenja vršena prilikom probnih miniranja 01.10.2010. godine
No.2-3,2013
88
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
MM broj 1.OTKOPNI BLOK 312/2 PH (podetažni hodnik) LIJEVO-OBARANJE PLOČE
- Upotrebljeni ekploziv ANFO 63 kg i 9kg praškastog eksploziva
- Rudarska mehanizacija- Mašina za mašinsko punjenje minskih bušotina nalazi sa na licu
mjesta i ista nije u radu.
- Radna snaga - Na radilištu se za vrijeme mjerenja nazi 10 radnika od kojih teške fizičke
poslove obavlja 4 radnika , a ostali radnici uglavnom obavljaju srednje teške poslove .
- Na mjernom mjestu nema vještačke ventilacije i izmjena vazduha se vrši prirodnim putem
Izvršena su i mjerenja 20 minuta poslije izvršenog miniranja
MM broj 2.
OTKOPNI BLOK 312/5a PSH (prilazno spojni hodnik) ČELO RADILIŠTA
- Upotrebljeni ekploziv ANFO 32 kg i 2kg praškastog eksploziva
- Na mjernom mjestu nema vještačke ventilacije i izmjena vazduha se vrši prirodnim putem
- Izvršena su i mjerenja 20 minuta poslije izvršenog miniranja
MM broj 3.
OTKOPNI BLOK 312/5a PH-1 Lijevo (podetažni hodnik) ČELO RADILIŠTA
- Upotrebljeni ekploziv ANFO 28kg i oko 2 kg praškastog eksploziva
- Na mjernom mjestu nema vještačke ventilacije i izmjena vazduha se vrši prirodnim putem
- Rudarska mehanizacija- Mašina za mašinsko punjenje minskih bušotina nalazi sa na licu
mjesta kojom je vršeno punjenje minskih bušotina. Rudarska mašina za podzemnu
eksploataciju utovarivač „TORO“ se nalazi nedaleko od mjernog mjesta , ali za vrijeme
mjerenja nije radio
- Radna snaga - Na radilištu se za vrijeme mjerenja nalazi 6 radnika od kojih teške fizičke
poslove obavlja 4 radnika, a ostali radnici uglavnom obavljaju srednje teške poslove ,
- Na mjernom mjestu nema vještačke ventilacije i izmjena vazduha se vrši prirodnim putem.
Čelo radilišta se nalazi u radnoj prostoriji slijepi hodnik, zbog čega je otežana prirodna
izmjena vazduha
- Izvršeno je i mjerenje 25 minuta poslije izvršenog miniranja
25 minuta poslije miniranja ekipa za mjerenje je na 20 m prema mjestu miniranja izmjerila
koncentraciju Ugljen monoksida 350 ppm i ustanovila da zbog previsoke koncentracije dima , da
nije u mogućnosti da izvrši potrebna mjerenja iako je bila opremljena izolacionim aparatima,
pošto očitavanje izmjerenih vrijednosti ne bi bilo pouzdano urađeno zbog slabe vidljivosti, a
samim tim i mjerenje ne bi odgovaralo stvarnom stanju. Procjena na licu mjesta je bila da će
koncentracija dima i gasova trajati najmanje 180 minuta s obzirom na uslove i prirodnu izmjenu
vazduha, zbog čega je odlučeno da se mjerenje prekine. Iz navedenih razloga nisu izvršena
mjerenja poslije miniranja na mjernom mjestu broj 3.
2.1.2. Mjerenja vršena prilikom probnih miniranja 22.10.2010. godine
MM broj 4.
OTKOPNI BLOK 312/2 PH-5 (podetažni hodnik) LIJEVO
- Upotrebljeni ekploziv ANFO 37 kg i oko 0,5 kg praškastog eksploziva
- Mjerenja urađena 20 minuta poslije miniranja
MM broj 5.
OTKOPNI BLOK 312/2 PH-5 (podetažni hodnik) DESNO ČELO RADILIŠTA
- Upotrebljeni ekploziv ANFO 29 kg i 5 kg praškastog eksploziva
- Mjerenja urađena 20 minuta poslije miniranja
MM broj 6.OTKOPNI BLOK 312/ PH-6 (podetažni hodnik) lijevo I desno čelo radilišta
No.2-3,2013
89
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
-
YU ISSN:1451-0162
UDK:622
Upotrebljeni ekploziv ANFO 25 kg i oko 4,5 kg praškastog eksploziva
Mjerenja urađena 60 minuta poslije miniranja
Tabela 3 : Uslovi mjerenja i dobijeni rezultati (6)
Mjereno
Mjerenja
Metereološke prilike na ulazu u
jamu
Mjerenja 01.10.2010.
(mjerenja vršena prije miniranja-pri punjenju i 20 min. poslije
miniranja)
MM 1Otk. blok
MM 2Otk. blok
MM3Otk.blok
312/2 PH
312/5a PSH
312/5a PH-1
0
temperatura vazduha:
9,0 C
relativna vlažnost vazduha
:
84%
brzina strujanja vazduha:
0,58m/s
Pravac i smjer kretanja vazduha-pozitivan
.
sjevero-istok>jugo-zapad
atmosferski pritisak :
965 mbar
Mjerenja 22.10.2010.
(mjerenja vršena prije miniranja-pri punjenju i poslije miniranja)
MM 4.Otk.blok
MM 5.Otk.blok
312/2 PH-5 lijevo
312/2 PH-5 desno
IV Horizont-hodnik 413
temperatura vazduha:
relativna vlažnost vazduha
brzina strujanja vazduha
pravac i smjer kretanja vazduha-pozitivan
sjevero-istok>jugo-zapad
atmosferski pritisak
radioaktivno zračenje
MM 6 Otk.blokI
312/ PH-6 l/d
2,3 0C
73,3%
< 0,20m/s
969 mbar
0,18μS
Mjerenja prije miniranja-pri punjenju
Klimatski uslovi - nema ventilacije(prirodna izmjena)
Temperature vazduha
14,40C/13-150C
13,1 0C/13-15 0C
14,4 0c/13-15 0C
15,50 C/13-150 C
15,50 C/13-150 C
15,60 C/13-150 C
Relat.vlažnost vazduha
95.5%/ max 75%
88-95,6%/ max 75% 99.3%/ max 75%
95,0%/ max 75%
95,0%/ max 75%
93,4%/ max 75%
Smjer kretanja vazduha u
0,27m/s(max0,5)
< 0,20 m/s (max0,5) < 0,20 m/s (max0,5)
< 0,20 m/s(max0,5)
< 0,20 m/s(max0,5)
< 0,20m/s8 max0,5)
odnosu na izvor štetnosti
Negativan
Neutralan
neutralan
Neutralan
Neutralan
Vazdušni pritisak
965mbara/1013,25
960
959 mbara/1013,25
972 mbara/1013,25
972 mbara/1013,25
977 mbar/1013,25
mbara/1013,25
polytest
U tragovima/ U tragovima
Indikacija značajna
U tragovima
(>12 mm na mjernoj
cjevčici )prisustvo toksičnih
supstanci
oxigëne 5%B
21,0% / Min 19,6% 21,0% /min19,6
20,8% /min19,6
21,0% /min19,6
carbon monoxide 5/C
0,0ppm / 50 ppm
Tragovi/50 ppm
0,00/50 ppm
Tragovi/50 ppm
carbon dioxide 0,1% / a
0,05%/ 5000 p pm 0,5% 0,06 %/0,5 %
0,00 %/0,5 %
Tragovi/ 0,5 %
sulphur dioxide 1/ a
0;0 ppm/4 ppm
0,00 ppm/4 ppm
0,00 ppm/4 ppm
Tragovi /4 ppm
nitrogen dioxide 0,5/ c,
0;0 ppm/25 ppm
0,00 ppm/25 ppm
0,00 ppm/25 ppm
0,25 ppm/25 ppm
hydrogen sulfide 1/c
0,0 ppm/7 ppm
0,00 ppm/7 ppm
0,00 ppm/7 ppm
Tragovi/7 ppm
carbon disulfid
0,00ppm/15 ppm
ammonia 5/a
nijemjereno/50 ppm Nije mjereno/50
Nije mjereno/50 ppm
Tragovi/ 50 ppm
ppm
Mjerenja poslije 20 min
10 min poslije
20 min poslije
60 min
poslije
Klimatski uslovi - nema ventilacije(prirodna izmjena)
0
0
0
0
0
0
0
0
0
0
Temperature vazduha
14,9 C/13-15 C
14,9 c/13-15 C
14,0 C/13-15 C
13,4 C/13-15 C
15,6 C/13-15 C
Relat.vlažnost vazduha
90.5%/ max 75%
90.5% /max 75%
93,5%/max 75%
92,5%/ max 75%
94,5%/ max 75%
Smjer kretanja vazduha u
0,23m/s(max0,5)
< 0,20 m/s (max0,5)
0,23 m/s(max0,5)
0,20 m/s(max0,5)
0,20 m/s 8max0,5)
odnosu na izvor štetnosti
negativan
Negativan
Negativan
Negativan
Negativan
Vazdušni pritisak
964mbara/1013,25
964 mbara
972 mbara/1013,25
971 mbara/1013,25
977 mbara/1013,25
polytest
U tragovima/ U tragovima/ U tragovima/ U tragovima/ U tragovima/ oxigëne 5%B
20,5% / Min 19,6% 20,5% / Min 19,6%
20,6% / Min 19,6%
20,4% / Min 19,6%
20,2% / Min 19,6%
carbon monoxide 5/C
0,0ppm / 50 ppm
0,0ppm / 50 ppm
1,0ppm / 50 ppm
2,0ppm / 50 ppm
46,0ppm / 50 ppm
carbon dioxide 0,1% / a
0,08%/ 0,5%
0,17%/ 0,5%
0,08%/ 0,5%
0,1%/ 0,5%
0,3%/ 0,5%
Nitroze Gase 0,5/ a,
Tragovi/ 25 ppm
0,3ppm/25 ppm
2,0ppm/25 ppm
sulphur dioxide 1/ a
0,0 25ppm/4 ppm
0, 27ppm/4 ppm
0, 05ppm/4 ppm
0, 3ppm/4 ppm
0, 5ppm/4 ppm
nitrogen dioxide 0,5/ c,
0,25 ppm/25 ppm
0,25 ppm/25 ppm
0,4 ppm/25 ppm
0,4 ppm/25 ppm
0, 6ppm/4 ppm
2.1.3.
Prikaz I analiza izmjerenih koncetracija gasova prilikom probnih miniranja
Analizom koncetracije gasova nakon 20-25 minuta tokom probnih miniranja korišćenjem ANFO
eksploziva, možemo utvrditi da su koncetracije daleko ispod graničnih vrijednosti prema CFR
standardu (Tabela 2 -Stvaranje toksičnih gasova i relativna toksičnost ). Napominjemo da su
snimanja vršena i prije punjenja eksploziva odnosno snimana su i početna-referentna stanja, koja
takođe pokazuju neznatne ili nikakve koncetracije štetnih gasova – tabela 3.
Na slikama 4, 5 i 6 su prikazani dijagrami snimljenih/uočenih koncetracija I dozvoljenih
graničnih vrijednosti prema CFR standardu.
No.2-3,2013
90
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Slika 4: Analiza koncetracije CO i NOx 20
minuta poslije miniranja korišćenjem
ANFO (6)
Slika 5: Analiza koncetracije CS2 i
NO2 20 minuta poslije miniranja
korišćenjem ANFO (6)
No.2-3,2013
91
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
Slika 6: Analiza koncetracije H2S i
SO2 20 minuta poslije miniranja
k išć j ANFO (6)
3. KOMENTARI MJERENJA I ZAKLJUČCI
U slučaju analize bezbjednosti i kvaliteta radne sredine prilikom korišćenja ANFO
eksploziva, moguće je donijeti određene zaključke na osnovu rezultate mjerenja i
ispitivanja uticaja miniranja ovim eksplozivima u podzemnoj eksploataciji Rudnika
Sase:
1.Količina upotrebljenog eksploziva nema presudnu ulogu u stvaranju i trajanju koncentracije
toksičnih i inertnih gasova u radnoj sredini.
2.Najveće koncentracije toksičnih i inertnih gasova su utvrđene na mjernim mjestima koja su
prilikom miniranja imala najslabiju prirodnu ventilaciju, zbog nepovoljnog rasporeda
horizontalnih i vertikalnih hodnika i nepovoljnog atmosferskog pritiska.
3.Rudarska mehanizacija na dizel pogon koja se koristi u podzemnoj eksploataciji u rudniku
takođe ima negativan uticaj na stvaranje toksičnih gasova i inertnih gasova, te na smanjenje
kiseonika, posebno u radnim prostorijama –hodnicima sa nepovoljnom prirodnom ventilacijom,
tako da stvaranje toksičnih i inertnih gasova pri miniranju još nepovoljnije utiče na kvalitet
vazduha, pa je neophodno u uslovima upotrebe dizel opreme i miniranja u podzemnoj eksloataciji
obavezno primjenjivati vještačku ventilaciju sa proračunom brzine i pravca kretanja vazduha u
radnim prostorijama, odnosno izradom projekta ventilacije radnih prostorija.
4.Kvalitetnim projektom ventilacije radnih prostorija – radilišta u podzemnoj eksploataciji
opasnost od uticaja toksičnih i inertnih gasova na zdravlje radnika se značajno smanjuje odnosno,
isključuje se opasnost od akutnog trovanja radnika (hronično trovanje radnika se ne može u
potpunosti isključiti), a bitno se smanjuje i izgubljeno vrijeme poslije miniranja i ulaska radnika u
bezbjednu radnu sredinu.
No.2-3,2013
92
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
YU ISSN:1451-0162
UDK:622
LITERATURA:
[1] S,Torbica, N.Petrović : Metode i tehnologija podzemne eksploatacije neslojevitih ležišta,
RGF Beograd, 1997. god.
[2] N.Purtić: Bušenje I miniranje, Univerzitetski udžbenik, RGF Beograd, 1900.god
[3] M. L. Harris, M. J. Sapko, R. J. Mainiero: Toxic Fume Comparison of a Few Explosives
Used in Trench Blasting, National Institute for Occupational Safety and Health
Pittsburgh Research Laboratory, 2002.
[4] Santis LD, RA Cortese: A method of measuring continuous detonation rates using offthe-shelf items. In: Proceedings of the 22nd Annual Conference on Explosives and
Blasting Technique. Orlando, FL: International Society of Explosives Engineers,
February 4-8, 1996, 11pp.
[5] M. Sapko,J. Rowland, R. Mainiero, I. Zlochower : Chemical and physical factors that
influence Nox production-Exploratory Study 2002.
[6] R.Pavić, M. Čelebić: Izvještaj o izvršenim mjerenjima i ispitivanjima gasova u procesu
miniranja ANFO eksplozivima “Gross” d.o.o. Gradiška RJ Srebrenica, decembar 2010.
[7] V. Čokorilo,J.Miljanović, D.Bogdanović, M.Denić: Razvoj podzemne eksploatacije u
svetu, Časopis “Rudarski radovi”. 1/2002, Komitet za podzemnu eksploataciju,Resavica
2001.
[8] M.Stjepanović: Stanje sigurnosti i tehnička zaštita u rudnicima sa podzemnom
eksploatacijom u Srbiji, Časopis “Rudarski radovi” 1/2001, Bor 2001.
No.2-3,2013
93
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
No.2-3,2013
94
YU ISSN:1451-0162
UDK:622
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
No.2-3,2013
95
YU ISSN:1451-0162
UDK:622
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
No.2-3,2013
96
YU ISSN:1451-0162
UDK:622
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
No.2-3,2013
97
YU ISSN:1451-0162
UDK:622
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
No.2-3,2013
98
YU ISSN:1451-0162
UDK:622
MINING ENGIEERING
COMMITTEE OF UNDERGROUND EXPLOITATION
OF THE MINERAL DEPOSITS
No.2-3,2013
99
YU ISSN:1451-0162
UDK:622
MINING ENGIEERING
Download

Часопис 2-3.2013 - JP PEU Resavica