DEVELOPMENTS IN
VIRTUAL REALITY LABORATORY
FOR FACTORY OF THE FUTURE
VIRTUAL REALITY LABORATORY FOR FACTORY OF THE FUTURE KIADVÁNY
VÝVOJ VO VIRTUAL REALITY LABORATORY FOR FACTORY OF THE FUTURE
2013-2014
Bay Zoltán Nonprofit Ltd.for Applied Research
(Bay Zoltán Alkalmazott Kutatási Közhasznú Nonprofit Kft.)
H-3519 Miskolc, Iglói út 2
Bay Zoltán Nonprofit Ltd.for Applied Research
(Bay Zoltán Alkalmazott Kutatási Közhasznú Nonprofit Kft.)
in cooperation with
(együttműködésben a / v spolupráci s)
Technical university of Košice
(Technickou univerzitou v Košiciach)
Developments in Virtual
Reality Laboratory for Factory
of the Future
Virtual Reality Laboratory for Factory of the Future kiadvány
Vývoj vo Virtual Reality Laboratory for Factory of the Future - zborník
2013-2014
© 2014
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Program committee (Programbizottság / Programový výbor)
prof. Ing. Peter Sinčák, CSc., Technical university of Košice
Assoc prof. Ing. Ján Spišiak, PhD., Technical university of Košice
Assoc prof. Ing. Branislav Sobota, PhD., Technical university of Košice
Dr. Szávai Szabolcs, PhD, Bay Zoltán Nonprofit Ltd for Applied Research, Hungary
Sólyom Balázs, Bay Zoltán Nonprofit Ltd for Applied Research, Hungary
Editors (Szerkesztők / Editori)
Assoc prof. Ing. Branislav Sobota, PhD., Technical university of Košice
Sólyom Balázs, Bay Zoltán Nonprofit Ltd for Applied Research, Hungary
Organizing committee (Szervezőbizottság / Organizačný výbor)
Sólyom Balázs, Bay Zoltán Nonprofit Ltd for Applied Research, Hungary
Dr. Szávai Szabolcs, PhD, Bay Zoltán Nonprofit Ltd for Applied Research, Hungary
Assoc prof. Ing. Branislav Sobota, PhD., Technical university of Košice
Ing. Martin Varga Technical university of Košice
ISBN 978-963-88122-4-7
The publication is the result of the project implementation HUSK/1101/1.2.1/0039
”Virtual Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the
Hungary – Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the
ERDF.
A kiadvány megjelenése a HUSK/1101/1.2.1/0039 számú ”Virtual Reality Laboratory for Factory of the
Future - VIRTLAB“ projektben a Magyarország-Szlovákia Határon Átnyúló Együttműködési Program 20072013 keretében az Európai Unió és az Európai Regionális Fejlesztési Alap támogatásával valósul meg.
Táto publikácia je výsledkom realizácie projektu HUSK/1101/1.2.1/0039 ”Virtual Reality Laboratory for
Factory of the Future - VIRTLAB“ podporovaný programom cezhraničnej spolupráce Maďarská republika –
Slovenská republika 2007-2013 financovaný Európskym fondom regionálneho rozvoja.
http://www.husk-cbc.eu/
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Table of Contents (Tartalomjegyzék / Obsah)
Digital factory for thermal processing of raw materials, Miroslav ZELKO, Martina
HUSÁROVÁ ................................................................................................................... 3
Advanced 3D Interfaces in Industrial Applications, Róbert PEŤKA............................................. 8
Virtual control desk based on virtual reality systems - simulation part, Erik CHOVANEC,
Ladislav JACHO , Branislav SOBOTA......................................................................11
Simulation and validation of welded joints of high strength steel sheets, Zoltán BÉZI, Balázs
BAPTISZTA, Szabolcs SZÁVAI...................................................................................17
Software interfaces in the Factory of the Future, Dušan JANOVSKÝ ........................................28
Google glass, Zuzana DUDLÁKOVÁ, Tomáš TALIÁN..................................................................33
Analysis of injection molding of automotive products, Ákos SZŐLŐSI, Máté SZŰCS, Róbert
BELEZNAI....................................................................................................................37
Virtualization of building and technologies in Jelšava, František HROZEK, Branislav
SOBOTA, Štefan KOREČKO, Martin VARGA.........................................................44
Types of 3D imaging technology, Peter IVANČÁK, Martin ORSÁG...........................................49
OpenSceneGraph Editors, Štefan KOREČKO, Martin JACKO ...................................................53
Telescope: recent, current state and future, Daniel LORENČÍK, Ladislav MIŽENKO, Jaroslav
ONDO, Peter SINČÁK ................................................................................................57
VR integration into the Factory of the Future, Dušan JANOVSKÝ, Róbert PEŤKA.................62
Head-mounted display, Martin VARGA, Lukáš MITRO................................................................67
Digital factory concept on the raw materials processing, Miroslav ZELKO, Ján SPIŠÁK, Eva
ORAVCOVÁ .................................................................................................................71
Advanced 3D interfaces in business processes, Róbert PEŤKA, Dušan JANOVSKÝ ................81
OpenGL optimalization, Czaba SZABÓ, Gabriel POLÁK ............................................................85
Simulation analysis of production- and logistic processes, Norbert TÓTH, Richárd LADÁNYI89
Virtual user interface for operator training process, Branislav SOBOTA, František HROZEK,
Matúš KAŠPER ............................................................................................................95
Telescope: System Overview, Ladislav MIŽENKO, Daniel LORENČÍK, Jaroslav ONDO, Peter
SINČÁK.......................................................................................................................100
Graphic effects in computer games, František HROZEK, Stanislav ŠVIDRAŇ .......................105
Visualization and Virtualization and Corresponding Engines Use Štefan KOREČKO, Branislav
SOBOTA......................................................................................................................109
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
-1-
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
The content of these articles does not reflect the official
opinion of the European Union
Jelen kiadvány tartalma nem feltétlenül tükrözi az Európai Unió hivatalos
álláspontját
Obsah príspevkov nereprezentuje oficiálne stanoviská Európskej únie
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
-2-
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Digital factory for thermal
processing of raw materials
1
1
Miroslav ZELKO, Martina HUSÁROVÁ
Faculty BERG, Technical University of Košice, Slovak Republic
Abstract — Digital and advanced technologies add intelligence to every stage of the
product lifecycle. These new intelligent technologies are transforming manufacturing and
mineral resources industry today. Informatization solutions support the core elements of this
transformation. Advanced innovative contribution to these solutions at the form of
informatization, digitalization, virtual reality helps to fulfill the challenges of EU. Digitalized
solution achievement dedicated to support the following areas of raw materials advanced
technology: digital factory for thermal processing, virtual plant and SMART factory.
Keywords — Complex Magnesite Processing (CMP), thermal processing of raw materials
based on the principle of dynamic thin layer, informatization, digitalization, visualization,
virtualization
I. PILOT PROJECTS (ACT08) P3-P6
Within the HU-SK project Virtual reality laboratory for Factory of the Future there
was pre-defined two pilot projects on both sides – Slovak and Hungarian. On the Slovak
side there is a pilot project named:
Digital factory for thermal processing of raw materials
Aim of pilot project is to create of concept of digital factory for extraction and
processing of raw materials and its application to processes of thermal processing of raw
materials based on the principle of dynamic thin layer. Created digital factory will be
used for whole lifecycle. Main usage of the concept is in research, development,
modeling and support of operational processes. Solution will also include conceptual
proposal of digital factory, creation of simulation model, base of data, and creation of
prediction system based on principles of virtualization and system virtualization.
Important part will be connection of primary processes to business processes, which
create environment of main processes. Foundation of solution is process approach which
is based on internal regularities of processes and can focus the solution on important
parts. Systematic research in the area will consist of information support, optimization
of material flow, decision-making, logistics, automatized integrated data processing
with aim to realize and support such an intelligent point of production or company. This
approach in form of process digitalization presents creation of new information via deep
analysis of data for new intelligent data analysis.
Based on the above mentioned things, the thermal raw material processing is a great
possibility to integrate all elements of the virtual reality laboratory in a pilot application.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
-3-
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
A. Activity plan
1.
2.
3.
4.
5.
Concept of digital factory creation and its application to processes of
thermal processing of raw materials based on the principle of dynamic thin
layer. The concept will be used in research, development, modeling and support
of operational processes.
Conceptual proposal of digital factory processes, creation of simulation
model, creation of prediction system based on principles of virtualization and
system virtualization, monitoring the economic operations concept.
Informatization - obtaining information (direct, indirect and model) about
controlled processes, mathematical models creation, optimization of material
and information flow, technological logistics principles application
Digitalization - creation of new information via deep analysis of data for new
intelligent data analysis, process modeling and, predictive control system.
Visualization (3D), virtualization (4D) - animation with time dimension
B. The aim of the project
1.
2.
3.
4.
5.
6.
7.
Make worked a visualization of all objects (elements) and MaL (Mill and Press)
building in 3D.
Make layout of 3D objects according to technological scheme ideally as well as
in MaL building.
3D printed model of the whole of technological line - ideally organized and in
MaL building.
Make visualization of technological equipment according to real, resp. by
producers defined parameters and equipment that are not yet verified according
to the expected parameters - 4D.
4D - virtual reality - a demonstration model of technological line.
At major facilities (ITA, RORP, NSP) will be their control system linked with
4D model.
The history of management interventions will be archived and used within
neural networks as "HELP" respectively decision support system (DSS) for
operator.
II. SLOVAK PILOT PROJECT STATUS
Digital version of Mining Company – Complex Magnesite Processing (CMP) concept:
1.
2.
3.
4.
5.
6.
7.
The visualization of all objects and MaL building in 3D (Fig. 1)
Layout of 3D objects according to technological scheme in MaL building.
3D printed model of the whole of technological line
Visualization of technology according to real (scanned) object
4D Virtual reality – objects in the dynamics
4D main objects linked with their control system
The history of control interventions storing in the archive and utilization of
neural networks
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
-4-
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
III. SLOVAK PILOT PROJECT NEXT STEPS
•
•
•
•
•
•
Complement of created digital versions of Complex magnesite processing CMP
General Assembly meeting and Harmonization Workshop Kosice (31/01/2014)
Sending a monitoring reports, application for payment (15/02/2014)
Slovakian SME workshop (20/03/2014) in Jelsava weekend's utility Hradok
Preparation of a demonstration pilot site in SMZ Jelsava mine (continuously
until 30/4/2014)
Administration of the project, organizational management (continuously)
Fig. 1 Compact solution of Complex Magnesite Processing Math (top left), CMP based on Technological
Logistics principles (top right) and Environmental, Economic, near-to-zero waste solution, friendly to the
surrounding (bottom)
IV. SLOVAK MAGNESITE WORKS SMZ JELSAVA, A.S.
Short description of mining company for the pilot:
•
•
•
SMZ Jelsava (Fig.2) is 10 years the partner of Technical university of Košice a
our VRP department in projects and cooperation treaties.
Magnesite works in Jelsava is the greatest mining and manufacturing magnesite
plant in Slovakia.
Slovak Magnesite Works, joint-stock company, Jelsava, is one of the top
European and world producers of loose basic monolitic refractory mixes with its
own resource base.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
-5-
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
•
•
•
The deposits of magnesite belong to the largest deposits in the world.
Magnesite is among the EU priorities for the Rare Materials,
SMZ is a member of EUROMINES along with VRP is in FP7 projects, ETP
SMR and ERA MIN
Fig.2 SMZ Jelsava, a.s.
V. OUR COOPERATION WITH SME
Cooperation with mining companies:
SMZ (Slovak Magnesite Works), a.s. Jelšava
SLOVMAG, a.s. Lubeník
GENES, a.s. Hnúšťa
LB Minerals, a.s. Košice
Economic cooperation with significant industrial companies:
VUM, a.s. Žiar nad Hronom
Confal, a.s. Slov. Ľupča
Bukóza, a.s. Hencovce
Working with partners in research and development:
CCT, s.r.o. Prešov
SPIŠCOL, s.r.o. Spišská Nová Ves
Casspos, a.s. Košice
Montáže Trenčín, a.s.
PLYSPO Rožňava
HGS, s.r.o. Rožňava
ATIM, s.r.o. Košice
VI. CONCLUSION
This paper describes the steps that reached the DEVELOPMENT and
REALIZATION WORKPLACE of raw material extraction and treatment (VRP ZaSS) in
implementing the pilot project of the HU-SK project titled Digital factory for thermal
processing of raw materials. Also notes the steps that still need to be implemented in
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
-6-
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
particular in relation to the preparation of demonstration pilot plant in operation in
Jelsava mine, where challenging environment in full operation is full of various security
restrictions. VRP department of BERG Faculty has so far experienced in the
implementation of pilot projects, especially in the international project I2Mine, one of the
largest R & D project in Europe.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
REFERENCES
[1] Ján Spišák, Ján Mikula, Dušan Naščák, Miroslav Zelko, (2012), Advanced
monitoring system for granular material thermal treatment. International Carpathian
Control Conference (ICCC), proceedings of the 13th International Carpathian
Control Conference : Podbanské, Slovak Republic, May 28-31, IEEE, 2012. - ISBN
978-1-4577-1866-3. - S. 661-666
[2] Dorčák D. & Spišák J. (2004). Reengineering methodology using for optimization
of complex processes of raw materials extraction and processing, Acta Montanistica
Slovaca, Slovakia, 2004, 9 (2), 72-78
[3] Dorčák D. & Koštial I., Husárová M. (2011). Creating a digital factory concept on
earth resources extraction and processing, Advanced technologies in extraction and
processing of earth resources, Proceedings from conference, 2011, Slovakia, 51-54
[4] Koštial, I. & Rybár, P., Podlubný, I. (2002). Informatization of raw materials
extraction and processing - looking forward to the XXI century, Acta
Montanistica Slovaca, Košice, 2002, 4 (1), 231-234
[5] Lavrin A. & Zelko M. (2006). Knowledge sharing in regional digital ecosystems,
Organizacija, Slovenia, 2006, 39 (3), 191-199
[6] Prawel, D. (2007). The Advent of Visual Manufacturing, White Paper, President &
Principal Consultant, Longview Advisors Inc, London, 2007
[7] Spišák J., & Zelko M. (2010). The Advanced Technologies Development Trends for
the Raw Material Extraction and Treatment Area, Products and Services, from R&D
to Final Solutions, SCIYO, Croatia, 2010, ISBN , 257-278
[8] Zelko M. & Dorčák D., Husárová M., Olijár A. (2010). The proposal of new
technology within the concept of "invisible mine", Proceedings from conference,
Czech Republic, Ostrava VŠB-TU, 2010, 1(1), 197-203
[9] Zelko M. & Petruf M., Spišák J. (2010). Environment and risk factors as the part of
the European technology platform for sustainable mineral resources, Proceedings
from conference, Slovakia, 2010, 131-136
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
-7-
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Advanced 3D Interfaces in Industrial
Applications
1
1
Róbert Peťka
Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected]
Abstract — There is a lot of different complex devices used in the industry of processing of
raw materials. Although these devices become more advance over the time, there is still a
human control required over them. In order to keep them operational, many different
parameters must be monitored and maintained. Despite the fact that old physical panels were
replaced by computers, all these devices are controlled via two dimensional interfaces, usually
utilizing mouse and keyboard. However, with advancement of technology, there are
interesting new devices available to be used in such operations. Building a device interface
system using these advanced interfaces allows operators to take their actions faster, several of
them in parallel and even remotely. Moreover it will allow easier integration of virtual reality
in the process of training and simulation. This paper aims for possible improvements in this
area in order to allow human natural way of maintaining industrial devices operational.
Keywords — Human Computer Interaction, Virtual reality, Simulation.
I. INTRODUCTION
Large industrial devices are already controlled by computers, however still using
traditional two dimensional interfaces. Such interfaces allows limited number of actions
performed in parallel, thus increasing the time required to perform required action on the
real complex device. In time critical situations, this can lead to permanently destroy the
device.
Nowadays, there are new advanced computer interface devices available on the
market. These devices allows interaction with computers in human natural way. In fact
they increase the capabilities of obsolete computer interfaces from the past. They allow
to perform actions in parallel taking several parts of human body into account and even
remotely.
II. GOALS
The goal of this paper is to create an advanced 3D interface used to operate complex
industrial devices allowing for faster and even parallel operations on these devices. Such
an interface could be then easily used in training and simulation of professional stuff
before they get in touch with real devices. This will decrease time and costs required to
train the operators. Moreover it will allow them to train how to prevent dangerous
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
-8-
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
situation which may lead to device malfunction and in worst case to serious health
impacts.
III. PROBLEM ANALYSIS
Industrial environment is usually not ideal to operate sensitive devices. It contain dust,
dirt, noise, vibrations and many more. Moreover some of the advanced 3D interface
devices are sensitive to ferromagnetic materials heavily used there (e.g. magnetic
position trackers [1]). We need to find devices that will be resistant enough to sustain all
possible obstructions and difficulties.
Typical operations when operating complex industrial devices accounts turning them or
their parts on or off. Another typical operation is addition and reduction of certain values
used to control the performance and status of the device. We will try to find the best
possible set of devices allowing to perform operations fast and precisely.
IV. ADVANCED 3D INTERFACE DEVICES
Nowadays there are several advanced 3D interfaces entering the market. Some of them
are directly usable in advanced human computer interaction in industrial environments.
Here we list those suitable to be used in our system. We think these devices could
significantly improve the performance of actions required to control and operate complex
industrial devices.
A. Data Gloves
Data glove is a device, that allows capturing mechanical and gestural information of
the hand. To determine the shape of the hand and fingers, there are various types of
bending sensors used. Recent approaches, e.g. Myo [2] and Fin [3] devices, rather
evaluates muscle state in order to detect hand and finger gestures. That removed potential
finger movement limitations compared to wearing data-glove.
Data glove or similar advanced solution could be effectively used to perform gestures
used to control the device. By utilizing both hands we are able to perform at least two
gestures in parallel or perform complex operations compared to using e.g. mouse and
keyboard.
B. Optical trackers
Optical trackers require unobstructed space between its optical parts and tracked
object. By their nature, they do not suffer from having ferromagnetic material in the
tracked area. Their main advantage is the number of measurement acquired over the time
and high precision.
There are two options available. These accounts marker-based systems and markerless system. As we want to avoid putting extra requirements on the operators, we do not
find marker-based system are not suitable for our solution, as they do require use of
markers attached to the user's body.
We find marker-less systems best for our application. These systems directly process
the image or silhouette, thus they do not require to use any special markers. Such systems
works on active triangulation of transmitted structured infra-red light [4], that is reflected
from the surface of a user standing in front of system`s sensors.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
-9-
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
The fact, that full body of a user could be used as interface to interact with computer is
the main advantage of these systems. Well know example of such solution is Microsoft
Kinect [5]. Apart the standard color image output that could be further analyzed by
OpenCV[6], Kinect outputs also depth image of the perceived scene [7].
V. CONCLUSION
The goal of this work was to create a computer interface system based on advanced 3D
interface devices. Such system allows human natural interaction with computer in order
to operate complex industrial devices. Proposed solution could be installed in desktop
environment as well as standalone application (e.g. separate area with the operator
standing while seeing the operated device himself). Marker-less optical tracker in
combination with data gloves create robust solution for advanced 3D computer interface.
The ability to utilize both hands with all hand fingers to perform gestures is crucial.
Moreover system could be extended to take also other parts of user's body into account.
This solution could be easily integrated into virtual reality environment to perform
training and simulation of the operators. This will decrease time and costs required to
train the them to operate the device in a controlled manner that avoids dangerous
situations which may lead to device malfunction and in worst case to serious health
impacts.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
REFERENCES
[1]
[2]
[3]
[4]
Polhemus PATRIOT homepage, http://polhemus.com/?page=Motion_Patriot
Thalmic Labs Myo homepage, http://www.thalmic.com/en/myo/
RHLvision Technologies Fin homepage, http://www.wearfin.com/
Silberman, N.; Fergus, R.: Indoor scene segmentation using a structured light sensor,
Computer Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pp. 601-608, 2011, ISBN 978-1-4673-0062-9
[5] Microsoft Kincect homepage, http://www.xbox.com/en-US/Kinect/
[6] OpenCV (Open Source Computer Vision) homepage, http://opencv.org/
[7] WISLON, D.Andrew: Using a Depth Camera as a Touch Sensor. ITS 2010,
Saarbrucken, Germany, Nov. 7-10, 2010.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 10 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Virtual control desk based on virtual
reality systems - simulation part
1
1,2
1
Branislav SOBOTA, 2 Ladislav JACHO , 3Erik CHOVANEC
Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
branislav.sobota@.tuke.sk, [email protected], [email protected]
Abstract — These Processing of raw materials in blast furnaces is an area where even the
smallest mistake and bad decision made by employee can cause destruction of furnace. There
are several parameters, such as pressure and temperature, which have to be monitored and
maintained in a certain interval during operation. It is necessary to test employees and verify
their knowledge in resolving crisis situations in the work they perform.
Keywords — Virtual reality, virtual control panel, blast furnace, crisis situation, testing.
I. INTRODUCTION
Blast furnace is a complex device that consists of several separate devices. Furnaces
are controlled via control panels, where can device be enabled, disabled or set an exact
value. There are also indicators that display the values of sensors under which employee
can make the necessary settings. These settings usually have to be done as soon as
possible. So it is necessary that the panel is designed the best, so the user could perform
necessary adjustment in the shortest possible time.
Devices that furnace consists of can go wrong - for example, a fan may become stuck,
sensors may show incorrect values and a lot of others. Also, there may be problem of
another character - for example material can stuck within the furnace, and more
unexpected issues. So to prevent incomplete processing of the material or even worse destruction of the furnace, employee must know how to react in these situations and
adjust certain parameters to compensate the problem.
II. GOALS
The goal of this work is to create a virtual reality application called VRPITA. Main
idea is to control a virtual blast furnace using the virtual controls on the virtual panel.
The base of application is to simulate the processes of blast furnace, whereby the
employee may become familiar with its operation, instructed its control and tested for
troubleshooting.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 11 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
III. PROBLEM ANALYSIS
Blast furnaces exist and are used for a long time. Firstly they had physical control
panels, currently they are controlled by software using mouse and keyboard or using the
touch screen. Nowadays are physical panels used only for turning on electricity, also gas
is turned by tap, not by computer. The question is, what it is good for, as blast furnaces
have their control panels, which is already accustomed to handling. It is a way of control.
Existing ways of controlling furnaces are good, but the new control methods may be
more effective and faster, and also have a few other benefits. But the task of this work is
not directly establish a control panel, which will be used to control blast furnace,
although it would be possible. The main idea is to control virtual blast furnace, therefore
actions known from real life will happen interacting with virtual buttons on virtual blast
furnace. Using this, employees can be taught how to control the furnace, or how to react
in a crisis situation . It can be also used for testing employees. Benefit of it is, that they
can control it like real furnace, but they can not cause any damage or disaster.
IV. VRPITA
The theme of this work is therefore to construct a virtual control panel for blast
furnace. That virtual panel contains the virtual control elements (buttons, knobs, etc.) and
virtual signaling elements (bulb, display, etc.). By interaction with this elements, user
controls sub processes of virtual blast furnace, according to scenario, which he defined
before. It could be standard processes - control fans and burners, or a crisis processes fan accidentally turns off and the employee has to perform some action in order to avoid
destruction of the furnace.
A. Hardware analysis
Part of this work is to create a hardware construction for holding devices. This
includes the selection of appropriate devices for detect user interaction and devices for
displaying virtual panel on table. For capturing user's hands and detecting touches was
chosen Microsoft Kinect and displaying control panel on table ensures projector, that
shines from up. The size of panel has been established for approximately 60x40 cm (due
to the optics of the projector and Kinect's cameras resolution).
B. Software analysis
Software part includes creation of control panel, arrange user interaction with the
control element - push, rotation or shift, arrange feedback on the panel, using values
obtained from element in the simulation of the current process that has been pre-defined
by user. To achieve, that a user could interact with the panel, it is necessary to track his
fingers by selected device Microsoft Kinect. The touch is created in place, where user
touches virtual panel on table. User interacts with application by touching the element's
model on panel. User can add his own element's models to application, without any
interference to the application. This application provides the freedom of the models, but
creates an additional obligation. User has to add some extra information to external file
for every model, so application would know how to use it. Layout of the elements on
panel, as well as their initial positions and actions to control furnace are defined in an
another external file. Also scenario, which contains steps that user have to perform, is
specified in an external file.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 12 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
C. Solution
The application is divided into 3 parts that communicate via network interfaces:
• Sensor - detects touches on surface using Microsoft Kinect,
• Controller - process touches to control simulation via panel,
• Actuator - visualization of processes from simulation on a 3D model of
Integrated heating agregate - ITA [1].
Data from Kinect are obtained using the OpenNI2 library. At the beginning it is
necessary to mention that the whole system consists of two devices - the projector and
Kinect, which have different characteristics (resolution, viewing angles, focal length) and
both devices "are looking" on the table from different angles. They therefore need to be
calibrated.
Calibration of the image, that the projector displays and the image, that Kinect sees is
performed using Zhang's method. The projector displays the calibration pattern (in our
case it is chess board), which is captured by Kinect's color camera. The image of the
color camera is processed by library OpenCV. This library founds the calibration pattern
in the image, from which it calculates homography matrix, which represents association
between the points of the calibration pattern from Kinect's color camera and between
points of standard pattern. Subsequently, all the coordinates of touches that Kinect
provides are recalculated to projector's coordinate system by multiplying this matrix.
Fig. 1 Calibration chess board with recognized pattern.
Touches are detected on surface by Kinect's depth camera. At the beginning, depth
camera memorizes the depth of the scene, which is then compared with depth of actual
scene. Touch is detected in places, where the depth of the scene is at set interval
compared to initial scene's depth and size of coherent area in this range also meets the
specified value detected by touch [2].
Fig. 2 Depth interval for touch detecting. [2].
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 13 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Sensor communicates with Controller using TUIO protocol [4] - obtained touches are
transformed to TUIO cursors, that are then through TUIO Protocol (UDP connection)
sent. This protocol is an attempt to create a general and universal interface for
communication. It has been designed to meet the needs of interactive multi touch
surfaces where the user can control the objects and create gestures with his fingers.
Within the communications are sent two types of messages - SET and ALIVE. SET
messages carry information about the position and rotation of the object, ALIVE
messages contains the current set of detected objects. Sent messages may contain cursors,
objects, and objects with different shapes. Coordinates of the sent cursor are at intervals
of 0-1, what solves problem with different ratios of scanning and viewing part. Since it is
a standard, there are mobile applications that transform touches from touch screen to
TUIO cursors and send them to the server. Application developed in this work is
therefore possible to be controlled using mobile phone with Android or iOS, without the
need to change the code.
Furnace's simulation processes can be controlled by elements on control panel. User
can define his own scenarios within simulation, on which he will be tested. To implement
such a process was chosen so-called table state machine [3]. that consists of data
structure dictionary. Dictionary consists of pairs key: value. In used dictionary, key is
formed by a pair - state, in which the machine is and enter that occurred. Value is formed
by a triad - the conditions under which the transition occurs, transition and the next state
to which the machine passes.
Developed system has a special mode within testing - the mode, that helps user during
simulation. The name of mode is an instructive mode - the system highlights elements
depending on what inputs are expected. In a crisis situation system highlights elements,
that can stabilize the problem. All inputs that user creates are recorded into file, so user's
simulation can be later evaluated.
User can create his own simulation scenarios or he can use standard scenario, that
simulates the real furnace. This scenario consists of turning on the fans, ignite burner,
maintaining the correct values, indicating crisis conditions (when values are out of
range), controlling conveyor's speed, and supply of raw materials. Testing is successful
when the temperature inside the furnace drops below 300 °C and the burner is off.
State machine keeps furnace's values in the working range when both fans are running
at 50 % of power, the ratio of gas and air is 10 : 100 and the speed of the conveyor is 25
% (this means that the residence time of material in the layer is around 30 minutes).
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 14 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Fig. 3 State machine of standard situation.
V. CONCLUSION
The goal of this work was to create an application with virtual control panel, which
controls a virtual blast furnace. The base of application was to simulate the processes of
blast furnace, Advantages of created applications are that the employee may become
familiar with operation of blast furnace and instructed how to control it. Employee can
customize their own scenario, which they will be tested on, or they can be tested on
standard situation. This situation simulates normal work on furnace including crisis
situation. Application records executed steps for later evaluation. Application also
provides hints during testing. Another advantages is possibility to import own element
models. There are also some disadvantages. There are a lot of customization before start,
that user has to make, final hardware construction, that holds projector is too big to fit in
the normal room and using Kinect as touch sensor is not sometimes the most accurate.
Also control panel could be bigger, but cannot be because of Kinect's cameras resolution
- there is problem with calibration and detecting touches.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 15 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Fig. 4 Example of virtual control desk and action in virtual environment.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
REFERENCES
[1] OLIJÁR, Andrej: Inováacia procesov výroby bázických žiaruvzdorných hmôt.
Dizertačná práca. Vysoká škola technická v Košiciach. Fakulta baníctva, ekológie,
riadenia a geotechnológií. Košice, 2013. 184-p.
[2] WISLON, D.Andrew: Using a Depth Camera as a Touch Sensor. ITS 2010,
Saarbrucken, Germany, Nov. 7-10, 2010.
[3] CRYAN,
Mary:
Inf1A:
Introduction
to
Finite
State
Machines.
http://www.inf.ed.ac.uk/teaching/courses/inf1/cl/notes/Comp1.pdf [Online; accessed
19-04-2014].
[4] KALTENBRUNNER, Martin: reacTIVision and TUIO: A Tangible Tabletop
Toolkit. ITS 2009, Banff, Alberta, Canada, Nov. 23-25, 2009.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 16 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Simulation and validation of welded
joints of high strength steel sheets
1
1,2,3
Zoltán BÉZI, 2Balázs Baptiszta, 3Szabolcs Szávai
Bay Zoltán Nonprofit Ltd. for Applied Research, Department of Structural
Integrity, Hungary
1
[email protected], [email protected],
3
[email protected],
Abstract — In this study residual stress distributions of spot welded advanced high
strength steel (AHSS) sheets are examined. Resistance spot welded and gas tungsten arc spot
welded DP 600 specimens are manufactured and tested for residual stresses. In the case of
resistance spot welding (RSW) both single-pulse and two-pulse current are used. These
measurements are utilized to validate coupled electrical-thermal-mechanical Finite Element
Analysis (FEA) using MSC.Marc software. Different mechanisms occur during the welding
e.g. electrode displacement, deformation of the weld nugget and distribution of the contact
pressure at both sides and they are all taken into consideration. The cross-section
macrostructures of the welded specimens are examined to compare the weld nugget and HAZ
sizes to the predicted values. The validated residual stress distributions can be used for the
life time assessment and failure mode predictions of the spot welded joints.
Keywords — finite element analysis (FEA), spot welding (RSW, GTASW), advanced high
strength steel, thermal-electric coupling, weld nugget, residual stress
I. INTRODUCTION
Welding is still the most dominant joining process in the automotive industry despite
the spreading of lighter materials like aluminium, plastic, magnesium etc., which are
historically harder to weld. The body-in-white still consists of steel but with the
increasing safety and environmental requirements, traditional mild steel is overshadowed
by advanced high strength steels (AHSS). Welding of AHSS is challenging because the
microstructure that is responsible for the favourable properties (high strength, good
formability, excellent energy absorption capability) is irreversibly “ruined” when these
steels are welded, due to the fact that contrary to traditional high and low strength steels,
forming of the microstructure in the case of AHSS is mainly achieved by careful
thermomechanical rolling and not by alloying. Welding engineers have to revise their
usual welding practices to successfully face these new challenges. By examining and
comparing AHSS joints made by different welding parameters and processes optimal
welding technology can be developed for welding of AHSS. Besides static loading
welded joints in automotive applications have to endure dynamic loadings as well.
Dynamic load bearing capacity of the welded joints is greatly affected by the residual
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 17 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
stresses which are introduced during welding. Therefore it is necessary to map and assess
the distribution of these residual stresses in welded joints. In this case numerical
simulation is preferable because physical modelling can be quite costly and difficult to
perform properly. But for the validation of the simulations some measurements have to
be performed on physical specimens.
Resistance spot welding (RSW) and gas tungsten arc spot welding (GTASW) were
selected for the simulations. RSW is the most commonly used welding process in the
automotive industry; 45-55% of the joints in a modern automotive are resistance spot
welded [1]. GTASW is excellent for weld repairs and can be effectively used for welding
of AHSS due to many reasons. Mainly because welding of AHSS requires less than
normal specific heat input with great controllability, which can be accomplished with
GTASW because the heat source and the filler material is separated. Another advantage
of this process is that with GTASW autogenous welding can be performed. Filler
materials increase the specific cost of welding and because in the case of AHSS the
mechanical properties of the weld nugget cannot be improved with alloys significantly,
autogenous welding is preferred.
In the present paper, a two-dimensional axisymmetric thermal-electrical-mechanicalmetallurgical finite element (FE) model has been developed to investigate the
distribution of temperature and nugget formation during RSW process of two DP 600
sheets. The results of finite element analyses were compared with the experimental
measurements. The experimental procedures including sample fabrication and weld
nugget size, residual stress and hardness measurements were followed by the modelling
results.
II. EXPERIMENTAL PROCEDURE
Specimens made of DP 600 steel sheets with a thickness of 1 mm were used for the
tests. Resistance spot welding (RSW) with both single-pulse (SPC) and two-pulse current
(TPC) and autogenous gas tungsten arc spot welding were used to produce the welded
joints. Preliminary welding tests were performed to determine welding parameters that
produce weld nuggets with identical sizes so the results can be compared. The results of
these tests show that welding with the following parameters produce weld nuggets with a
diameter of 5 mm in every case.
Table 1. Welding parameters of resistance spot welding
Welding
process
Squeeze
time,
[cycles]
Weld
time,
[cycles]
Cooling
time
[cycles]
Hold
time,
[cycles]
Weld
current,
[kA]
Electrode
force,
[kN]
RSW
with SPC
30
15
-
20
6
2,75
RSW
with TPC
30
7,5+7,5
20
20
7,2
2,75
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 18 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Table 2. Welding parameters of gas tungsten arc spot welding
Preflow,
[s]
Start
amp,
[%]
Slope
up, [s]
Weld
time,
[s]
Weld
current,
[A]
Slope
down,
[s]
Final
amp,
[%]
Postflow,
[s]
1
40
0,1
2,4
110
0,3
55
1,5
Two specimens were manufactured for every welding process so residual stress
analysis by X-ray Diffraction (XRD) can be performed on them. The analyses were
performed according to EN 15305 and with the following parameters:
Table 3. XRD parameters
X-ray tube
Cr
X-ray tube voltage
30 kV
Filament current
8 mA
Detector arm
50 mm Ø
Size of collimator/radiated area
0,5 mm Ø
Exposure time
10 s
Detectors
A and B, position-sensitive
Filter
none
Method of measuring
Ψ
Angles
-45°, -30°, 0°, 30°, 45°
Kα2 correction
disabled
Measured {hkl} reflexion
ferrite {211}
2Θ
156,4°
Young’s modulus
211 000 MPa
Poisson’s ratio
0,3
Measurements were started at the centre of the spot weld and were repeated along the
length of the specimens in 0,5 mm steps for 6 mm, so stress distribution can be
determined in the weld, HAZ and base material as well.
III. FINITE ELEMENT MODELLING
A. RSW simulations
FE modelling of the spot welding process can be difficult for most of the modelling
tools including finite element based software, as RSW is governed by electrical-thermal,
mechanical and metallurgical phenomena. To solve these complex problems, a FE based
software MSC.Marc and Simufact.welding solvers were used in this study. It is difficult
to simulate the RSW process because three different physical phenomena are interacting
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 19 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
with each other. The model takes the following physical and metallurgical interactions
into consideration in the simulations: interaction between the electro-kinetics and heat
transfer via the Joule effect, heat transfer and phase transformations through latent heat
and heat transfer, electro-kinetics, and mechanical behaviour via contact conditions [2].
The welding process starts with analysing the squeeze cycle in which electrode force is
applied to the electrodes. The results of this mechanical analysis include initial
deformations and contact area, which serve in electro-thermal analysis. In this stage, the
temperature distribution by Joule heating is calculated for an increment from the fully
coupled electrical thermal FEA. In the electrically thermally coupled analysis the
electrical and thermal boundary conditions are applied to the model in a house. The
calculations of Joule heating at the sheet-sheet and electrode-sheet faying surfaces, as
well as in the base material and electrode are then performed. As a result, the temperature
distributions are obtained in the first increment and sent to the mechanical analysis as a
nodal thermal load. Contact pressure and deformations are the results of mechanical
analysis that obtains a new contact condition. So, the mechanical results are transferred
to the electro-thermal analysis to update contact conditions for the next increment
analysis. This loop continues until the welding time is finished [9]. This applies for both
single-pulse and two-pulse current welding as well.
In the FEA of RSW, joint geometry is represented by a two-dimensional axisymmetric
model. The associated element mesh is shown in Figure 1a. Four-node axisymmetric
elements were used to model the electrode and the steel sheets. The finite element mesh
contains 2350 elements and 2597 nodes. The mesh is graded from fine to coarse,
according to the expected reduction in temperature gradient on moving away from the
heat source. Solid elements were employed to simulate the thermo-elastic-plastic
behaviour of the sheets and electrodes. Contacts were employed to simulate the contact
areas. There were three contact areas in the model. Contact area 1 and 2 represent the
electrode-sheet interface and contact area 3 represents the faying surface. They were all
assumed to be contact between two deformable surfaces, and these surfaces were allowed
to undergo small sliding.
Thermal-electric and mechanical boundary conditions were applied to the FE model.
Heat transfer to the surrounding air, using convection and 20W/m2K convective heat
transfer coefficient was used. At the far end of the steel sheet and water temperature
inside the copper electrode were assumed to be at ambient temperature of 20°C. At the
top electrode, the electrical current was applied uniformly to the top of the electrode. In
the analysis of mechanical deformation during welding, the thermal load was applied to
each nodal point, while the symmetry line of the model was allowed to extend only along
the vertical axis, with no lateral displacement. The welding parameters are the same as in
the case of the physical specimens (Table 1).
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 20 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
a, axisymmetric RSW
b, 3D half-symmetric GTASW
Figure 1. FE models
In order to predict accurate results, all of the relevant mechanical, thermal and
electrical properties of the steel sheets and copper electrodes must be known. Since
electrical and physical properties vary with temperature and are not readily available,
many of these values are estimated from literature and assumed to be homogeneous
[3][4]. Contact resistivity of the sheet-to-sheet and electrode-to-sheet interfaces were also
assumed to vary with temperature. Some essential thermo-electrical properties
parameters of steels are used in the model for DP 600 are listed in Table 4. [2].
Table 4. Thermal and electrical properties [2]
Temp. Electrical E. contact E. contact
T. contact
T. contact
Thermal
[°C] resistivity conductance conductance conductance conductance Conductivity
DP600 sheet/sheet electrode/shee sheet/sheet electrode/shee DP600
[Ωm*10-7] [1/Ωm*109]
t
[W/m2°C]
t
[W/m°C]
9
[1/Ωm*10 ]
[W/m2°C]
20
2.041
0.203
1.075
250000
20000
43.5
100
2.703
0.298
2.174
43
200
3.332
0.401
3.334
42
300
4.348
0.505
4.348
38
500
6.452
0.714
6.668
29
700
9.524
0.909
8.621
17
1000
11.90
1.222
12.05
11.5
1300
12.35
1.538
16.67
19
1600
15.38
1.852
18.52
28
2000
15.63
3.025
26.13
4570000
4000000
33
B. GTASW simulation
In this task, the simulation is achieved based on thermal-mechanical field analysis. In
the investigation, not only thermal conductivity, but also specific heat and phase change
were taken into consideration for two sheets joined by GTASW process.
The 3-D half-symmetrical simulation model with regard to GTASW process is
illustrated in Figure 1b, The transient temperature result calculated in heating and
holding stage is regarded as the initial temperature condition when computing the result
in cooling stage. The heat input model in this work is an elliptic cone. It is very similar to
the double ellipsoid presented by Goldak et al, but it has a linear decay of the energy
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 21 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
intensity through the thickness. The heat source distribution combines two different
ellipses, i.e. one in the front quadrant of the heat source and the other in the rear
quadrant. In order to obtain reliable results, fine meshes were generated near these
contact areas, while the meshes of other areas were relatively coarse. The applied
welding parameters are in
Table 2. The FE-model for the welding simulation contains 6016 eight noded brick
elements and 8213 nodes. The applied thermal boundary condition was the same as in the
previous RSW simulation.
During the analysis, a full Newton–Raphson iterative solution technique with direct
sparse matrix solver is employed for obtaining a solution. During the thermal analysis,
the temperature and the temperature-dependent material properties change very rapidly.
Thus it is believed that, a full Newton–Raphson technique using modified material
properties gives more accurate results [9].
IV. MECHANICAL PROPERTIES
In order to capture the correct microstructure evolution a number of material
properties are required for present simulations. The elastic behaviour is modelled using
the isotropic Hooke’s rule with temperature-dependent Young’s modulus. The thermal
strain is considered using thermal expansion coefficient. The yield criterion is the Von
Mises yield surface. In the model, the strain hardening is taken into account using the
isotropic Hooke’s law. The thermo-metallurgy material properties of DP 600 steel were
generated with JMatPro software which can be seen from the chemical composition
listed in Table 5.
Table 5. Chemical composition of DP600 steel
C [%]
Si [%]
Mn [%]
Cr [%]
Ni [%]
Nb [%]
V [%]
B [%]
0,098
0,20
0,81
0,03
0,04
0,014
0,01
0,0002
Transformation data was calculated using Simufact.premap interface with 10 microns
starting at 1050°C. The flow curves were calculated with 30 microns starting at 1300°C.
Table 6. Thermo-mechanical properties of DP 600
Temp. Modulus
Modulus
Specific
Specific
Thermal
Thermal
[°C] of elasticity of elasticity heat capacity heat capacity expansion expansion
(Austenite) (F./M./B./P.) (Austenite) (F./M./B./P.) (Austenite) (F./M./B./P.)
[GPa]
[GPa]
[kJ/kg°C]
[kJ/kg°C] [1/°C*10-5] [1/°C*10-5]
20
197
208
0.453
0.447
2.53
1.289
100
190
205
0.475
0.479
200
181
199
0.497
0.519
400
163
181
0.532
0.623
500
154
169
0.549
0.697
800
125
126
0.595
0.799
950
110
103
0.611
0.714
1050
100
87
0.639
0.701
2.566
1.663
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 22 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
The mixture of the initial phases in the FE model has to be defined. In the present
simulation 65% ferrite and 35% martensite initial phase fractions were used. Strain
hardenings of the phases are shown in Figure 2.
a, Strain hardening in ferrite
b, Strain hardening in martensite
Figure 2. Strain hardening
Copper, which has high thermal conductivity performance, is selected for electrodes.
Non-linear time dependency of thermal and electrical material properties as well as
convection coefficient rate for water and air are all obtained from literature and paper
[3].
V. RESULTS AND DISCUSSION
RSW and GTASW models were validated with available experimental results. A
simulation model has been developed and extensive numerical calculations were carried
out to find out the spot diameter and residual stress distribution of resistance spot welded
DP600 joints. The temperature distributions are shown in Figure 3. and Figure 4.
The answers of the simulation include the nugget size, the radius of the heat affected
zone (HAZ) and the volume of the molten zone. The molten zone is the region of the
sheets where the actual weld is formed, while the heat affected zone is the adjacent
region where heat may cause solid state phase transformation, but melting does not
occur. An additional capability of the model is the ability to predict the volume fraction
of various phases. The volume fraction of austenite, ferrite and martensite can be
quantified and serve as an additional response that can be used to validate this model
with experiments and to predict phase volume fractions under new processing conditions.
Figure 3b. and Figure 4b. compares the temperature contours with experimental
micrographs, the grey region mostly represents the molten zone and the black grey region
mostly represents the base metal that is not affected by heat. The regions with other
colours are the heat affected zone, where the material is partially transformed into
austenite. Figure 3c, shows the distribution of austenite during the welding process. The
austenite contour is also compared with experimental micrographs obtained using the
same processing parameters. The size of martensite fraction, HAZ is again in good
agreement with the experimental observations [2][5][6].
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 23 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
b, weld nugget shape (temp. [K])
a, Temperature distribution [K]
c, austenitic fraction
Figure 3. Comparison of simulation results with experimental test in case of RSW
b, weld nugget shape (temp. [K])
a, Temperature distribution [K]
c, austenitic fraction
Figure 4. Comparison of simulation results with experimental test in case of GTASW
The residual stresses have different values on the surface of the spot welded specimen.
The stress and strain field in the specimen during the RSW process is very complex due
to the combination of temperature and electrode force. In the final stage of the welding
processes, the nugget and its neighbouring zones tend to expand and contract and these
phenomena induce an undesirable effect on remaining parts of the specimen. The internal
stresses due to heterogeneous deformations are known as residual stresses. In resistance
spot welding process, there is another factor that affects the residual stresses’ state. This
factor is the electrode force that develops compressive stress in the weld nugget [4]. The
position of residual stress measurements are shown in Figure 5a.
a, XRD measurement
b, Radial residual stress after RSW [MPa]
Figure 5. RSW measurement and result of the simulation
Radial residual stresses are studied employing XRD experiments and FEM simulation.
In this process due to axial symmetry of the system, directions of 2D principal stresses
are the same as directions of radial and circumferential. Distribution of radial residual
stresses for sample SPC RSW is shown in Figure 5b. Residual stresses have also been
measured along the length of the specimens in 0,5 mm steps for 6 mm in all samples. The
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 24 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
results of diffraction for the sample SPC RSW is shown in Figure 6. Although the
distribution shape of the radial residual stress predicted by the numerical model is similar
to the measured values by the experiment weld nugget zone, the magnitudes predicted by
the numerical model are larger than the measured data and lower in other region;
however the simulated results have a good agreement with the measured data. Residual
circumferential stresses in the model are tensile in weld nugget while they are
compressive in the neighbouring regions of the nugget. It is observed that the largest
residual stress exists at the central region of the weld nugget and it is decreasing towards
the outer sides [7][8].
Figure 6. Comparison of calculated and measured residual stress data
The focus is on the residual stress around the nugget edge because the tensile residual
stress around it contributes most in increasing the maximum stress of spot welded
specimen. Especially the normal residual stress in the radial direction affects the
maximum stress status in any loading type. Therefore, the following results are restricted
to the radial direction of the normal stress around the nugget edge.
Table 7. Comparison between simulated and XRD results
Pos.
[mm]
XRD
RSW
SPC
[MPa]
+
-
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
421.1
374.6
326.5
148.0
125.7
201.3
236.4
264.0
212.1
191.5
161.6
167.4
164.8
12.2
35.8
41.3
32.2
28.0
47.4
30.7
40.5
77.7
55.3
29.1
26.9
36.9
FEA
RSW
SPC
[MPa
]
426.1
414.0
366.7
130.2
67.7
160.9
235.8
175.4
136.8
113.0
89.3
69.9
51.5
XRD
RSW
TPC
[MPa
]
391.8
164.0
-41.0
74.5
143.4
5.3
77.4
186.6
165.6
177.9
143.9
106.4
108.6
+
-
47.4
65.7
56.1
19.7
21.7
10.9
14.6
41.4
47.4
61.3
93.7
21.3
39.8
FEA
RSW
TPC
[MPa
]
362.5
155.3
68.5
89.9
152.3
125.2
175.3
200.1
126.3
112.8
92.3
75.9
80.1
XRD
GTASW
[MPa]
+
-
FEA
GTASW
[MPa]
49.7
83.8
125.4
234.5
278.3
251.1
286.9
350.2
268.3
173.7
157.3
185.5
218.0
45.3
17.6
24.4
32.7
63.3
51.9
75.3
25.3
19.5
11.5
16.9
46.1
44.7
66.8
71.3
89.9
125.1
185.2
223.4
207.5
252.4
350.8
213.5
166.9
132.5
168.3
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 25 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Due to the dual microstructure of DP steels the correct austenitic/martensitic ratio is
hard to measure and can only be estimated, therefore the residual stress caused by the
volumetric change of martensitic transformation slightly differs in the simulation and the
measurement. In the case of RSW with two-pulse current the welding conditions at the
first weld time have little effect on the residual stress. But at the second weld time, the
magnitudes of weld current and weld time produce a considerable effect on the residual
stress. As the second weld current increases, the residual stress becomes smaller. These
phenomena are due to the difference of contribution to the heating energy. The increase
of both weld current and weld time decreases the residual stress because the increase of
heat input makes the temperature gradient gentle along the z-direction just after welding
[3].
VI. SUMMARY
In this paper, finite element analyses were conducted to simulate the mechanical
behaviour of different spot welding processes. Two and three dimensional models were
utilized to predict temperature and stress fields during and after spot welding. All results
are discussed under the conditions that temperature dependent material properties, phase
change, and convection boundary condition are taken into consideration. Also,
experimental measurements employing X-ray diffraction have been conducted to assess
residual stresses within the welded samples. A good agreement has been found between
the predicted and the measured data that verifies the validity of the employed model.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
REFERENCES
[1]
[2]
[3]
[4]
[5]
IIW White paper, Improving global quality of life through optimum use and innovation of welding
and joining technologies, p.: 36
M. Eshraghi, M.A. Tschopp, M.A. Zaeem, S.D. Felicelli, Effect of resistance spot welding
parameters on weld pool properties in a DP600 dual-phase steel: A parametric study using
thermomechanically-coupled finite element analysis, Materials and Design (2014) Vol. 56, pp. 387397.
I. Ranjbar Nodeh, S. Serajzadeh, A.H. Kokabi, Simulation of welding residual stresses in resistance
spot welding, FE modeling and X-ray verification , Journal of materials processing technology
(2008), Vol. 205, pp. 60–69.
Zhigang Hou, Ill-Soo Kimb, Yuanxun Wang , Chunzhi Li , Chuanyao Chen, Finite element analysis
for the mechanical features of resistance spot welding process, Journal of Materials Processing
Technology 185 (2007), pp. 160–165.
Khan MI, Kuntz ML, Su P, Gerlich A, North T, Zhou Y. Resistance and friction stir spot welding of
DP600: a comparative study. Sci Technol Weld Joining (2007), Vol. 12, pp. 175-82.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 26 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
[6]
[7]
[8]
[9]
Anastassiou, M., Babit, M., Lebrun, J.L., Residual stress and microstructure distribution in spot
welded steel sheets: relation with fatigue behavior. Materials Science and Engineering. (1990) A
125, 141–156.
B-W. Cha and S-J. Na. A Study on the Relationship Between Welding Conditions and Residual
Stress of Resistance Spot Welded 304-Type Stainless Steels, Journal of Manufacturing Systems
(2003) Vol. 22/No. 3
Hessamoddin Moshayedi, Iradj Sattari-Far, Numerical and experimental study of nugget size growth
in resistance spot welding of austenitic stainless steels, Journal of Materials Processing Technology
(2012) Vol. 212, pp. 347– 354.
MSC.Marc 2012. Theory and User Information
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 27 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Software interfaces in the Factory of
the Future
Dušan Janovský
1,2
Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected]
Abstract — Computer Graphics and its interfaces increasingly penetrate into the realm of
practical industry. Use technologyof the head and hands tracking, stereoscopy, voice-based
interface and appropriately designed user interface can greatly facilitate the work of the
management, planning and the security level of the company as well.
Keywords — software interface, VR systems, factory of the future, editors.
I. INTRODUCTION
New technologies are increasingly entering into the industrial sector. The increasing
computing power resulted in big development of computer graphics. Technology based
on virtual reality techniques are becoming more and more accessible and opens space for
their use by large companies to achieve improvements in quality and productivity.
II. GOALS
The aim of this work is to get an overview of the features and virtual reality systems,
as well as the procedures of 3D objects that could be used in the design process of the
factory of the future. These elements should simplify the work and functioning of the
factory as well as the long-term savings funds.
III. PROBLEM ANALYSIS
Nowadays there are many graphic editors available on the market, both free and paid.
According to their focus, these can be divided as follows:
1. CAD (computer-aided design) programs
2. Other 3D modeling programs
The main difference is the purpose they are designed for. CAD programs are designed to
be technical tools and are used mainly in architecture, industrial design and engineering,
or even in astronautics. They can be further divided into:
1. Computer-aided design (CAD) is the use of computer systems to assist in the
creation, modification, analysis, or optimization of a design. [3]
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 28 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
2. Computer-aided manufacturing (CAM) is the use of computer software to
control machine tools and related machinery in the manufacturing of
workpieces. [2]
3. Computer-aided process planning (CAPP) is the use of computer technology to
aid in the process of planning of a part or product, in manufacturing. CAPP is
the link between CAD and CAM in that it provides for the planning of the
process to be used in producing a designed part.[1]
4. Computer-aided engineering (CAE) is the process of solving engineering
problems through the use of sophisticated, interactive graphical software.
5. Computer-integrated manufacturing (CIM) is the manufacturing approach of
using computers to control the entire production process.[4]
6. Computer-aided quality assurance (CAQ) is the engineering application of
computers and computer controlled machines for the definition and inspection
of the quality of products.
Other 3D modeling programs are designed not only for technical use but also to be
used in art for modeling and designing, meaning that they use different tool sets. They
provide user with possibilities to create not only technical but also organic and abstract
models in an easy way. User can even work with shaders, realistic lighting, dynamic
simulation, particle systems and rigging and character animation.
Software interface
Software interface is an arrangement and layout of toolsets and workspace windows.
Because 3D editors have a lot of functions, options and settings, the actual arrangement
is one of their most important features, since functions that are used most frequently
should be easily accessible. All icons, menus and buttons should be simple, intuitive and
well organized.
Hardware interface
Typical and most widely used hardware interface for editors are a keyboard and
mouse, but it is also possible (but not very efficient) to use tablet or a trackball. The
arrival of new technologies such as tracking and stereoscopic enabled us to push the
boundaries of graphic editors to a new level.
IV. EXISTING SOLUTIONS
Leonar3do
Leonar3do presents a comprehensive hardware and software visualization solutions.
Hardware interface consists of central panel, 3D glasses, Bird (the spatial input device)
and 3 sensors. Sensors are connected to computer through central panel and together with
3D glasses they create a head tracking component that provides realistic impressions of
space. Bird works as regular mouse but in 3D space. It is also tracked and allows user to
create and manipulate three-dimensional objects in a real three-dimensional space.
Software interface LeoWorld is 3D virtual reality modeling and animation software. It
allows the user to create custom objects and animations, set lighting, texture and even
assign physical properties to objects. Internet portal LeoPoly provides an online
application where users can use Leonar3do kit to create and share their own 3D models.
Kit also includes Leonar3do SDK that allows developers and programmers to create
custom applications.[5][6]
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 29 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
CAVE-CAD
CAVE-CAD was developed for use in Calit2’s StarCAVE, a 360-degree, 16-panel
immersive virtual reality environment. The StarCAVE consists of five walls each with
three screens plus a floor projection. It uses 34 projectors, two projectors for each screen
and four additional projectors for floor panel. Every pair of projectors is driven by its
own computer and each computer has dual graphics cards. CAVE uses wireless optical
tracking system by ART Tracking (www.ar-tracking.com/). CAVE-CAD is a tool suitable
for an architectural designer because it allows researchers to interact with virtual
architectural designs and to navigate through buildings as in real life, as well as make
changes in real-time. Drop down menus are projected wherever the user is looking,
navigation is provided by hand-held remote control device. CAVE-CAD has an
innovative feature, a sensor that measures and monitors users’ brain activity and
emotional responses to architectural renderings.[7]
Building Worlds with Strokes (BWwS)
This hardware consists of two devices. First one is polyester ball in which a mobile
phone is located. The phone is running an application that measures tri-axis gyroscope
and accelerometer values and broadcasts them to the network by the sensor. [8] This ball
is used for navigation through the menu that has a shape of a hemisphere and user can
change menu options by rotating the ball with his left hand. The second device is a glove
with IR LED and two buttons. These buttons correspond with two buttons on common
mouse controller and position of the glove is tracked by two Nintendo Wiimote
controllers. The principle of modeling is based on stroke sketching. User strokes are
automatically processed by shape builder and shape suggestions that the shape builder
tends to produce are cushion-like models with no sharp edges. [8] As a consequence, it is
difficult to draw shapes with triangular or square bases without using the cut tool,
however builder can recognize even these basic shapes and suggest them to be used.
V. COMPARISON OF SYSTEMS
Comparative table of systems
A. Tracking and stereoscopy
Each analyzed solution contains some form of tracking, since it has become an
essential technology of VR systems. Stereoscopy and head tracking are present
everywhere except for BWwS editor. Leonar3do system contains 3 sensors and special
3D glasses, therefore it is a solution compatible with any computer or laptop with a 3D
monitor. The disadvantage of this system is the need to use a keyboard.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 30 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
B. Speech-based interface
This feature is not supported by any of presented editors. It is really helpful and
innovative feature, because it allows user to control the editor easily and quickly.
Without losing focus, user can change tools or even switch between modes of editor, as
voice commands fulfill the function of shortcuts and hotkeys. Big disadvantage of this
system is that the list of commands is not displayed and therefore, although the
commands are intuitive and self-explanatory, new users could have problems with them.
C. Model creation
Very important feature that is implemented in all four editors is the ability to create new
3D objects. Method used in the system BWwS is particularly interesting, because it is
based on sketching closed shapes where user draws a closed curve and automatic shape
suggestion builder suggests 3D models based on the drawn shape. User can then choose a
model that suits him the most. An open curves work as an editing tool, menu navigation
doesn't depend on position of main modeling device. Another type of modeling process
is volumetric modeling principles. Spherical mode creates objects by adding to the
volume of a spherical body and user can then switch to a cubic mode. This way the
system allows user to create organic and inorganic types of objects. Furthermore, editor
has a possibility of lubrication volume model and also coloring principle of spraying
paint on the created object as well. Last system that allows you to create your own 3D
objects is Leonar3do. It contains a full-featured editor (such as Maya or Zbrush) and it
allows creating and editing of models, adjusting lighting and texturing, animation and
rendering.
D. CAVE implementation
Even though CAVE is one of the most immersive technologies, it is not very common
form of 3D visualization, because it is both financially and technically challenging
solution. Only CAVE-CAD use this technology.
VI. INTEGRATION
Implementation of virtual reality technology into practice is no easy task. Demands a
precision, speed and quality in the development of new industrial products appear to be
the key issues of today's systems. These technologies, however, could find application in
the sphere of management and control of the factory of the future. System based on the
principle tailored to the needs of the existing plant could be used for planning of
maintenance and repairs. In combination with the detection of faults such a system could
serve for effective planning of repairs. Security Technician situation you could plan
ahead and implement virtual gained the valuable knowledge about the intensity, the
duration of repairs as well as an overview of the access roads to the site without any risk
of failure. By implementing a simple voice command, which has a system Wonderland
The Builder would remove the lengthy and complicated navigation with the menu. Short
succinct and concise voice instructions can enormously facilitate the work especially if it
is a work in 3D virtual system. The system could also serve as a training simulator for
future safety engineers or maintenance staff.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 31 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
VII. CONCLUSION
Nowadays, modeling tools are getting closer to their very essence – to imitate real
space in three dimensions. Mouse and keyboard are being replaced by devices that allow
the creator of the virtual world to be faster, more efficient and work far more intuitively.
Tracking and stereoscopy have become present in almost all interface elements of VR
editors and the ability to create and implement 3D objects takes these systems to a
completely new level. All systems mentioned in this article have brought significant
progress in the field of VR editors. The possible future may bring a software-hardware
solution that would free the user's hands. Well-designed interface, in combination with
tracking system and technology of gesture and voice recognition, would enable the user
to enjoy the full freedom for his or her hands. This solution, without the need of holding
some control device, will be one of the first steps towards a comfortable work.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
Engelke, William D. (1987), "How to Integrate CAD/CAM Systems: Management and
Technology",P.237-238. CRC press. ISBN 0-8247-7658-5.
Hosking, Dian Marie; Anderson, Neil (1992), Organizational change and innovation, Taylor & Francis,
p. 240, ISBN 978-0-415-06314-2.
Narayan, K. Lalit (2008). Computer Aided Design and Manufacturing. New Delhi: Prentice Hall of
India. p. 3. ISBN 812033342X.
Yoram Korem, Computer Control of Manufacturing Systems, McGraw Hill, Inc. 1983, 287 pp, ISBN 007-035341-7.
Leonar3do home page
http://leonar3do.com/
Leonar3do User Guide
http://www.v3d.co.kr/Leonar3Do/download/Leonar3Do_User_Guide.pdf
CaveCAD: Architectural Design in the CAVE
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6550244
Building Worlds with Strokes
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6550249
SculptUp: A Rapid, Immersive 3D Modeling Environment
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6550247
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 32 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Google glass
Okuliare Google glass
1
1, 2
Zuzana DUDLÁKOVÁ, 2Tomáš TALIÁN
Department of Computer and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected], [email protected]
Abstract — Google Glass is the name of the project from Google that create augmented
reality. In this article we introduce this new technology.
Keywords — Augmented reality; Google; Google glass
Abstrakt — Google glass je názov projektu okuliarov od firmy Google, ktoré vytvárajú
rozšírenú realitu. V tomto článku si predstavíme tuto novú technológiu.
Kľúčové slová — Rozšírená realita; Google; Google glass
I. ÚVOD
Prototyp Google Glass sa podobá na štandardné okuliare so šošovkou nahradenou
head-up displejom. Google. zavádza úplne nový spôsob práce na počítači, s
jednoduchým, hlasovo riadeným užívateľským rozhraním, ktoré odstraňuje zložitosť a
robí úlohy oveľa viac intuitívne.
II. AKO SA GOOGLE GLASS POUŽÍVA?
Najprv sa musia okuliare prebrať z režimu standby klepnutím na touchpad alebo
zodvihnutím hlavy smerom hore. Nasleduje základný povel „ok glass“, po vyslovení
ktorého sa zobrazí ponuka ďalších hlasových povelov.
Musia byť vyslovené presne naprogramované slovné spojenia. Stačí povedať „take a
picture“ a automaticky sa urobí fotografia. Fotografia sa urobí aj vtedy, keď používateľ
žmurkne. Táto funkcia ale je skôr o náhode ako presnom fungovaní. Na výber sú potom aj
ďalšie ako „google“ pre vyhľadávanie, „send a message, get directions, call“ a podobne.
Pochopiteľne okuliare sú stále v štádiu vývoja, a preto sú povely iba v angličtine. Ak
sa po zobudení použije dotyk a nie hlas, ťahaním prsta dopredu sa listuje zaradom vo
všetkých predošlých aktivitách. Či už šlo o urobenie fotografie, hľadanie výrazu alebo
volanie čísla. Potiahnutím prsta dozadu sa zobrazí menu nastavení ako pripojenie do Wifi siete, hlasitosti, stavu batérie a podobne. Po kliknutí na úvodnej obrazovke sa zas
zobrazí ponuka dostupných aplikácii. Znova s listovaním posunom prsta dopredu.
Podobné gestá sa používajú aj v aplikáciách.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 33 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
III. APLIKÁCIE
Google Glass fungujú s obmedzeniami aj bez mobilného telefónu. Ten je ale potrebný
na prvotné pripojenie na Wi-Fi sieť. Ich skutočný potenciál ale využijete až vtedy, ak si
ich prepojíte so smartfónom. Spojenie prebieha cez aplikáciu MyGlass, ktorá slúži na
prvotné nastavenie a správu okuliarov. Napríklad po vytvorení fotografie sa dá hlasom
alebo dotykom zmazať či zdieľať na sociálnej sieti Google+.
Okuliare sú synchronizované s kalendárom, počasím, textovými správami, aplikáciami
hangout a mnohými ďalšími.
Aplikácia vyhľadávania funguje na základe hlasového povelu “google now”, kde
následne zadáte to, čo by ste chceli vyhľadať. Glass vám to zobrazia na displeji a
poprípade povedia. Zobrazovanie trasy funguje iba ak ste pripojený na internet a
využiteľnosť tejto aplikácie by mohla byť napríklad pri šoférovaní.
Ďalším z kľúčových prvkov Google Glass je ich povedomie o tom, kde ste a na čo sa
dívate, za všetkých okolností. To znamená, že môžu predvídať vaše potreby a
zobrazovať informácie, ktoré môžu byť pre Vás v danej chvíli dôležité.
Zaujímavý je prekladač textu. Pomocou príkazu “translate” a fotoaparátu odfotíte text
písaný v inom jazyku ako angličtina a na displej sa zobrazí text preložený do angličtiny.
Dokonca v rovnakom type písma. Táto služba funguje aj v režime bez internetu.
Teraz to, čo nazývame zdieľanie - zdieľanie toho, čo vidíte, so svojimi priateľmi.
Dôsledky ochrany osobných údajov týkajúce sa tohto druhu zdieľania sú šokujúce, ale
história naznačuje, že obavy týkajúce sa ochrany súkromia nikdy nakoniec nebudú stáť v
ceste novým zážitkom, ako napríklad v prípade keď ľudia súhlasia s tým, aby najnovšie
aplikácie mali informácie o ich umiestnení a telefónnom zozname.
Google tiež dal obmedzený náhľad na Google Mirror API, ktorý vývojárom umožňuje
vytvárať webové služby, nazývané Glassware, ktoré interagujú s Google Glass. To
poskytuje
cez cloud-based API (application programming interface) a pritom
nevyžaduje spustenie kódu na Google Glass.
Vývojári môžu špecifikovať položky menu na časovej karte, a tie môžu obsahovať
zabudované akcie, ako je čítanie nahlas, odpoveď hlasom a navigačné nástroje, alebo
ďalšie vlastné akcie. Pre Google Glass sú vhodné aplikácie lokačné, komunikačné,
spravodajské, sociálne, rôzne poznámky či aplikácie na spracovanie obrazu.
IV. TECHNICKÉ PARAMETRE
Google Glass obsahuje základné časti ľubovoľného počítača, vrátane procesora,
senzorov, ako sú GPS, reproduktory, mikrofón a batérie, ku ktorým sa pridal malý
projektor a hranol, ktorý presmeruje svetlo na sietnicu. Každý komponent je starostlivo
vložený do rámu. Aby bol prístroj čo najľahší, najviac zo spracovania sa uskutočňuje
v cloude, teda dobré mobilné širokopásmové pripojenie signálu je zásadné. Google glass
disponuje hmotnosťou 50g.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 34 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Fig. 1 Popis komponentov a projektora
Fotoaparát disponuje 5MP a natáča 720p video čo je na takéto zariadenie postačujúce.
Okuliare bežia na upravenej verzii Androidu a ich ovládanie je pomerne jednoduché.
Vnútorná pamäť je 16 GB bez možnosti ďalšieho rozšírenia. Ako výpočtovú jednotku
používajú dvojjadrový procesor OMAP 4430 SoC s taktom 1,2 Ghz a 1 GB pamäte
RAM [1].
Displej je transparentný a funguje aj automatická kalibrácia jasu. Čitateľnosť sa,
samozrejme, zlepšuje, ak sa človek pozerá na tmavú plochu. Ak by bola celá plocha,
ktorú oko vníma, vertikálne rozdelená na štyri rovnaké časti, displej Glass je v najvyššej
časti. Okuliare od Googlu majú aj senzor pohybu a polohy. Displej sa rozsvieti pri geste
naklonenia hlavy hore.
Mimochodom, batéria je skromná. Míňanie predstavuje približne 1 percento každú
minútu aktívneho používania Cez microUSB sa okuliare nielen nabíjajú, ale pripája sa k
ním aj slúchadlo. Aj bez neho ale funguje vstavaný reproduktor, ktorý funguje na
princípe šírenia zvuku rezonanciou v kostiach. Kompenzáciou za rýchle spotrebovanie
uloženej energie je aspoň bleskové nabíjanie. Okuliare sa cez USB port dokážu nabiť na
sto percent za približne hodinu.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 35 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
POĎAKOVANIE
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
POUŽITÁ LITERATÚRA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
http://www.techcentral.ie/google-discloses-tech-specs-developer-api-for-glass/
http://www.techlife.net/2013/07/how-does-google-glass-work.html
http://www.zive.sk/clanok/94976/google-glass-draha-hracka-pre-geekov
http://technologie.etrend.sk/hardver-a-softver/prvy-kontakt-s-google-glass.html
http://www.itnews.sk/spravy/technologie/2013-04-10/c155481-pozrite-sa-ako-funguje-google-glass
http://www.dailymail.co.uk/sciencetech/article-2306382/How-Glass-works-New-infographic-revealssecrets-Googles-interactive-eyewear.html
http://okocasopis.sk/nasimokom/nadcasove-okuliare-google-glass
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 36 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Analysis of injection molding of
automotive products
Autóipari termékek fröccsöntésének
analízise
Ákos SZŐLŐSI, Máté SZŰCS, Róbert BELEZNAI
1,2,3
research fellow, Department of Structural Integrity, Institute for Logistics
and Production Engineering (BAY-LOGI), Bay Zoltán Nonprofit Ltd. for
Applied Research, Hungary
1
[email protected], [email protected],
3
[email protected]
Abstract: In our work, manufacturing process of three different automotive polymer parts
were analyzed using plastic injection molding simulation software. One of our partners
provided data to perform this study. Two of these modeled parts are placed in the passengers’
cabin therefore the appearance is really important. The third one plays an important role in the
information transmitting system as an optical fiber holder where the changes of mechanical
properties have crucial importance. Besides determination of impacts of residual stresses on the
lifetime, the final objective of the research project is taken into account the fiber orientation
influenced by parameters of injection molding process on the structural behavior of composite
part.
Keywords: Injection molding, Residual stress, Automotive industry, Gate location
Kivonat: Kutatásunk során három különböző autóipari polimer termék fröccsöntésének
számítógépes szimulációját végeztük el, ahol a kérdéses alkatrészek különböző problémáira
kerestük a megoldást. Az esettanulmányhoz egyik partnerünk szolgáltatott adatokat. A
vizsgálandó darabok egy része az utastérben kerül elhelyezésre, ahol fontos a külső hibátlan
megjelenés, más része az információszolgáltatásban játszik fontos szerepet, mint fényvezető
szálhordozó, ahol a mechanikai tulajdonságok foglalnak el döntő szerepet az analízis során. A
kutatási projekt végleges célja a technológiai maradó feszültség élettartam hatásának
meghatározása mellett a technológiai sajátosságok és paraméterek által meghatározott
szálorientáció hatásának figyelembevétele a mechanikai tulajdonságokra.
Kulcsszavak: Fröccsöntés, Maradó feszültség, Autóipar, Beömlési pont
I. INTRODUCTION
Current work presents the analyses of reinforced and non-reinforced polymer products
using injection molding simulation. The injection molding is a technological process
when the melted polymer – which temperature is higher than the melting-point of the
material - injected into a mold through tight runner channel with high velocity, and in this
mold the melted polymer freeze. Due to the influence of process parameters and material
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 37 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
properties structural and aesthetic problems can occur in the melted products. The aim of
the research is to discover these effects.
In our study three different automotive products were analyzed. Some of these parts
are situated in the passenger cab and their external design and surface quality are very
important issue, while other part plays a role in the information and communication
system as an optical fiber holder and has specific requirements for the structural strength.
The principal aim of the project is to determine how the technological residual stresses
effect on of the lifetime of the products.
For injection molding simulation the Autodesk - MoldFlow Insight software is used.
Initial and boundary conditions are defined based on real technological parameters what
are provided by the customer. For realistic and accurate process simulation the cooling
channels can be modeled, the material of the mold can be selected, the temperature of
tool surface can be defined and molding machine can be selected from a database. If the
molding machine or the material is not available in the database, there is possibility to
define a new one.
Using the results of the simulation reasons of different production or structural
problems can be discovered. Results of the fill analysis, visualization of the air traps and
weld lines, values of the deflection and shrinkage help to improve of quality of the
products and to optimize the technological parameters [1].
II. ANALYSIS OF THE CABLE HOLDER
The cable holder had such a problem, that it was cracked during the assembly process.
As the optical cable was leaded through the holder is cracked near the slot. The reason of
the failure is most probably the unfavorable position of the weld line. It was assumed,
that changing the position of the gate location will change the position of the weld line.
The original position of the gate location can be seen in Fig.1. Fill analyses are
performed defining new positions for the injection point, rotating it around the
longitudinal axis of the holder by 90 and 180 degree (Figs. 2-3).
Fig. 1. Original injection point
Fig. 2. 90 ͦ rotated gate
location
Fig. 3. 180 ͦ rotated gate
location
The critical zone of the holder, where the crack is appeared, can be seen in Fig. 4.
Based on the obtained results (Figs. 5-7.), changing the position of the injection point can
solve the cracking problem. Using any of the rotated gate locations, the weld line also
changes its position and the crack does not appear in the critical region of the part. The
simulation helps avoid structural problem and increase the quality of the product.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 38 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Fig. 4. Critical (cracking) zones
Fig. 5. Original position
Fig. 6. 90 ͦ rotated gate
location
Fig. 7. 180 ͦ rotated gate location
The MoldFlow software gives an opportunity to analyze the temperature distribution
and deformation of the tool due to the heat load considering the material of the tool and
parameters of the cooling channel and cooling fluid. For this, detailed geometry of the
mold with cooling system and specific material properties of the tool and coolant fluid
are required. The customer provided the construction plan of the mold (included coolant
system and runner channel, see Fig. 8.) which helps to determine the optimal temperature
of the coolant fluid and select the appropriate material for the mold. The simulation
requires 3D modeling of the mold cavity and coolant channels. The temperature
distribution of the mold is presented in Fig. 9.
Fig. 8. Tool construction
Fig. 9. Temperature distribution in mold
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 39 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
III. ANALYSIS OF THE SYMBOL RING
The symbol ring is a circular shape part whose upper surface (black color in Fig. 10) is
painted. In this case, returning phenomenon that after molding the paint shrink on this
surface causing aesthetic quality problem. This problem can occur due to uneven mold
filling, inappropriate cooling or inhomogeneity of the material texture. Performing
injection molding simulation the result shows large differences in volumetric shrinkage
on the painted surface of the product. This locally different volumetric shrinkage causes
inhomogeneity in the part (dark blue areas in Figs. 11-12). According to this result, very
probably that the painting problem occurs due to uneven shrinkage of the part.
Fig. 10. Symbol ring
Fig. 11. Volumetric shrinkage
Fig. 12. Thin section
IV. ANALYSIS OF THE COVER TOP
The cover top (Figs. 13-15) is a plate type product which is produced by two-component
injection molding. Here, the residual stress causes deflection problem which
phenomenon is greatly influences the integration of the cover top to the dashboard and
results non-acceptable external appearance.
Molding of two component (2K molding) parts differs from the technology of
traditional injection molding. Using this technology multi-layered (component “A” and
“B”) parts can be produced in which layers can have different material. In case of the
cover top, the component “A” in Fig. 13, the component “B” (white color) in Fig. 14 can
be seen. For injection molding of this part hot runner system is applied. The component
„A” is injected to the mold through five gate locations while the component “B” is
injected through 4 points. Here, the question was how many gates are necessary to ensure
the better quality and less deflection of the part.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 40 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Fig. 13. „A” component
Fig. 14. „B” component
The obtained deflection can be seen in Figs. 15-16 in case of five and three gate
locations. The deflection in normal direction to the plane of the part has larger value in
case of five gate locations. To have better view of the warped shape of the product using
different number of injection points, the value of the deflection is measured along three
lines (red lines in Fig. 17), on the top, at the center and on the bottom part of the
component. Three diagrams (Figs. 18-20) show the comparison of the deflection for
component using three (blue line) and five (red line) gates. Based on the comparison,
injection molding with three gates is more preferable for this component.
Fig. 15. Deflection in case of three gates
Fig. 16. Deflection in case of five gates
Deflection [mm]
On the top of the product
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Three gates
Five gates
0
50
100
150
200
Length [mm]
Fig. 17. Deflection measurement along the red lines
Fig. 18. Deflection on the top of the cover top
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 41 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
On the bottom of the product
In the center of the product
0.6
0.6
Three gates
Five gates
0.4
0.3
0.2
Three gates
0.5
Deflection [mm]
Deflection [mm]
0.5
0.1
Five gates
0.4
0.3
0.2
0.1
0
0
0
50
100
150
200
0
Length [mm]
50
100
150
200
Length [mm]
Fig. 19. Deflection in the middle of the cover top
Fig. 20. Deflection at the bottom of the cover top
IV. IMPLEMENTATION OF RESULTS PRODUCED BY TECHNOLOGICAL SIMULATION INTO
STRUCTURAL ANALYSIS
To obtain accurate response of a composite product to mechanical load, necessary to
know the micro-structural behavior of the component. In case of molding injection of
reinforced polymer the product will have anisotropic, locally different mechanical texture
and properties which strongly influence its behavior under mechanical load.
Digimat software package provides an excellent solution for analysis of composites
products.
Using Digimat, the results of the technological simulation can be imported into a finite
element model of structural analysis, where the production technology dependent
material properties
like fiber orientation or residual stress can be considered. In our case, it means, that
Moldflow software and Marc finite element code should be connected together. This is
possible using Digimat which ensures an interface between the two software. Due to the
technological characteristics of injection molding and the process parameters,
development of anisotropy cannot be avoided. The following figure (Fig 21.) shows the
operation of Digimat CAE module in the coupled system. Basically, a micro-structural
material model should be created where the material properties of each component are
defined as well as the micro-structure of the molded part. Fig. 22 shows the distribution
of volumetric fiber orientation for the molded cable holder.
Fig. 21. Simplified flowchart of the coupled finite element analysis [2]
In Moldflow software there is an option to plot the fiber orientation tensor. This tensor
describes how the fibers are oriented in the product after the molding process is over.
More precisely it contains information about how the fibers oriented in each of the finite
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 42 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
element of the mesh created for the injection molding analysis. This tensor can be
exported using Digimat to Marc software, where this result will be mapped to the mesh
created for structural analysis. The two meshes usually are different in type and size of
the element. For injection molding analysis very fine tetra mesh is generally used, while
for structural analysis much coarser hexahedron type mesh is enough. There is possibility
to transfer the residual stress values from Moldflow to Marc in similar way like the fiber
orientation.
Fig. 22. Fiber orientation
VI. CONCLUSIONS
Application of numerical methods in the field of material science and engineering is
getting more and more popular. With development of the information technology the
complex micro-structures and engineering components can be analysed in more detailed
way – including the non-linear material behaviour.
Analyses of three automotive products are presented in this paper; the benefit of the
numerical simulation of production technology is highlighted. Effect of the processing
parameters is analysed to determine their influence on the quality of the products. The
reasons of the occurring problems are discovered.
In the future, primarily fiber reinforced polymer products will be analyzed using
coupled technological-structural simulations, where the results of technological
simulation will be taken into account as input data for structural simulation of many
parts. Fiber reinforced polymer ensures larger strength and longer lifetime for the
injection molded parts, but their behavior under different mechanical load requires more
specific analysis.
ACKNOWLEDGMENT
The study was performed in the frame of the HUSK/1101/1.2.1/0039 ”Virtual Reality
Laboratory for Factory of the Future - VIRTLAB“ project supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
REFERENCES
[1]
[2]
Autodesk® Moldflow®, Tökéletes műanyag alkatrész (in Hungarian)
Digimat 4.5.1. manual, Release 4.5.1 - June 2013, pp. 118
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 43 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Virtualization of building and
technologies in SMZ Jelšava
1
František HROZEK, 2Branislav SOBOTA, 3Štefan KOREČKO,
4
Martin VARGA
1,2,3,4
Department of Computers and Informatics, Faculty of Electrical
Engineering and Informatics, Technical University of Košice, Slovak Republic
1
[email protected], [email protected], [email protected],
4
[email protected]
Abstract — The paper presents the results of 3D scanning of building and technologies in
Jelšava and the composition of each scan into one 3D model.
Keywords — Virtualization, 3D scanning.
I. OUTLINE
• Used technology
• Objects to be scanned
• Virtualization
o scanning process
o point clouds merging
o results
• Conclusion
II. USED TECHNOLOGY
• 3D scanning
o scanning and data processing
• Used 3D scanner – Leica ScanStation 2
o scanning method – time of flight
o scanning density – up to 1 mm
o range – up to 300 m
o scan rate – up to 50,000 points/sec.
o field-of-view – 360° (horizontal) / 270° (vertical)
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 44 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
A. Objects to be scanned
B. Scanning process
• selecting positions
• scanning
• problems
o obstacles
o redundancy
C. Results – scanning
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 45 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
III. POINT CLOUDS MERGING
A. Process of merging
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 46 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
B. Results
IV. CONCLUSION
• real state of building and technologies in Jelšava
• almost automatic gathering of data
• Future work
o optimization
o triangulation
o visualization
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 47 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 48 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Types of 3D imaging technology
Typy 3D zobrazovacích technológií
1
Peter IVANČÁK, 2Martin ORSÁG
Department of Computer and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected], [email protected],
Abstract — In this paper we focus on describing three different technologies providing 3D
effect on TV or monitor screen. The first is using passive glasses with filters of different
colours and polarizing glasses. The second is using active glasses with active shutter
technology. The last one is using lenticular display that does not require wearing glasses.
Each of them has its pros and cons and they compete at the market.
Keywords — 3D TV, 3D display, active shutter, passive glasses, polarizing glasses,
lenticular display, autostereoscopy
Abstract — Tento článok sa zameriava na tri rôzne technológie zobrazenia 3D obrazu
pomocou TV alebo monitora. Použitie pasívnych okuliarov s filtrami rôznych farieb
a použitie stereoskopických okuliarov. Použitie aktívnych okuliarov s technológiou active
shutter. Poslednou predstavenou technológiou je autostereoskopický displej nevyžadujúci
okuliare. Každá s týchto technológií má výhody a nevýhody a súperia medzi sebou na trhu.
Keywords — 3D TV, 3D displej, pasívne okuliare, polarizačné okuliare, lentikulárny
displej, active shutter, autostereoskopia
I. ZOBRAZENIE 3D OBRAZU
Zobrazovanie 3D obrazu na TV alebo monitore je v dnešnej dobe čoraz častejšie
a dostupnejšie. Je to vďaka rozvoju a masovej výrobe týchto technológií. Najčastejšie sa
v tejto oblasti môžeme stretnúť s tromi hlavnými technológiami. 3D zobrazenie
s použitím pasívnych okuliarov, aktívnych okuliarov alebo autostereoskopický displej,
ktorý nevyžaduje žiadne pomôcky. Každý s týchto prístupov má svoje výhody
a nevýhody.
Objekty v reálnom svete vidíme v 3D vďaka tomu, že naše oči zachytávajú svetlo
odrazené z týchto objektov z rôzneho uhla. Spôsob, ako oklamať mozog aby vznikol 3D
obraz aj na plochej obrazovke TV alebo monitora je pre každé oko zobraziť rovnaký
obrázok s malým posunom. Tak vznikne ilúzia hĺbky, 3-tí rozmer. Oči sa snažia zaostriť
na obrazovku, ale akomodujú (sú natočené) na bod za obrazovkou, čo môže spôsobovať
bolesť hlavy a očí pri dlhodobom pozeraní.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 49 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
II. PASÍVNE OKULIARE
Tiež sa môžeme stretnúť s pomenovaním anaglyfické okuliare. Obsahujú dve sklá
alebo filtre dvoch rôznych farieb, najčastejšie modrej a červenej farby. Ako bolo
spomenuté, na obrazovke sa zobrazujú jednotlivé snímky čiastočne posunuté. Snímky
majú čiastočný odtieň do červenej a modrej farby. Po nasadení pasívnych okuliarov by sa
mali snímky spojiť do jedného 3D obrazu. Červené svetlo prichádzajúce z obrazovky je
pohltené červeným filtrom okuliarov čím sa odstránia červené odtiene zo snímky. Modré
odtiene sú rovnako pohltené modrým filtrom okuliarov. Oko za červeným filtrom uvidí
len modré snímky a oko za modrým filtrom uvidí len červené snímky. Oči sa za
normálnych okolností zaostria na plochu obrazovky, pri použití okuliarov a posunutých
snímok na obrazovke sa budú oči snažiť zaostriť na objekt mimo ohniska, tým vznikne
3D ilúzia.
Podobný prístup predstavujú polarizované okuliare, kde jednotlivé sklá prepustia len
svetlo, ktoré je správne polarizované, ostatné vlnové dĺžky sú pohltené. Na obrazovke sú
zobrazené opäť 2 rôzne obrázky čo vytvára akoby rozmazaný obraz. Vďaka okuliarom
vznikne v mozgu jednotný obraz. Táto technológia vernejšie zachováva farby oproti
anaglyfickým okuliarom. Cena okuliarov je relatívne nízka a táto technológia nevyžaduje
výkonný grafický hardware. Nevýhodou je, že polarizačný filter spôsobí mierne
stmavnutie obrazu.
Obrázok 1. Popis princípu polarizácie, okuliare prepustia svetlo, ktoré je správne polarizované, teda
kmitá vertikálne alebo horizontálne.
III. AKTÍVNE OKULIARE
Okuliare s technológiou active shutter nemajú farebné alebo polarizačné filtre.
Obrazovka zobrazuje obrázky separátne pre pravé a ľavé oko. Okuliare sú
zosynchronizované s TV a keď je na obrazovke snímka pre pravé oko tak ľavé oko na
okuliaroch sa prekryje tmavým filtrom. Pre druhé oko to funguje analogicky. Každé oko
dostáva len svoju snímku vo veľkej rýchlosti. Výhodou tejto technológie sú verné farby,
kvalita obrazu, použitie s viacerými monitormi. Každé oko dostáva polovicu z počtu
zobrazených snímok. Takže pri frekvencii snímok 240 Hz každé oko vidí 120 snímok.
Nevýhodou technológie je vyššia cena okuliarov aj lepšej 3D TV. Samotné okuliare
vyžadujú batérie, takže sa musia nabíjať. Tiež ich hmotnosť je vyššia ako bežných
okuliarov čo môže vyvolať bolesti hlavy pri dlhšom použití. Problém, ktorý môže nastať
je, že obraz na TV a okuliare prestanú byť správne synchronizované. Vtedy oko uvidí
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 50 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
snímok alebo jeho časť, ktorý už mal byť prekrytý okuliarmi. Toto spôsobí tzv. duchov
a pokazí 3D efekt a kvalitu obrazu.
Sťažnosti ľudí na bolesti hlavy pri pozeraní 3D s technológiu active shutter je vážnym
nedostatkom. Bolesti hlavy sa prejavia u niektorých po hodine u iných až po niekoľkých
hodinách pozerania 3D TV. Treba si uvedomiť, že 3D obrazový vnem je vytvorený pred
obrazovkou, teda vzdialenosť medzi očami a 3D objektom je nižšia ako medzi očami
a samotnou plochou TV. U monitora je táto vzdialenosť ešte menšia. Na monitore môžu
vzniknúť „duchovia“ teda rozmazaný obraz pri vyššej záťaži systému. Odporúča sa preto
použitie výkonnejšej grafickej karty alebo vhodného nastavenia kvality obrazu.
Obrázok 2. Princíp active shutter okuliarov. Prekrývanie jednotlivých skiel
okuliarov pre jednotlivé snímky na obrazovke.
IV. LENTIKULÁRNY DISPLEJ
Špeciálny typ displeja, ktorý nevyžaduje použitie žiadnych okuliarov sa nazýva
autostereoskopický displej. Na obrazovke sa zobrazuje viacero snímok ako pri iných 3D
technológiách. Na obrazovke je nanesená vrstva šošoviek – lentikuly. Takýto displej sa
nazýva tiež lentikulárny. Tieto šošovky usmerňujú lúče svetla do očí tak aby vznikol 3D
vnem. Prvé obrazovky s touto technológiu sa pomaly dostávajú na trh. Ich cena je ale
stále vysoká. Nevýhodou je aj nutnosť špeciálneho obsahu pre tento typ displeja.
Pozorovací uhol je tiež dôležitý, 3D efekt je najvýraznejší kolmo pred obrazovkou.
S väčším pozorovacím uhlom sa začína obraz viac rozmazávať a 3D efekt sa stratí.
Displej je nevhodný na pozeranie klasického 2D obsahu, lebo obraz bude rozmazaný.
Podobný displej je k dispozícii v laboratóriu LIRKIS.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 51 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Obrázok 3. Vrstva šošoviek na lentikulárnom displeji vytvorí obraz pre
jednotlivé oči a tým vznikne 3D vnem.
POĎAKOVANIE
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
POUŽITÁ LITERATÚRA
[1]
[2]
[3]
Mike
Bedford,
How
3D
TVs
and
other
displays
work,
na
internete:
<http://www.pcadvisor.co.uk/features/3d/3370867/how-3d-tvs-other-displays-work/>.
Autostereoscopy, na internete: < http://en.wikipedia.org/wiki/Autostereoscopy>
Jonathan Strickland, How 3D TV Works, na internete: < http://electronics.howstuffworks.com/3dtv.htm>.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 52 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
OpenSceneGraph Editors
OpenSceneGraph Editory
1
1,2
Štefan KOREČKO, 2Martin JACKO
Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected], [email protected]
Abstract — OpenSceneGraph is a powerful graphics library, that is used for scene rendering
and scientific simulation. Nowadays there is no freely available editor of appropriate quality for
editing the scene graph of OpenSceneGraph. This article analyzes the principle of such editor
and what requirements it should meet. It also describes the available commercial and non
commercial solutions for editing the scene graph
Keywords — openSceneGraph, editor, editing scene graph, graphics library
Abstrakt — OpenSceneGraph je veľmi silná grafická knižnica, ktorá slúži na renderovanie
scény a na vedecké simulácie. V dnešnej dobe neexistuje kvalitný opensource editor pre
editáciu grafu scény openSceneGraph-u. Tento článok analyzuje princíp editora a aj
požiadavky aké by mal spĺňať. Taktiež popisuje dostupné komerčné a nekomerčné riešenia
pre editáciu grafu scény spomínanej knižnice.
Kľúčové slova — openSceneGraph, editor, editácia grafu scény, grafická knižnica
I. ÚVOD
V dnešnej dobe sa začalo intenzívne vyvíjať niekoľko grafických knižníc medzi, ktoré
patrí aj OpenSceneGraph. Tieto knižnice majú bohatú funkcionalitu avšak niekedy je
požadovaná aj jednoduchá manipulácia. Na jednoduchú manipuláciu s veľkými
aplikačnými programovými rozhraniami (API) slúžia editory. Editory majú uľahčiť prácu
programátorovi, pretože nebude kód písať znova a znova ale len si v editore vyberie
požadovanú funkcionalitu, prípadne nastaví niektoré požadované parametre a iné
vlastnosti. V roku 2013/2014 bolo na pracovisku autorov vytvorené pomerne silné
vizualizačné jadro,[1] založené na OpensceneGraph-e a v súvislosti s ním sa tento článok
bude zaoberať hlavne dostupnými editormi pre OpenSceneGraph.[7] Analýza v ňom
obsiahnutá bude slúžiť ako podklad pre vytvorenie nového editora pre účely laboratória
LIRKIS Technickej Univerzity v Košiciach.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 53 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
II. PRINCÍP EDITORA PRE OPENSCENEGPRAPH
Hlavná myšlienka editora je aby bolo možné vytvoriť graf scény, uložiť ho do súboru
aj s potrebnými zdrojmi, rozposlať pomedzi viaceré počítače a neskôr renderovať
uloženú scénu. Editor najprv vytvorí alebo načíta už existujúci graf scény zo súboru,
upraví ho podľa požiadaviek užívateľa a nakoniec upravený graf znova uloží do súboru.
Uložený graf je možné načítať pomocou vizualizačného jadra a zobraziť na zobrazovacej
jednotke. Uložený graf ma príponu .osgt. Keďže je spomenuté ukladanie grafu scény do
súboru tak je potrebná serializácia všetkých tried v knižnici. V knižnici
OpenSceneGraph všetky triedy obsahujú rozhranie pre serializáciu a nasledovnú
deserializáciu objektov. Pre tieto účely slúži časť knižnice s názvom osgDB. Ďalšia
požiadavka na knižnicu OpenSceneGraph je, aby bolo možné editovať graf renderovanej
scény počas behu programu. OpenSceneGraph umožňuje meniť graf scény počas behu
programu bez akýchkoľvek problémov. Je nutné sa zmieniť o tom, že editor nemá mať
vstavané funkcionality pre editáciu polygonálnych modelov na úrovni vrcholov. Editor
má slúžiť na vytvorenie scény, tzn. rozloženie už existujúcich modelov v scéne, pričom
je možné upraviť aj spôsob akým sa modely v scéne renderujú. Tým je myslené
nastavenie shader-ov, materiálov, textúr a rôznych stavov grafického akcelerátora
používaných pri renderovaní.
III. POŽIADAVKY NA EDITOR PRE OPENSCENEGPRPH
Asi najdôležitejšou požiadavkou na editor je aby bol dostatočné jednoduchý, keďže
jeho využitie je plánované v laboratóriu, kde nie sú špičkoví programátori so znalosťou
OpenSceneGraph-u. Ďalej aby vedel poskytnúť používateľovi všetku funkcionalitu, ktorú
OpenSceneGraph ako knižnica ponúka. Nepozeráme na funkcionalitu spojenú s editáciou
modelu samotného ale na funkcionalitu spojenú so samostatným renderovaním grafu
scény. Náhľad do práve editovanej scény je samozrejmosťou. Široká podpora vstupných
formátov ako je JPG alebo OBJ je zabezpečená zo strany OpenSceneGraph-u. Editor by
mal už v základe podporovať zdieľanie zdrojov ako textúr, materiálov a iných, prípadne
by mal automaticky optimalizovať graf pre najvyššiu efektivitu renderovania. Ako
posledná požiadavka je multiplatformovosť editora.
IV. EXISTUJÚCE NA EDITORY PRE OPENSCENEGPRPH
Dodnes bolo viacero úspešných aj menej úspešných pokusov o vytvorenie editora pre
OpenSceneGraph. Ďalej budú uvedené niektoré existujúce editory.
A. OsgEdit
Tento editor je na dosť základnej úrovni. Používateľské rozhranie je dosť jednoduché.
Dokáže pridávať do scény hotové modely. Podporuje základne operácie ako rotácia,
škálovanie a zmena pozície. Je postavený na GTK grafickom používateľskom rozhraní.
Plne podporuje stavy OpenSceneGraph-u. Taktiež podporuje ukladanie do osgt formátu.
Zdrojové kódy sú plne dostupné pod GPLv2 licenciou, avšak posledná úprava tohto
editora nastala v roku 2008, takže už sa tomuto editoru nikto nevenuje a ďalej sa
nevyvíja. Dostupný je z [6].
B. Remograph
Je to modelovací nástroj, ktorý je založený na OpenSceneGraph-e. Je možné si ho
zakúpiť, nie sú k dispozícii zdrojové kódy tohto editora. Podporuje tak platformu Linux
ako platformu Windows. Používateľské rozhranie je dosť neprehľadné a je obtiažne sa v
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 54 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
ňom orientovať. Obsahuje veľmi veľa funkcionality a je dosť nevhodný pre nenáročného
používateľa. Tento editor je dosť komplexný ale zaoberá sa hlavne modelovaním. Stále
sa vyvíja a z jeho domovskej stránky [2] je možné stiahnuť demonštračnú verziu.
C. Simlab Composer
Tento editor, dostupný z [3], je už na profesionálnej úrovni. Taktiež nie je zadarmo, za
licenciu je potrebne zaplatiť, ale dá sa vyskúšať v demonštračnom režime. Obsahuje
veľmi veľa funkcií. Používateľské rozhranie je dosť prehľadné a aj výsledná scéna
vyzerá dosť profesionálne. Ponúka unikátne nástroje pre umiestňovanie objektov do
scény. Dokáže upravovať konkrétne modely ale aj meniť parametre scény ako je
napríklad osvetľovací mód. Obsahuje veľa nástrojov, ktoré je možné použiť v kooperácii
s týmto editorom napríklad SimLab RT Renderer, ktorý renderuje s použitím Ray
Tracing metódy. Stále sú novšie verzie a stále sa viac vyvíja.
D. Dtentity editor
Je to editor pre pre vizualizačný systém (engine) dtentity [4], ktorý je založený na
OpenSceneGraph-e. Tento editor je dosť jednoduchý a slúži na editovanie entít, ktoré sú
neskôr pridávané do systému. Zdrojové kódy sú voľne dostupné. Posledný príspevok k
zdrojovým kódom bol v roku 2012 takže ešte stále sa pomaličky vyvíja. Funkcionalita
tohto editora je dosť slabá a aj konečný výsledok je po vizuálnej stránke nedostačujúci.
Tento editor asi jediný z voľne dostupných editorov, ktorý podporuje skriptovanie v
JavaScripte.
E. SceneEditor 1.0
Je to editor taktiež založený na OpenSceneGraph-e. Bol vyvíjaný na VUT v Brne.
Používateľské rozhranie je veľmi pekné a jednoduché, ako aj môžeme vidieť na obrázku
číslo 1. Je založení na QT knižnici. Obsahuje 4 kamery, ktoré zobrazujú pohľady do
scén. Obsahuje základne operácie ako je zmena perspektívy , rotácia, zmena mierky,
posun a automatická zmena veľkosti. Taktiež podporuje aj niektoré efekty ako napr:
• Wireframe efekt
• Edge faces efekt
• Cartoon efekt
• Anisotropic efekt
• Specular efekt
• Bump efekt
V editore si môžeme zvoliť aké pohľady chceme vidieť. Na výber je medzi pravým,
ľavým pohľadom spodným a horným pohľadom a predným, zadným pohľadom.
Obsahuje plnú podporu vstupných formátov pre modely ako aj pre textúry. Na stránke
[5] sú k dispozícii zdrojové kódy ako aj prekompilovaný editor pre vyskúšanie. Napriek
veľmi dobrej vizuálnej stránke editora je jeho funkcionalita dosť obmedzujúca. Ďalej sa
tento editor už nevyvíja.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 55 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Fig. 1 Používateľské rozhranie editora Scene editor 1.0.
V. MOŽNOSŤ VYUŽITIA EXPORTÉROV UZ EXISTUJÚCICH MODELOVACÍCH
NÁSTROJOV
V súčasnosti modelovacie nástroje ako Blender alebo 3DS Max obsahujú exportér do
osgt formátu. Aj tieto nástroje by sa dali využiť ale zase ide len o geometriu. Exportéry
dokážu exportovať model, pripadne iné vlastnosti s nim spojené ako sú textúry a
materiály. Veľmi užitočnou vlastnosťou exportérov je exportovanie kostrových animácii.
Stále však exportér nedokáže exportovať stav renderovania, ktorý by bol priamo
použiteľný v OpenScenGraph-e. Niektoré pokročilejšie exportéry dokážu exportovať aj
animácie alebo časticové systémy, záleží od hĺbky prepracovania exportéra pre
konkrétny modelovací nástroj, ale stále to je dosť málo v prípade, že chceme využiť celú
silu knižnice OpenSceneGraph.
POĎAKOVANIE
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
POUŽITÁ LITERATÚRA
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Martin Jacko, “Softvérové riešenie systému virtuálnej reality: jadro a vizualizačný podsystém, FEEI TU
Košice, 2013.
Remograph http://www.remograph.com.
Simlab Composer http://www.simlab-soft.com/3d-products/simlab-composer-main.aspx
https://code.google.com/p/dtentity/
http://www.agroprojektjihlava.cz/sceneeditor/index.php?id=info
http://osgedit.sourceforge.net
http://www.openscenegraph.org
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 56 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Telescope: recent, current state and
future
1
Daniel LORENČÍK, 2Ladislav MIŽENKO, 3Jaroslav ONDO, 4Peter
SINČÁK
1, 2, 3, 4
Department of Cybernetics and Artificial Intelligence, Faculty of
Electrical Engineering and Informatics, Technical University of Košice, Slovak
Republic
1
3
[email protected], [email protected],
[email protected], [email protected]
Abstract — The Telescope system is intended to be a tool in remote diagnostic, monitoring
and controlling various system. In the scope of the VIRTLAB project, the Telescope is
developed as a platform for remote control of furnaces and other equipment. Since the
Telescope system is built to be platform independent, the testing platform is a robot Nao, as it
can be considered as a complex robotic system comprised from sensors and actuators. In this
paper the recent and current state of the Telescope is discussed, as the development team has
been changed recently. Also, the task currently solved are presented. The paper is created as
a transcription of presentation.
Keywords — remote monitoring, remote diagnostic, remote control
I. TELESCOPE SYSTEM OVERVIEW
Telescope is a modular system of computer programs which allows:
• communication between user and connected devices
• communication between two or more connected devices
• operating connecting devices through the Internet all over the world
• In future it will allow to connect different modules according to user preferences
(telediagnostic module, video module, teleoperation module, etc.)
Telescope solves the problem of heterogeneous devices environment:
• Different interfaces for the programmer (API)
• Various programming languages
• Different interfaces for the user (GUI)
By device we mean every device that has the ability to communicate over the network
and can be accessed programmatically (has and API).
The Telescope system is created as a cloud-ready system (at any point can be ported to
the cloud architecture) and consists of Event server (as a backend) and web application
offering the graphical user interface (GUI).
To speed up the development process the test bed for the Telescope is a robot Nao, as
it is a complex system consisting of sensors and actuators. The Telescope is intended to
be platform independent, therefore it is possible to create it on the humanoid robot and
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 57 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
then use it for factory monitoring, control and diagnostic.
The system high-lever architecture overview is on the Figure 1.
Figure 1: Telescope - high level architecture overview
II. PROCEDURE FOR PAPER SUBMISSION
A. Event server
The essential part of backend is Event server.
• It is designed to run, communicate and cooperate with other Event Servers
• For a communication with the Event server the websocket technology is used
• The Event server utilizes REDIS NoSQL Server for fast communication and
data storage
• REDIS server creates a cluster and mediate a communication between each
other
B. Web application
Web application is based on:
• PHP 5.3, HTML 5, CSS 3, Smarty templating language
• SQL database
Available and tuned for PC, SmartTV, mobile devices (iPhone, iPad, Android)
III. STATE OF THE WORK
The state of the work is divided to two parts, as in the summer of 2013 the team
developing the Telescope system was fully replaced. The new team has to cope with the
parts of the source code that were not documented enough, which lead to the extended
period of source code study.
A. Previous team
The list of completed features:
• Web application (frontend)
• Event server (backend)
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 58 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
• API (C#, JavaScript)
• Full Aldebaran NAO robot and AR DRONE v2.0 quadrocopter support
Features planned but not fully implemented:
• Video and audio stream
• Server load monitoring
• Device hierarchy management
B. Current team
List of completed features:
• Study of frontend and backend source codes
• Telediagnostic system (partially)
• Telediagnostic server
• REDIS database
Features currently in development:
• Telediagnostic system
• Video streaming
Planned features:
• Finalize telediagnostic system
• Finalize video streaming
• Robot simulator implementation
IV. TELEDIAGNOSTIC SYSTEM
The feature currently developed is telediagnostic system, which will be one of the core
modules of Telescope system. Telediagnostic system will allow for excessive monitoring
of the devices and their historical states (it will be possible to review the device actions
and data from sensors prior to the faults). It will provide also a GUI of the device (as
shown on Figure 2).
Telediagnostic system list of features:
• Connect every Aldebaran NAO robot (in the future also other types of devices)
• Collecting and storing data from robot’s sensors
• Do different statistics about robot’s joints usage
• Visualizing robot’s joints and indicate their state
• Draw graphs
• Offer tools for robot system diagnostics
Will offer API for:
• programming own database views
• programming own statistics
• Including into other programs
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 59 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Figure 2: Telediagnostic system GUI
Telediagnostic system will be a separate backend communicating with the Telescope
frontend, will have also a separate device wrapper. Therefore fault of one of the modules
will not bring down the entire service. The high level architecture overview of the
telediagnostic system is on Figure 3.
Figure 3: Telediagnostic system - high level architecture overview
V. PLANNED FEATURES
Several other features are planned for the Telescope system. The two main features are
listed below:
A. Video streaming
• Live video stream from cameras placed in the room where is robot NAO
• Assignment cameras and robots
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 60 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
B. Robot simulator
• Use robots simulator as a module in web application
• It allows simulate and test teleoperational process before it is executed on real
robot
• Decrease risk of robot damage
• Testing Telescope and telediagnostic system without own robot
VI. CONCLUSION
The development of the Telescope system is still work in progress. The system is
usable for remote control and partial remote monitoring. The feature of implementing
camera feed is a planned, as well as device simulator.
Currently, the development is focused on creating the telediagnostic module along
with API for telediagnostic, which will allow for extended system diagnostic and
monitoring with historical data.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 61 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
VR integration into the Factory of
the Future
Integrácia VR do podniku budúcnosti
1
1,2
Dušan Janovský, 2Róbert Peťka
Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected], [email protected]
Abstract — Computer Graphics and its interfaces, more and more penetrate into the realm
of practical industry. Systems known as CAD and programs and applications based on
similar principles are not only used in the design and technical documentation but also in
process of control the safety, quality and operations management.
Abstrakt — Počítačová grafika a jej rozhrania čo raz viac prenikajú aj do sféry
praktického priemyslu. Systémy známe ako CAD a programy, systémy a aplikácie založené
na podobných princípoch sa nepoužívajú iba na navrhovanie a technickú dokumentáciu ale aj
na kontrolu bezpečnosti, kvality a riadenie prevádzky.
Keywords — Virtual reality, software interface, VR editors, factory of the future, modeling
systems.
I. ÚVOD
S narastajúcim trendom zrýchľovania výpočtového výkonu grafických procesorov sa
čoraz viac do popredia dostáva 3d počítačová grafika. Tá je na rozdiel od 2d grafiky
podobne ako náš reálny svet charakteristická troma rozmermi. Pomocou modelovacích
techník a 3d editorov sú vytvárané modely, ktoré sú zoskupované do scén.
Komplexnejšia scéna potom môže predstavovať časť digitálneho sveta takzvanej
virtuálnej reality. Tento virtuálny svet môže mať napríklad podobu reálne existujúcej
fabriky. Vhodná kombinácia softvérového a hardvérového rozhrania je kľúčovou pre
tvorbu virtuálno-realitného systému.
II. CIELE
Úlohou tohto príspevku je zanalyzovať prvky a technológie už existujúcich systémov
virtuálnej reality. Zhodnotiť vhodnosť ich použitia a zamyslieť sa nad vhodnejšou
kombináciou za dosiahnutím lepšieho a z úžitkového hľadiska efektívnejšieho systému
vhodného pre použitie vo fabrike budúcnosti.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 62 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
III. ANALÝZA PROBLÉMU
Pri tvorbe obsahu pre systém virtuálnej reality je nevyhnutné využiť 3d editor.
V dnešnej dobe je na trhu množstvo komerčne ale aj voľne dostupných modelovacích
softvérov. Tieto editory patria do skupiny programov CAD (Computer aided drawing).
Podľa konkrétneho použitia sa delia na :
CAD (Computer Aided Design) systémy predstavujú počítačový návrh resp. počítačom
podporovaný návrh súčiastky, počítačovú podporu tvorby modelov alebo počítačovú
podporu tvorby konštrukčnej dokumentácie.
CAPP (Computer Aided Process Planning) – reprezentuje počítačovú podporu pri
návrhu a tvorbe technologickej dokumentácie. Ich hlavné uplatnenie je v strojárstve, kde
na základe konštrukčnej dokumentácie pomáhajú navrhovať a vytvárať technologickú
dokumentáciu.
CAM (Computer Aided Manufacturing) – označenie pre oblasť výroby podporovanú
počítačom. CAM systémy zahŕňajú počítačové číslicové riadenie (CNC) výrobnej
techniky, robotov, medzioperačnej dopravy výrobkov, polotovarov, náradia a pod..
CAE (Computer Aided Engineering) – počítačom podporované inžinierstvo – tento
pojem je skôr známy ako automatizácia inžinierskych prác (AIP), resp. počítačom
podporované inžinierske práce.
CIM (Computer Integrated Manufacturing) nepredstavuje systém, ale integráciu
systémov, zúčastňujúcich sa priamo alebo nepriamo na realizácií výrobku. CIM teda
môžeme vnímať ako komplex navzájom integrovaných systémov.
CAQ (Computer Aided Quality) je počítačom podporovaná kontrola a riadenie kvality,
súčasť CAE.
Rozdelenie CAD systémov
Každý z týchto grafických editorov pracuje s určitými množinami nástrojov, pomocou
ktorých sa dosahuje výsledný grafický efekt. Usporiadanie a rozmiestnenie tých množiny
a okien pracovného priestoru tvoria softvérový interface editora.
Typickým a najčastejšie používaným hardvérovým rozhraním týchto editorov sú
klávesnica a myš. V ojedinelých prípadoch je možné (nie však veľmi efektívne) použiť
tablet alebo trackball. Príchod nových technológií ako tracking a stereoskopia umožnila
posunúť hranice grafických editorov na ďalšiu úroveň.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 63 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
IV. EXISTUJÚCE RIEŠENIA
iMedic
Jedná sa o vizualizačno-analytický systém zameraný na využitie v medicíne. Dokáže
z CT alebo MRI obrázkov vytvoriť virtuálny 3d model. Tento model sa dá
prostredníctvom rôznych filtrov detailne analyzovať. K dispozíciu sú rôzne interaktívne
rezové roviny, polopriehľadné shadre atď. Hardvérová časť je tvorená dvoma ručnými
ovládačmi pripojenými na magnetický tracking , ktorý sníma polohu ovládačov
v priestore. Dvojica ovládačov poskytuje rýchlu a jednoduchú navigáciu v 3d priestore.
The Wonderland Builder (TWB)
Hardvérové riešenie tohto systému pozostáva z optického IOtrcker trekingu hlavy
a nôh, stereoskopických okuliarí (Sony HMZ-T1), trekovaného ručného ovládača
a bezdrôtového mikrofónu. Snímače sú sledované 6 infračervenými kamerami pričom
každá noha je trekovaná samostatne. Ako podporný ovládač slúži wiimote kontroler.
Softvérové rozhranie je tvorené pomocou vnorených menu ovládaných hlasom.
SculptUp
Je imersivny modelovací systém ktorý umožňuje vytvárať komplexné CGI
jednoduchšie a rýchlejšie prostredníctvom interaktívnych postupov, podobným
klasickému sochárstvu a maliarstvu. Riešenie je aplikované vo virtuálnom prostredí
CAVEu. Používateľ sa v priestore pohybuje pomocou hlasových signálov a trekovaného
ručného ovládača. K dispozícii sú 2 módy : modelovací (Sculpt mode ) v ktorom
užívateľ vytvára, upravuje a textúruje objekty. Druhom móde (World mode) používateľ
rozmiestňuje objekty a vytvára tak virtuálny svet.
Porovnanie existujúcich riešení
Tabuľka zobrazuje porovnanie opisovaných systémov z hľadiska použitých technológii
a možností.
Tabuľka porovnania popisovaných systémov
* (TWB - The Wonderland Builder)
V. INTEGRÁCIA
Implementácia technológií virtuálne reality do praxe nie je jednoduchá úloha.
Nároky kladené a presnosť, rýchlosť a kvalitu pri tvorbe nových priemyselných
produktov sa javia ako kľúčové problémy dnešných systémov. Tieto technológie by však
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 64 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
mohli nájsť uplatnenie v riadiacej a kontrolnej sfére fabriky budúcnosti. Systém založený
na princípe iMedic upravený pre potreby existujúcej továrne by mohol byť využívaný na
plánovanie údržieb a opráv. V kombinácii so systémom detekcie porúch by takýto systém
mohol slúži pre efektívne plánovanie opráv. Bezpečnostný technik by si mohol situáciu
vopred naplánovať virtuálne zrealizovať a získal by tak cenné znalosti o náročnosti, čase
trvania opravy ako aj prehľad o prístupových cestách k miestu poruchy bez akéhokoľvek
rizika. Implementáciou jednoduchého ovládania hlasom, ktorou disponuje systém The
Wonderland Builder by sa odstránila zdĺhavá a komplikovaná navigácia pomocou menu.
Krátke heslovité a výstižné hlasové pokyny dokážu enormne uľahčiť prácu hlavne ak sa
jedná o prácu vo 3d virtuálnom systéme. Systém by ďalej mohol slúžiť ako výukový
trenažér budúcich bezpečnostných technikov alebo pracovníkov údržby.
VI. CONCLUSION
Modelovacie nástroje sa čoraz viac približujú svojej podstate. Myš a klávesnica sú
nahrádzané zariadeniami s ktorými by sa tvorcom virtuálneho sveta malo pracovať
rýchlejšie, efektívnejšie a ďaleko viac intuitívnejšie. Treking a stereoskopia sa stali už
takmer bežným prvkom interfacu editorov VR systémov. Možnosť vytvárať
a implementovať vlastné 3d objekty posúva systém na novú úroveň. Všetky systémy
spomínané v článku vnášajú značný progres v editačno vizualizačnej oblasti virtuálnej
reality. Aj keď niektoré sú ovládane hlasom, pre plnú funkčnosť musí užívateľ ovládať
dvojicu zariadení. Ďalším krokom do budúcna by mohlo byť softvérovo hardvérové
riešenie, ktoré by uvoľnilo ruky užívateľa. Vhodne navrhnutým interfacom a skĺbením
tracikngu a technológiou rozpoznávania gest a hlasových príkazov by mohol užívateľ
získať plnú voľnosť svojich rúk. Kombinácia trekingu rúk s hlasovou navigáciou sa javí
ako vhodná pre systém riadenia, kontroly a taktiež tvorby obsahu pre tieto systémy vo
Fabrike budúcnosti.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 65 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
Engelke, William D. (1987), "How to Integrate CAD/CAM Systems: Management and
Technology",P.237-238. CRC press. ISBN 0-8247-7658-5.
Leonar3do home page
http://leonar3do.com/
Leonar3do User Guide
http://www.v3d.co.kr/Leonar3Do/download/Leonar3Do_User_Guide.pdf
CaveCAD: Architectural design in the CAVE. Cathleen E. Hughes, Lelin Zhang, Jürgen P. Schulze, Eve
Edelstein, and Eduardo Macagno. 3DUI, page 193-194. IEEE, (2013)
Building worlds with strokes. David Cochard, Pierre Rahier, Sebastien Saigo, and Mageri Filali Maltouf.
3DUI, page 203-204. IEEE, (2013)
SculptUp: A rapid, immersive 3D modeling environment. Kevin Ponto, Ross Tredinnick, Aaron
Bartholomew, Carrie Roy, Dan Szafir, Daniel Greenheck, and Joe Kohlmann. 3DUI, page 199-200.
IEEE, (2013)
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 66 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Head-mounted display
Dátová prilba
1
1,2
Martin VARGA, 2Lukáš MITRO
Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected], [email protected]
Abstract — The paper contains introduction about virtual and augmented reality. It is
divided on two main parts. The first part describes HMD (Head-mounted display) and its
using in our life. The second part contains some information about head mounted display
nVisorST60, which is part of LIRKIS (Laboratory of Intelligent Interfaces of
Communication and Information Systems).
Keywords — Augmented reality, Head-mounted display, virtual reality
Abstrakt —Článok obsahuje základné informácie o virtuálnej a rozšírenej realite. Je
rozdelený na dve hlavné časti. Prvá časť sa venuje HMD displejom (dátovým prilbám) a ich
využitím v našom živote. Druhá časť sa venuje predovšetkým dátovej prilbe nVisorST60,
ktorá je súčasťou laboratória LIRKIS (Laboratórium inteligentných rozhraní
komunikačných a informačných systémov).
Kľúčové slova — Rozšírená reality, head-mounted displeje, virtuálna realita
I. VIRTUÁLNA A ROZŠÍRENÁ REALITA
Rozšírená realita je chápaná ako obohatenie fyzického sveta o virtuálne, reálne
neprítomné objekty. Výsledkom takéhoto obohatenia je prostredie doplnené o dodatočné
informácie a predmety. V prostredí virtuálnej reality môže dochádzať aj k interakciám
človeka s daným prostredím. Oproti virtuálnej realite sa tak jedná o rozdiel v prístupe k
riešeniu, keďže virtuálna realita zasadí používateľa do kompletne virtuálneho prostredia
generovaného počítačom a nevyužíva prostredie, ktoré je k dispozícii. Technická
realizácia rozšírenej reality musí v podstate riešiť tri problémy:
• mapovanie prostredia, príp. rozpoznávanie značiek, na ktoré majú byť vykreslené
virtuálne objekty;
• snímanie interakcií;
• zobrazovanie virtuálnych objektov do prostredia.
Zariadenia na zobrazovanie obrazu pre rozšírenú realitu sú rozdelené do troch skupín:
• Zariadenia uchytené na hlave: Pod túto kategóriu spadá HMD displej (Head
mounted display), zobrazovacia jednotka nasadená priamo na hlave umožňujúca
otáčanie displeja spolu s hlavou. Vyhotovenia prešli z heliem po okuliare (napr.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 67 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Google Glass). Vedci na väčšom množstve univerzít, dokonca vyvíjajú
kontaktné šošovky s displejom, ktorý premieta obraz priamo na sietnicu oka.
Ďalším zástupcom tejto technológie by v budúcnosti mohla byť technológia
„Virtual retinal displej“, ktorej princípom je premietanie odrazu svetla od poľa
mikrozrkadiel na sietnicu oka.
• Prenosné displeje: Do kategórie prenosných displejov patria všetky
zobrazovacie zariadenia, ktoré môžeme počas projekcie premiestňovať bez
negatívneho vplyvu na generovaný obraz. Medzi takéto zariadenia patria
smartfóny, tablety, PDA, alebo projektory, ktoré môžeme počas projekcie
premiestňovať.
• Priestorové displeje: Na rozdiel od predošlých dvoch kategórií, priestorové
displeje nie sú v priamom kontakte s používateľom, ale sú integrované v
prostredí. Používajú sa tri postupy:
o Fyzické prostredie je zobrazené na obyčajnej obrazovke s dokreslenými
virtuálnymi objektmi.
o Priesvitné displeje, ktoré sú umiestnene medzi pozorovateľom a
prostredím a sú na nich premietané objekty.
o Projekcia virtuálnych objektov priamo na fyzické objekty.
II. HMD
Mnohé veľké firmy sa v súčasnosti zaujímajú o nositeľné zariadenia, ktoré nám
umožnia lepšiu interakciu s okolitým svetom. Hlavnou doménou v tejto oblasti sú
nositeľné displeje. Tie nám umožňujú okamžitú signalizáciu rôznych javov, ktoré si
používateľ okamžite všimne. HMD môžu podľa ich typu zobrazovať rozšírenú alebo
virtuálnu realitu. Nosné firmy, ktoré sa snažia preraziť v tejto oblasti sú Google a
Facebook.
A. Využitie v medicíne
V medicíne sa HMD využívajú ako nástroj pre vizualizáciu ľudských orgánov či ako
pomôcka pri výučbe. Doktori môžu zbierať 3D dáta o pacientovi v reálnom čase
využívajúc neinvazívne senzory ako sú napríklad magnetická rezonancia, tomografia či
ultrazvuk. Tieto informácie môžu byť následne zobrazované na tele pacienta. Tento
spôsob sa využíva prevažne v chirurgii [1].
B. Využitie vo výrobe a oprave
Študovanie príručiek a manuálov môže byť zdĺhavé a ani to nezaručuje
bezproblémový chod. Ak sa do výrobného procesu zapojí systém využívajúci HMD,
pracovníkovi môže byť počas výroby a opravy prezentovaný správny postup montáže.
Ten môže následne opakovať aj bez toho, aby mal niečo o danej problematike ešte pred
tým naštudované. Tento postup zrýchľuje a skvalitňuje jeho prácu. Pri montáži mu môžu
byť zvýraznené súčiastky, ktoré ma odstrániť, pridať, uhol, pod ktorým majú byť
nastavané. Takisto môže byť upozornený na rôzne hrozby, ktoré pri vykonávaní jeho
práce nastávajú [1].
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 68 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
C. Využitie v armáde
HMD displeje majú veľké využitie pri výcviku vojakov. Vojak má na hlave nasadenú
helmu pričom sa pohybuje v reálnom prostredí. Na určitých pozíciách sa mu zobrazujú
nepriatelia. Vďaka senzorom na zbrani sa dá určiť miesto, kde vystrelil a či zasiahol cieľ.
Tento spôsob výcviku je lacnejší a hlavne bezpečnejší oproti klasickému [1].
D. Iné využitie
Medzi ďalšie oblasti využitia patria mobilné zariadenia, využitie pri navrhovaní a
dizajne, tréningy, simulátory, výučba a mnoho iného.
III. DÁTOVÁ PRILBA NVISOR ST60
Dátová prilba nVisor ST60 sa nachádza v laboratóriu LIRKIS Technickej Univerzity v
Košiciach. Ide o profesionálnu dátovú prilbu s dvoma priehľadnými displejmi.
Zabezpečuje čistý pohľad na okolité prostredie, preto je vhodná pre rôzne druhy
simulácií a výcvikových programov [1].
Technické vlastnosti zariadenia [2] :
• rozlíšenie displeja: 1280×1024,
• zobrazovacia technológia: LCOS (reflexná),
• kontrast: 100:1,
• diagonálny zorný uhol: 60°,
• diagonálny zorný uhol: 40°,
• geometrické skreslenie: < 1%,
• hmotnosť: 1,3 kg.
Táto dátová prilba je prepojená s počítačom, ktorý sa stará o vkladanie virtuálnych
objektov do scény. Prepojenie je zabezpečené pomocou kábla, ktorý obmedzuje pohyb
používateľa na niekoľko metrov od počítača.
Dátová prilba nedisponuje žiadnym zariadením na detekciu polohy, avšak detekcia
používateľa môže byť zabezpečená pomocou zariadenia Polhemus Patriot, alebo
pomocou systému SimTracker od firmy InterSence [3]. nVistor ST60 so senzorom
Polhemus Patriot je znázornený na nasledujúcom obrázku (Fig. 1).
Fig. 1 Dátová prilba NISOR ST60
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 69 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Pre zobrazovanie rozšírenej reality sa môže taktiež použiť systém so značkami. Po
pripevnení kamery čo najbližšie k očiam môže byť obraz posielaný do počítača, kde sa
spracuje. V tomto obraze sa budú vyhľadávať predtým špecifikované značky, pričom
každej značke prislúcha jeden model. Tento model je následne zobrazovaný v dátovej
prilbe na mieste značky.
POĎAKOVANIE
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
POUŽITÁ LITERATÚRA
[1]
[2]
[3]
Mitro, Lukáš: Vizualizačný systém využívajúci technológie rozšírenej reality a dotykových obrazoviek,
Bakalárska práca, Košice, Technická univerzita v Košiciach, 2013
NivSinc,
HMD
nVisor
ST60
[online].
[cit.
2014-2-1].
Dostupné na internete:
http://www.nvisinc.com/genpdf2009.php?id=5
HROZEK, František: 3D rozhrania systémov, Písomná práca k dizertačnej skúške, Košice, Technická
univerzita v Košiciach, 2010
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 70 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Digital factory concept on the raw
materials processing
1
Miroslav ZELKO, 2Ján SPIŠÁK, 3Eva ORAVCOVÁ
1,2,3
Development and realization workplace of raw material extraction and
treatment (VRP), Faculty BERG, Technical University of Košice, Slovak
Republic
1
[email protected], [email protected], [email protected]
Abstract — A new vision is emerging, founded on leveraging informatization,
digitalization, and visualization to utilize process data inside corporate management. The
digital factory concept on the raw materials heat treatment offers an integrated approach to
enhance products and production processes. The focus and key factor is the integration of the
various planning and simulation processes. It´s a kind of visual manufacturing that removes
the barriers to effective collaboration and efficiency by delivering visual and real process
data to all involved throughout the value chain. Business processes are naturally streamlined,
and islands of automation are integrated into efficient drivers of customer value. Digital
Factory efficiently drives bottom line business growth in areas like material flow
management, material request orders, training, marketing, maintenance, logistics and all
with measurable economical impact.
Keywords — Digital Factory (DF), Virtual Factory, intelligent production (SMART
Factory), Material Flow Management, Production Lifecycle Management (PLM),
Information and Communication Technology (ICT), Enterprise Resource Planning (ERP)
I. INTRODUCTION
Current worldwide trends supported by globalization, a slight revived economy after
recession and technical innovation are changing the way companies produce, distribute
and support their products and processes. Globalization has opened up markets and
sourcing opportunities for producers everywhere. It has brought new customers and
increased sales, along with new competitors, unfamiliar customer expectations, relentless
margin pressure, and the complexities of global supply and distribution. In adapting to
this borderless market environment, producers have adopted Lean principles, continuous
improvement and other process disciplines aimed at increasing efficiency, improving
quality, reducing waste, lowering costs and abbreviating development cycles [4].
To implement these disciplines consistently across distributed operations,
manufacturers are aggressively pushing information technologies into non-traditional
areas, adding intelligence to every area of their operations and even into the products
themselves. By distributing sensors, processors and communication capabilities
throughout the enterprise and linking them to an integrated infrastructure, they are
creating end-to-end visibility across previously discrete processes. The result is
something that it is called the digital factory. These systems are currently widely used in
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 71 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
aeronautics and automobile industry. There is an increasing trend of interest in these
systems, which is reflected in the amount of successful applications. This tendency is not
just a partial alternative; it is a strategic direction, i.e. production informatization. There
is an increasing amount of information used during the whole product life cycle that is
closely related to product automation. But in the area of raw material processing there is
a lack of such solutions (if they exist) and the authors has not come across any Digital
Factory conception globally yet.
The original idea of a Digital factory on the raw materials heat treatment was initiated
six years ago and is governed by the Development and Realization Workplace of Raw
material Extraction and Treatment (VRP USZ) department at present. The VRP mission
is the research capacities development and improvement in the area of the raw materials
extracting and treating within the mining, metallurgical, chemical, and building materials
production industry with the aim to ensure a rapid verification of new ideas, proposals
and conceptions under laboratory and semi-operating conditions and their transfer into
the practice in the form of an innovative projects with the market realisable outputs based
on the higher added value. The VRP vision in very close future, as the Cooperation with
Practice Centre in the area of raw materials extraction and treatment, is to become the
Research Excellence Centre in relevant area and together with its partners to build up an
excellent functional cluster to generate high-tech solutions, among other innovative
solution based on the processes informatization and its deep knowledge (digital factory)
and intelligent production development (SMART Factory).
The VRP activities cover three complex areas: research and development, education
and entrepreneurships. The portfolio of VRP activities include: research and
development of the high-tech technological equipment for grainy materials heat treatment
in the thin dynamic layer, optimization programs for rotary and shaft furnaces and for
other heat equipment, corporate logistics and management systems design, environmental
research program, specific apparatus, equipment and systems research, and
complementary services. VRP solves several projects from structural funds, projects of
applied research of the Ministry of education SR, governmental science and research
projects, basic research projects, industrial cooperation projects, and international
projects. Partners are from Technical University (TUKE) workplaces – faculty
metallurgy, machinery and BERG faculty, from Komensky university (Bratislava) faculty of natural sciences, from Economic university (Bratislava) – faculty of corporate
economy and, of course from corporate practice area. VRP aims to be the leading centre
of excellence within its effected research area in region and a serious partner to European
Technology Platform for Sustainable Mineral Resources (ETP SMR) in the future and
other European partners from FP7 projects like I2Mine [6] and ERA-MIN.
II. DIGITAL FACTORY (DF) CONCEPTION
The concept goal is to create a digital plant for the area of raw materials processing.
The idea of digital plant will consist of main primary processes - technological and
service processes and selected corporate supporting processes (auxiliary and control), so
it can be utilized for production optimization in all phases of the product lifecycle.
Within the proposed concept the digital plant creation will be focused on its utilization
for innovations design, scheduling and management of production. The digital factory
represents through its ICT integrated environment in which the reality is substitute by
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 72 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
virtual computer models. These virtual solutions enable optimal preparation for the
practical realization of production. In this environment digital models are dominated.
Real company model creation is and the following it’s processing is not a simple matter.
It requires top prepared people, corporate processes knowledge, needed software and
hardware support, but also patience and purposefulness. The structure of such a digital
factory concept on the raw materials heat treatment is described on the Fig. 1.
Fig. 1 Digital factory conception on the raw materials heat treatment
This solution will create a basis to build an intelligent production - the „SMART“
plant. It deals with the processes automation that is specified by the transfer of human
activities to the area of information technologies. The goal is to increase the portion of
information in the performed processes, followed by decreased costs with respect to the
capital, material resources and human labor. In order to perform the qualitative changes
in the business processes a critical information amount is needed. This information is
collected from the respective objects and its surroundings. The purpose of the digital
plant utilization is the increase of economic and production parameters mainly by means
of cost decrease that are proved during the design and operating activities. The designed
project refers mainly to the accomplishments achieved within the following projects:
• Progressive logistic systems development and application for production processes
innovation
• Functionality verification under operating conditions of integrated thermal apparatus
in the process of magnesite caustification and its parameters optimization
• Design and utilization of virtual reality objects of raw materials extraction and
treatment
• Integrated thermal apparatus for economic and ecologic raw materials effective
treatment research and development
• High-tech and new technologies for non-metallic materials extraction and treatment
• Digital factory for the raw materials heat treatment
• Research Excellence Centre on Earth's sources extracting and treatment
• Slovak innovation-technology platform on sustainable mineral resources
The entire solution goal is to create a digital plant conceptual model and its
components – corporate processes partial models; its verification in semi-operating
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 73 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
(integrated thermal apparatus implementation in ATIM Kosice) and operating module
(Rotary Furnace No. 2 implementation in SMZ Jelšava, a.s.). The aim is to create an
effective system for a complex and system planning, designing, verification and
preliminary improvement of all significant structures, processes and resources of an
actual plant in relation to its products. The proposed solution is the first complex solution
in the area of raw materials processing. By its verification in operating conditions there
will be completed a pilot application. The authors have not come across any Digital
Factory conception globally yet in the area of raw materials processing.
The solution output will be a designed structure of selected digital factory pilot cross
process and its basic components, which represents key virtual technologic aggregates.
Within the pilot solution verifying will be used the Integrated Thermal Apparatus ITA
(SMART device) – the unique experimental technology of grainy materials heat
treatment which has been developed also by VRP/BERG Faculty of Technical University
of Košice. The pilot concept solution principle based on re-usable components will be
asserted also in next process and devices solutions within the whole corporate logistics
chain. The concept will be used mainly as support of operating activities of operators and
technologists. It can also be used as a training apparatus for the education of operators,
innovation employees and students. Currently, very often the ultimate objective of the
digital plant conception is the usage of virtual reality tools. However, the global
development moves ahead. The conception covers the whole product lifecycle
management cycle (PLM), since the digitalization integrates the activities
comprehensively – from the design up to recycling.
III. PROCESS INFORMATIZATION AND DIGITALIZATION
Digital plant is an expression that is used to designate a virtual (digital) image of an
actual plant. It represents an environment that is integrated by information and
communication technologies to an optimum solution on the level of development, design,
planning and performance of production processes. Virtual operations make it possible,
even before the actual realization, to verify the conflict situations, propose optimal
solutions and optimize the already existing solutions. There is a huge amount of
information accrued during the whole production control life-cycle – we talk about
process informatization. Current digital technologies add intelligence to every stage of
the product lifecycle. These new embedded technologies are transforming manufacturing
today. The innovative solutions are core elements of this transformation. By capturing
raw data from distributed events and delivering actionable information to distributed
decision points, these solutions create end-to-end visibility to enable lean operations.
In the digital factory each stage in the product lifecycle is transparent to every other.
Information flows automatically between systems and processes, constrained only by
policy. Real-time information and actionable insight replace latency and uncertainty,
eliminating the most common sources of waste and inefficiency, setting the stage for
automation. It's a transformational development made possible by open, standards-based
ICT infrastructures that share several core features:
• A scalable network and hardware infrastructure based on high-performance
platforms
• An integrated application and data management software
• A service-oriented infrastructure design that delivers software and data as services,
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 74 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
organizes hardware as virtualized resources and offers services that cross firewalls
and company borders.
• Solutions that keep the enterprise securely and continuously connected to its
material resources, production systems, employees, partners and products through
a combination of local and wide-area broadband technologies.
Digitalization enables to increase the quality and at the same time expedite all works
related to production preparation, primary production and following services in the total
product life cycle. The digitalization was used first in the design – technological
systems (CAD/CAM) and then in the enterprise planning and control systems (MRP,
ERP). Currently it is being used also in the design of production base that is basically a
bridge between two already digitalized areas of production preparation and corporate
information systems. It is an extremely complex area, since in the production there is
concentrated a huge amount of diverse information - order management data, subsupplies purchasing, logistic processes and information of production technological
preparation. By the influence of digitalization the production process is more tied up.
IV. PROCESS MODELING AND OPTIMIZATION
In general, the digital factory concept realization is driven by specific determinateness
of company. The digital factory term is a name for extensive network of digital models
and methods. Its aim is a detailed planning, realization, control and optimization and all
important processes and resources continuous improvement within a company, together
with a real process and product interconnection. The basic principle of the digital factory
is model creation for the digital plant environment, corporate processes optimization and
its real functionality in operation. The main technique, which uses digital factory
solutions, is the computer-aided simulation. The exploitation of this is in various life
areas and for the production systems design and reorganization, as well. The examples
could be:
• Various simulations (corporate processes, production, material flow, intracorporate logistics and so on)
• Visualizations: 3D, 4D animations (time dimension), 5D (costs, sources and
completion state dimension)
• Economic modeling (scheduling, cost analysis, time analysis, balance control,
production disposition)
• Real time predicate control and monitoring
The thread of all process modeling and optimization is the virtual factory life cycle
support till routine operation of real production process. The digital factory approach
using simulation for operative production planning and control extends the one for plant
design and optimization. The following objectives shall be reached:
• Improve collaboration between production planning and execution.
• Improve process control and reduce quality problems.
• Adjust schedules and production processes in real time.
• Deliver customer orders accurately (with good quality) on time.
• Improve quality and reduce the cost of errors.
• Reduce inventory, work in progress and scrap costs.
• Improve the visibility of the production processes for supply chain planning.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 75 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
This simulation based approach requires a steady feedback loop from the factory floor
in order to update general data, model structure and model parameters with the actual
situation from the plant. To deliver accurate results a model has always to be initialized
with the actual WIP (work-in-process) and actual status of the resources.
V. DIGITAL FACTORY ARCHITECTURE
The digital factory concept requires the integration of design, engineering, planning,
simulation, visualization, communication and control tools on all planning and factory
levels. Each of the particular tools requires specific algorithms and specific data. The
digital factory approach aims at using common data for all applications on different
modeling levels in order to enable collaboration with virtual models for different
purposes and different levels of detail. Therefore an open architecture is an important
feature of the digital factory concept. For the integration of suppliers into development
and supplier networks, open interfaces need to be developed with the exclusion of the
proprietary ones. Open interfaces and interoperability are the key factors for
implementing digital manufacturing concepts. Conversely, the lack of open standards
within a digital factory environment creates significant integration and implementation
effort for customers trying to deploy digital manufacturing.
1. Open Plant Backbone - an open plant backbone is a scalable digital corporate
backbone to transform the process of digital manufacturing. It provides an open
platform for the integration of independent software solutions that seamlessly
interoperate with one another in a digital factory environment. Open XML
technology gives a platform for factory wide data exchange.
2. Plant Data Management - manufacturing planning and execution involves a
variety of complex and interconnected activities from part and assembly process
planning to plant design, ergonomic analysis and quality planning. Information
and data from product design, manufacturing engineering and production
management have to be transparently handled for all applications in the digital
factory environment.
3. Plant Process Management - plant process management tools establish the
relationships and associations between product, process, plants and resources,
which are the basis for the creation of a manufacturing plan. The overall goal is to
allow all users to quickly assess the impact of their decisions on product, process,
plant and resource requirements. Software tools are required for simulation,
workflow, change management, integrated visualization, and configuration
management as well as integration tools.
4. Supply Chain Management – solutions, which let manufacturers monitor supply
pipelines in real time, replacing inventory safety stocks with accurate, up-to-theminute information on material availability, location and delivery schedules.
RFID technology (Radio Frequency Identification) and its tags on pallets and
shipping containers, in raw material combined with scanners or readers on
warehouse loading docks, storage racks, conveyor belts, aggregates, reservoirs or
technological bridges track inbound and outbound shipments and monitor current
inventory levels.
5. Monitoring, product and production tracking tools - capture and communicate
real-time manufacturing data automatically from the shop floor and give a real-time view of the production environment. These tools provide the ability to view
the data from several different perspectives, such as by product, work in process,
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 76 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
route, tools, equipment, material, and labour. This ability helps to meet the
requirements of diverse users in the organisation. The monitoring, product and
production tracking complement the ERP systems by capturing manufacturing
data to a level of detail and precision that ERP systems cannot match. The
resulting information allows for the rapid identification of problem causes and fast
reaction to limit their impact.
6. Linking the business system - in a digital factory environment the operative
production planning and control also require a link to the enterprise resource
planning level ERP. The ERP connectors shall ensure such a interconnections,
which can provide data import and export facilities for routes, consumptions,
equipment and users and at the same time connect monitoring systems HMI,
SCADA, and product management systems to the business ERP-systems. Their
main goal is to update the ERP with real-time floor data.
VI. DESIGNING MINE-WIDE PRODUCTION SYSTEM ON DF PRINCIPLES
A. Production lifecycle management
Designing a production lifecycle management (PLM) concept covers an integrated
approach to enhance the product and production engineering processes. Within this
concept the simulation is one of the key technologies and can be applied in virtual
models on various planning levels and stages to improve the product and process
planning. In the first phase of such a PLM concept the focus should be on integrated
product engineering. In the case of new concept for sustainable row materials production
it means integration and exploitation of processes in exploration, extraction, materials
processing and recycling. For application of this type of integrated production
engineering are many only a few tools already available in the market. The second phase
includes the plant design and optimization in a collaborative environment concurrently
with the product engineering. Couples of tools are available for specific purposes.
However, there is still a lack of open integration possibilities between tools, planning
levels, and optimization on a multi criteria level. The third phase of a PLM concept
focuses on operative production planning and control down to the factory floor. This
approach requires an extremely high effort and future research is needed to develop
methods and tools for this approach.
Future work should focus on open standard interfaces available for integration of
various tools from different software vendors into the digital factory system architecture.
The realization of the digital factory concept needs various application components such
as design and planning software, GIS, visualization or simulation tools [9]. All these
have to function closely together. A single application system cannot cover the complete
range of required functionalities; this can be achieved with the use of specialized
software systems and their integration. Therefore, the requirements for each such a
system include:
• Networked system and data architecture with integration of processes and
product development process.
• Open system architecture with standard interfaces.
• Modular architecture for expandability.
• Efficient data management.
• Consistent 3D and 4D-visualisation platform.
• Advanced documentation and content management systems (DMS and CMS).
• Knowledge management approach involving to the system.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 77 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
The mine-wide production system concept or architecture in raw materials area
requires the integration of design, engineering, planning, simulation, visualization,
communication and control tools on all planning and factory levels [8]. Each of the
particular tools requires specific algorithms and specific data. The mine-wide production
system approach aims at using common data for all applications on different modeling
levels in order to enable collaboration with virtual models for different purposes and
different levels of detail [13]. Therefore an open architecture is an important feature of
the mine-wide production system concept. In practical use a mine-wide production
system applications require the use of diverse SW components. For the integration of
suppliers into development and supplier networks, open interfaces need to be developed
with the exclusion of the proprietary ones. Open interfaces and interoperability are the
key factors for implementing digital manufacturing concepts [9]. Conversely, the lack of
open standards within mine-wide production system environment creates significant
integration and implementation effort for customers trying to deploy a production
lifecycle management.
B. Comprehensive platforms for production-relevant knowledge
The future concept and architecture of production-relevant knowledge and generally
within mine-wide production system design of raw materials area, addresses the
production lifecycle management through interoperable models, engineering platforms,
computer-assisted product, process development and analysis, virtual prototyping and
testing environments to reduce the need for physical mock-ups. Generally it covers [15]
four main areas to develop:
• Comprehensive engineering platforms - that enable cross-disciplinary
information sharing, workflow integration and the capture of production-relevant
knowledge (e.g. manufacturing or treatment process knowledge embedded in the
models and the engineering tools), supporting the reuse of knowledge across
stakeholders and the product lifecycle (e.g. from use to design). The product
lifecycle in raw material processing area should support the focus areas covering
the whole lifecycle - from exploration and extraction until reuse and recycling. It
should reach processes from the exploration, the identification of valuable mineral
resources to the sellable products. All steps of the supply and production chain for
mineral resources should be underlined with societal issues of various kinds.
• User-intuitive tools for simulation and virtual prototyping with forward and
backward compatibility – that enable using of finer digital models to increase
accuracy and integrating aspects such as functionality, forming, assembly. The
work should also aim at interoperable models enabling the use of various aspects
of design and engineering, model auto-generation and robustness (e.g. automated
meshing and optimization) as well as the use of CAD, CAE, Virtual Reality,
volume, fluid, structure, polygonal and process models in the various production
stages. The future is the adaptation to next-generation of high-performance multicore computing clusters (cloud computing).
• Modeling and simulation tools of full (holistic) complex products and processes –
that enable using of multi-physics and support for tolerance changes in the
models. The very important is the digital modeling and simulation of product and
production process behavior, e.g., regarding material properties from micro to
macro scale (from the atomic level upwards).
• Costs-to-benefit monitoring offers the cost-to-benefit evaluation and monitoring
of cost aspects accomplished by organizational, logistics and technology changes
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 78 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
[14]. Such a system should provide dynamic economic comparison of real data of
the present state compared to data after technologic logistics optimization. Mining
companies would benefit from such a cost monitoring system taking into account
their specific production and financial goals. Overall costs will be reduced to
enable exploiting lower grades, extending life of mine and overall profitability.
The results are monetary statements to mine life cycle costs, mining costs, mining
risks and performance of mining performance units. The benefits from cost
monitoring are the following:
a. The holistic and synchronous consideration of costs, risks and
performance already during the strategic planning;
b. The analysis and evaluation of technique and economic planning
alternatives as well as the utilization analysis of multiple planning
scenarios.
VII. CONCLUSION
A presented facts are supported by own original research used in some structural
projects and international projects which promote the above general presented facts. Our
workplace is established in the European structures farthest from the Slovak R & D
organizations. We are a member of European Technology Platform for Sustainable
Mineral Resources (ETP SMR), where we are a member of High-Level Group and one of
the founders of new platform. We are the member of the largest European research
project - FP7 Program/Project I²Mine: Innovative technologies and concepts for
intelligent deep mine of the future. We are the member of another FP7 project: ERAMIN dealing with building a European research network in industrial raw materials and
of course this HU-SK workshop, which is part the cross-border co-operation programmer
HU-SK: Virtual reality laboratory for factory of the future. Our workplace is a proactive
member of the consortia for the new European Innovation Partnerships: European
Innovation Partnership (EIP) on Raw Materials and KIC (Knowledge Innovation
Community). The VRP potential results are the following challenges and projects in
which VRP is an important part: ESEE Initiative for Knowledge Innovation
Communities on Raw materials for Eastern and South-Eastern Europe established with
Montanuniversity of Leoben, Magnesium Chloride Commitment with K + S and EscoSalt, possible continuation of currently running FP7 I²Mine project titled Commitment
I²Mine – 2 and continuation of the pilot implementation of I²Mine project titled
Commitment I²Mine-pilot.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 79 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
REFERENCES
[1]
[2]
Cehlar, Michal; Teplicka, Katarina; Szabo, Stanislav. (2009). Possibility of new mining project
extracting in conditions of crisis. In: ACTA MONTANISTICA SLOVACA, Vol. 14, No 4, pp. 314-322
CEHLÁR, Michal; RYBÁR, Radim; SOUŠEK, Radovan; SZABO, Stanislav. (2011). Surface mining
technology and economy. Pardubice: Institute of Jan Perner. 2011. p. 331. ISBN 978-80-86530-76-5.
[3]
Dorčák D. & Spišák J. (2004). Reengineering methodology using for optimization of complex processes
of raw materials extraction and processing, Acta Montanistica Slovaca, Slovakia, 2004, 9 (2), 72-78
[4]
Grohol M. (2012). European Commission, Potential for a pan-European knowledge base on resources
and
reserves;
13
September
2012,
Brussels
http://ec.europa.eu/enterprise/policies/rawmaterials/files/docs/eu_us_knowledge_raw_materials_en.pdf
Horizon 2020 (2011). The Framework Programme for Research and Innovation, COMMUNICATION
FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE
EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE
REGIONS, Brussels, 2011, COM(2011) 808.
[5]
[6]
I2MINE (2011). Innovative Technologies and Concepts for the Intelligent Deep Mine of the Future, The
project is funded by the European Commission under the Cooperation Programme of the 7th Framework
Programme for Research and Technological Development in the ’Nanosciences, Nanotechnologies,
Materials and new Production Technologies (NMP)’ theme, Grant Agreement No: NMP2-LA-2011280855 - I2Mine, http://www.i2mine.eu/
[7]
Kostúr, K. (2002). The development of information technologies, Acta Montanistica Slovaca, Košice,
2002, 4 (1), 235-238
[8]
Koštial, I. & Rybár, P., Podlubný, I. (2002). Informatization of raw materials extraction and processing looking forward to the XXI century, Acta Montanistica Slovaca, Košice, 2002, 4 (1), 231-234
[9]
Kuehn, W. (2009). Digital Factory – Integration of simulation enhancing the product and production
process towards operative control and optimisation, Wuppertal, 2009
[10] Lavrin A. & Zelko M. (2006). Knowledge sharing in regional digital ecosystems, Organizacija, Slovenia,
2006, 39 (3), 191-199
[11] Lipsett, M.G. & Ballantyne, W.J.,Greenspan, M. (1998). Virtual Environments for Surface Mining
Operations,
[12] CIM Bulletin, 1998, 1 (1)
[13] Prawel, D. (2007). The Advent of Visual Manufacturing, White Paper, President & Principal Consultant,
Longview Advisors Inc, London, 2007
[14] Zelko, M. & Oravcová, E. (2013). Transforming the raw material industry with respect to the
environment, In: European Scientific Journal. Vol. 9, no. 32 (2013), p. 59-72. - ISSN 1857-7881
[15] Lavrin, A. & Zelko, M. & Oravcová, E. (2013). Innovation of mine-wide production system in raw
material resources area In: IDIMT- 2013 : Information Technology Human Values, Innovation and
Economy : 21st Interdisciplinary Information Management Talks : Sept. 11-13, 2013, Praque, Czech
Republic. - Linz : Trauner Verlag, 2013 P. 259-266. - ISBN 978-3-99033-083-8
[16] Spišák J., & Zelko M. (2010). The Advanced Technologies Development Trends for the Raw Material
Extraction and Treatment Area, Products and Services, from R&D to Final Solutions, SCIYO, Croatia,
2010, ISBN , 257-278
[17] Zelko M., & Lavrin A. (2011). New trends improving the management and technological base of
production on Earth resources, Transactions of the Universities of Košice, Slovakia, 2011, 1 (1), 18-22
[18] Zelko M. & Petruf M., Spišák J. (2010). Environment and risk factors as the part of the European
technology platform for sustainable mineral resources, Proceedings from conference, Slovakia, 2010,
131-136
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 80 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Advanced 3D interfaces in business
processes
Pokročilé 3D rozhrania v podnikových
procesoch
1
1,2
Róbert Peťka, 2Dušan Janovský
Katedra počítačov a informatiky, Fakulta elektrotechniky a informatiky,
Technická Univerzita v Košiciach, Slovenská republika
1
[email protected], [email protected]
Abstract — In business, there are many processes that are nowadays processed with the
help of computer technology. Starting from purchase of raw materials, through their
processing to the expedition, due to the vastness of the data processed, there are computers
successfully applied. Despite the availability of advanced 3D interface when working with
computers, yet essentially obsolete but time-tested interface like mouse and keyboard are
used. The aim of this article is to outline the options for improving the interaction between
human and computer when processing large data in business processes.
Keywords — Human computer interaction (HCI), Virtual reality, Management.
Abstrakt — V podnikoch existuje mnoho procesov, ktoré sú v dnešnej dobe spracovávané
za pomoci výpočtovej techniky. Od nákupu surovín, cez ich spracovanie až po samotnú
expedíciu sa kvôli rozsiahlosti spracovávaných dát úspešne uplatňujú počítače. Napriek
dostupnosti pokročilých 3D rozhraní sa pri práci s výpočtovou technikou stále používajú v
podstate už zastarané, ale rokmi overené rozhrania typu myš a klávesnica. Cieľom tohto
článku je načrtnúť možnosti vylepšenia spôspbu interakcie medzi človekom a počítačom pri
spracovávaní rozsiahlych údajov v podnikových procesoch.
Kľúčové slová — interakcia človeka s počítačom (HCI), virtuálna realita, manažment.
I. ÚVOD
Od počiatkov používania výpočtových systémov bolo nutné riešiť problematiku
interakcie človeka s počítačom (Human-Computer Interaction - HCI)[1] prebiehajúcu na
rozhraniach týchto systémov. V súčasnosti rozdeľujeme rozhrania do týchto troch
základných skupín[2]:
• rozhrania príkazového riadku
• grafické používateľské rozhrania
• bio-adaptované rozhrania na báze technológií virtuálnej reality
Tretia menovaná skupina zahŕňa 3D rozhrania, ktoré umožňujú ľahkú a intuitívnu
komunikáciu a interakciu človeka s počítačom. Patria tu napríklad pohybom ovládané
herné konzoly, dotykové rozhrania mobilných zariadení a ďalšie. Tento článok popisuje
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 81 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
niektoré z týchto pokročilých zariadení a možnosti ich využitia pri práci s výpočtovou
technikou v rámci podnikových procesov.
II. POKROČILÉ 3D ROZHRANIA A ICH POUŽITIE
V dnešnej dobe je na trhu dostupných mnoho pokročilých bio-adaptovaných rozhraní.
Patria medzi nich rôzne sledovače polohy, ktoré môžeme na základe použitej technológie
rozdeliť na tieto skupiny[3]:
• mechanické
• magnetické
• ultrazvukové
• optické
• inerčné
Každá technológia sledovania polohy ma svoje výhody aj nevýhody. Magnetické
sledovače sú náchylné na kovové predmety a iné magnetické polia vo svojom okolí.
Optické zasa vyžadujú priamu viditeľnosť sledovaného predmetu. Samotné nasadenie
konkrétneho typu musí byť podporené dôslednou analýzou a potrebami daného riešenia.
V tomto článku sa zameriame na niektoré z aktuálne dostupných produktov, ktoré sú
vhodné na nasadenie do kancelárskeho prostredia, pričom majú krátky čas prípravy a
teda v čo najmenšej miere kladú špeciálne požiadavky na používateľa.
Prvým z možných vylepšení je zariadenie s názvom MYO(Obr. 1)[4]. Tvorí ho
špeciálny pás, ktorý sa umiestňuje na predlaktie. Zariadenie zachytáva drobné pohyby
svalstva predlaktia ako aj elektrické impulzy prichádzajúce do svalov mozgu. Pre
detekciu švihových pohybov ruky má zariadenie zabudovaný inerčný sledovač polohy.
Ovládače zariadenia majú priamo zabudovanú podporu najbežnejších funkcií operačného
systému.
Obr. 1: 3D ovládač MYO
Ďalším zariadením je prsteň Fin(Obr. 2)[5]. Zariadenie zachytáva akcie prstov a
pomocou bezdrôtovej komunikácie dokáže ovládať funkcie viacerých zariadení vrátane
mobilného telefónu a počítača. Zariadenie funguje podobne ako MYO. Detekcia gest
prebieha na základe sledovania elektrických impulzov smerujúcich do ruky ako aj
samotného pohybu prstov.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 82 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Obr. 2: 3D ovládač Fin
Posledným zo uvažovaných zariadení je optický sledovač prstov ruky LeapMotion
(Obr. 3)[6]. Tento ovládač je priamo pripravený pre použitie zo stolným počítačom alebo
notebookom. Zariadenie sleduje polohu a pohyb rúk vo vymedzenom priestore, čím
umožňuje bezdotykovú interakciu s počítačovým systémom.
Obr. 3: 3D ovládač Leap Motion
Každé z týchto zariadení predstavuje vylepšenie interakcie medzi človekom a
počítačom. Napriek pomerne širokej podpore a softvérovej výbave týchto zariadení na
bežne používaných operačných systémoch, by v ideálnom prípade bolo pre čo najlepšiu
integráciu do pracovného procesu vhodné upraviť softvérové prostriedky použité v
podnikoch tak, aby priamo podporovali integráciu a funkcie týchto zariadení.
III. ZHRNUTIE
Cieľom tohto článku bolo načrtnúť možnosti vylepšenia spôsobu interakcie medzi
človekom a počítačom pri spracovávaní dát v podnikových procesoch. Boli predstavené
moderné pokročilé bio-adaptované 3D rozhrania, ktoré umožňujú človeku prirodzenú
interakciu s výpočtovým systémom. Aj napriek tomu, že už samotné hardvérové
prostriedky prispievajú k zefektívneniu tejto interakcie, v ideálnom prípade by bolo
vhodné upraviť aj samotné softvérové prostriedky.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 83 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
REFERENCES
[1] Card, S.K.; Moran, T.P.; Newell, A.: The psychology of human-computer
interaction, Hillsdale [etc.] : Lawrence Erlbaum, 1983, ISBN 0-89859-243-7
[2] Sobota, B.; Hrozek, F.: Virtuálna realita a jej technológie, vol. 1, Košice : TU, 2013,
ISBN 978-80-553-1500-3
[3] Durlach, I. N.; Mavor, S. A.: Virtual Reality: Scientific and Technological
Challenges, Washington, D.C.: NATIONAL ACADEMY PRESS, 1995, 556 p.,
ISBN 0-309-05135-5
[4] Thalmic Labs Myo homepage, http://www.thalmic.com/en/myo/
[5] RHLvision Technologies Fin homepage, http://www.wearfin.com/
[6] Leap motion Controller home page, https://www.leapmotion.com/product
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 84 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
OpenGL optimalization
OpenGL optimalizácia
1
1,2
Czaba SZABÓ, 2Gabriel POLÁK
Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected], [email protected]
Abstract — The contents of this article are Optimizing OpenGL API. Description of these
optimizations and compare the rendering performance.
Keywords — optimalization, OpenGL, rendering, performance
Abstrakt — Obsahom tohto článku sú optimalizácie na OpenGL API. Opis týchto
optimalizácii a aj výkonnostné porovnanie.
Kľúčové slova — optimalizácie, OpenGL, renderovanie, výkon
I. ÚVOD
OpenGL obsahuje funkcionality pomocou ktorých dokážeme znížiť vyťaženie
ovládača grafickej karty a tak zvýšiť efektivitu samostatného renderovania. Zvýšenie
efektivity má za následok zvýšenie počtu vyrenderovaných snímkou za sekundu. Tým je
umožnené pridať do scény viac objektov čo sa prejaví na lepšom vizuálnom vneme zo
scény. Veľmi často nastáva situácia, v ktorej aplikácia dokáže renderovať viac, aj
samostatné GPU by dokázalo vykresliť oveľa viac, ale driver je na toľko vyťažený, že
brzdí renderovanie. Častokrát je to spôsobované volaniami, ktoré sú veľmi časovo
náročné pre driver alebo OpenGL. Môžeme spomenúť niektoré takéto náročné volania na
API, medzi, ktoré patrí napr. synchronizácia, alokácia prostriedkov, validácia,
kompilácia shaderov, aktualizovanie buferov alebo nastavovanie buferov , programov, a
pod. Je dôležité spomenúť, že optimalizácie existujú už dnes v samostatnom OpenGL od
verzie 4.2 vyššie. Takéto optimalizácie sú napríklad použitie polí textúr, nepriameho
vykresľovania alebo buferov.
II. VIAC OBJEKTOV V SCÉNE
Cieľom je vyrenderovať viac rovnakých objektov v scéne. Rovnakých objektov sa
mysli objektov s tým istým polygonálnym modelom. Menia sa len parametre toho
objektu ako napríklad textúra alebo materiál. Taktiež vzniká potreba generovať nové
polygonálne modely s každým snímkam, čo je dosť obtiažne. Pre tieto potreby
spomenieme tri techniky renderovania:
• Persistent – mapped buffers
• MultiDrawIndirect
• Texture arrays
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 85 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Pri technike persistent mapping ide hlavne o to, že buffer sa označí ako persistent
pričom, ale stráca synchronizáciu. Synchronizáciu musí programátor riešiť sám. Táto
technika sa používa ak každým snímkam meníme geometriu a stále musíme mapovať a
odmapovať buffery. Niektoré ovládače majú problém s touto technikou keďže je tam
porušený multithreading. Touto technikou sa môže zvýšiť výkon renderovania až dvojtroj násobne. MultiDrawIndirect spočíva v tom, že sa vykresľujú viaceré objekty jedným
volaním. [2] Pri tomto spôsobe sa pri volaní príkazu vykresľovania pripoja aj pomocné
dáta a podľa nich GPU vykreslí aj ďalšie objekty. Volanie nastane len raz, ale vykresľuje
sa niekoľkonásobne viac objektov. Spolu s týmto vylepšením sa používa aj instancované
vykresľovanie. Pri tomto vykresľovaní sa každé volanie pre vykresľovanie čísluje a
potom sa jednoducho znova zavolá. GPU dokáže efektívne pracovať, pretože volanie sa
len znova zavolá. Pri multidraw technike sa zvyšuje výkon renderovania približne šesť až
desať násobne. Posledná spomínaná technika je zaobalenie textúr do poľa textúr. Potom
sa do shadera načíta len jedno pole a shader program si z neho vyberie textúru, ktorú
potrebuje. Inak by bolo potrebné do shadera posielať niekoľko textúr a znova ich
aktivovať na GPU čo sú dalšie volania GPU navyše a efektivita klesá. Len týmto
jednoduchým trikom sa dá navýšiť výkon až päť násobné.
A. Bindless texture
Túto optimalizáciu sa snaží presadiť hlavne AMD [4], aj keď je už známa od čias
GeForce rady 8000. Práca s textúrami je dosť náročná. Najprv je nutné vytvoriť
samostatnú textúru a alokovať pamäť. Potom je potrebné pri renderovaní aktivovať danú
textúru a s ňou spojenú textúrovaciu jednotku. Následne sa v shaderi deklarujú
samplery, ktoré samplujú texturu. Ako posledný prichádza príkaz pre samostatné
vykresľovanie. Týchto príkazov je pomerne veľa a majú isté obmedzenia. Hlavne
obmedzenia sú :
• limitovaný počet textúrovacích jednotiek
• zmena stavu GPU medzi jednotlivými volaniami
• veľké zahltenie ovládača
AMD uviedlo jedno riešenie. Spočíva v tom, že jednoducho zrušilo aktivovanie textúr na
GPU (tkz. binding). Taktiež zrušilo textúrovacie jednotky. Týmito krokmi môžeme na
GPU aktivovať naraz také množstvo textúr aké podporuje GPU, nie aké podporuje
OpenGL. V shader programe sa potom pristupuje k textúram cez pointer. Pointer je
vlastne 64 bitové číslo, ktoré si vygenerujeme pomocou OpenGL. Do shadera sa tieto
pointery prenášajú pomocou uniformného buffera alebo pomocou štruktúry, ktorá je
spojená s volaním vykresľovania. Spomínané kroky spôsobia, že už nie je potrebné stále
aktivovať (bindovať) textúry každým novým snímkam. Nevýhodou tohto riešenia je
nezaručená 100% funkčnosť na všetkých platformách.
III. RENDEROVANIE ČASTICOVÝCH SYSTÉMOV
Pri renderovaní časticových systémov nastáva jeden problém a tým je obrovské
množstvo častíc, ktoré je potrebné vyrenderovať. Ako príklad môžeme uviesť až 160
tisíc častíc generovaných a renderovaných každým snímkam. K tomu ešte okolo 240 tisíc
netextúrovaných objektov. Každá častica má svoju maticu, takže výpočet bude strašne
obtiažny. Každá častica môže mať vlastnú textúru, ktorá je buď načítavaná zo súboru
alebo sa môže dokonca generovať počas behu aplikácie. Celkovo tak vzniká obrovské
množstvo textúr. To všetko by sme chceli vyrenderovať bez použitia instacing-u. Hlavná
myšlienka pri renderovani dát, ktoré sa menia každým snímkam je použitie buffera, ktorý
tieto dáta uchováva a jeho obsah sa stále mení. Na začiatku sa buffer mapuje a potom sa
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 86 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
odmapuje. Tieto operácie mapovania a odmapovania bufera majú veľkú réžiu, preto
OpenGL prišlo s funkciou glMapPersistent. Tato funkcia spôsobí to že bufer sa
namapuje len raz a to na začiatku a potom uz ostane stále namapovaný. Pri používaní
tejto funkcie sa programátor musí sám starať o bezpečnosť pri threadoch. Môže nastať
situácia, keď sa bufer nestihne aktualizovať celý a už bude poslaný na GPU. Výkonové
navýšenie môžeme vidieť na obrázku (Fig.1).
Fig. 1 Výkonnostne rozdiely pri renderovaní netextúrovaných častíc
Pri textúrovaných objektoch je renderovanie o dosť sťažené hlavne kvôli veľkému
počtu textúr. Avšak ani to nie je nemožné. OpenGL obsahuje funkciu glBufferStorage,
ktorá vytvorí buffer pre presne takéto renderovanie. Hlavnou myšlienkou je všetky dáta
spojené s renderovaním (matice, pointer na textúry, materiály a iné) vložiť do jedného
bufera a potom v shader programe pristupovať k dátam z tohto bufera. Tento buffer bude
dosť veľký avšak samotné OpenGL sa s tým dokáže veľmi dobre vyrovnať. Pri používaní
takého veľkého bufera potrebujeme aj spôsob ako indexovať dáta v shader programe.
Samozrejme, že môžeme použiť aj MultiDrawIndirect ako je spomínane vyššie alebo
pole textúr. Toto vylepšenie je dosť jednoduché a k tomu ušetrí veľmi veľa volaní na
GPU a tým zvýši výkon samotného GPU ako môžeme vidieť na obrázku (Fig.2).
Fig. 2 Porovnanie vzkonu pri renderovani texturovanzch castic
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 87 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
IV. RENDEROVANIE ČASTICOVÝCH SYSTÉMOV
V článku je spomenutých pár optimalizácii, ktoré dokážu výrazne zvýšiť kvalitu
scény.[1] Je dôležité spomenúť, že tieto optimalizácie sú dostupné aj na dnešnom
hardvéri a nie je nutne kupovať nový hardvér ako je to v prípade DirectX. Tieto
optimalizácie sa môžu začať využívať v dnešných počítačových hrách. Vývojové štúdia
ako Crytek[5] už začali mohutne pracovať na optimalizáciách, ale sú aj vývojové štúdia
ako Dice [6], ktoré takéto fakty nezaujímajú. Na príkladoch si môžeme všimnúť ako
pekne dokáže OpenGL pomocou rozšírení [3] škálovať svoj výkon až niekoľko násobne.
Z grafov môžeme aj usúdiť, ako DirectX zaostáva za OpenGL. V dnešnej dobe je po
výkonnostnej stránke DirectX za OpenGL avšak vývojové štúdia stále používajú DirectX
pretože je dosť náročné portovať cely hrací engine z DirectX na OpenGL. Ak sa
pozrieme na dnešné renderovanie z komplexnejšieho hľadiska môžeme si všimnúť, že
renderovanie po stránke API speje k tomu, že najprv sú pripravené dáta pre
renderovanie, potom sa všetky dáta naraz posielajú na GPU a následne sa vykoná
vykresľovanie.
POĎAKOVANIE
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
POUŽITÁ LITERATÚRA
[1]
[2]
[3]
[4]
[5]
[6]
Cass Everitt, Graham Sellers, John McDonald, Tim Foley Approaching zero driver overhead , Game
developer conference 2014
http://www.gputechconf.com
http://www.opengl.org/registry/
http://www.amd.com/en-us/innovations/software-technologies/mantle#overviewR.
http://www.crytek.com
http://www.dice.se
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 88 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Simulation analysis of productionand logistic processes
1
Norbert TÓTH, 2Dr. Richárd LADÁNYI
1,2
research fellow, Department of Environmental Management and Logistics,
Institute for Logistics and Production Engineering (BAY-LOGI), Bay Zoltán
Nonprofit Ltd. for Applied Research, Hungary
1
[email protected], [email protected]
Abstract - The main object of the manufacturing companies is to perform the customer
orders on time. Furthermore, the increase of competitiveness of the companies can be
achieved by low-cost productions and efficient operation of their logistic systems[1]. “Digital
factory concept” is often used for enhance the efficiency of production and logistics processes
which applies modeling and computer simulation analysis of the existing production
processes.
Keywords — digital factory, production- and logistics processes, modeling, simulation, 3D
visualization
I. INTRODUCTION
Efficient operation is important to increase the competitiveness of manufacturing
companies therefore use of cost-effective digital factory planning methods are essential.
These methods include computer aided modeling, simulation and 3D visualization tools.
By means of these tools modeling and simulating of the real production processes is an
efficient way to examine the utilization of production capacities and logistics resources in
complex systems. The role of front-loading of virtualized system parameter changes on
production simulation was emphasized. Therefore an existing factory can be examined in
the following ways:
• modeling of real production and logistics processes are in focus, and the object of
the examination is to improve the system parameters, and to optimize the
operations inside.[3],
• on the other hand, displaying in 3D of the factory objects gives more realistic
picture of the examined system. Operation of production and material handling
equipment could be done easily by these realistic models.
II. SIMULATION OF PRODUCTION PROCESSES
In the frame of the VIRTLAB project implementation the production capacities and
the logistic resources were analyzed at a new industrial door production plant on the base
of the pre-defined layout. The effects of seasonal demands were taken into account
during the simulation examinations. .
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 89 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
There was simulation examinations carried for analyzing the production system by
means of the following issues:
• determining the bottlenecks among the production capacities;
• examining the temporary stock quantities in between the production steps (e.g.
between rolling and riveting) to determine the effects of the coil changes on the
seamless production;
• human resource needs (e.g. for supplying the production machines);
The examined production processes can be divided into four parts: rolling-, riveting-,
assembling and packing appliances. Temporary stocks are used between the rolling and
riveting machines. Size of this buffer is very important for system operation therefore
modeling of this buffer had to be carried out. It was one of the most important outputs of
our tasks. There are two different types of material handling processes applied in the
examined system. Some of them are carried out manually and the others are automatized
by applying a conveyor between certain points of the production appliances. The next
figure shows the simulation model of the production and logistic systems ( Fig 1)which
built upon a discrete, event-controlled simulation program (Tecnomatix Plant
Simulation)[4].
Fig. 1 System-model in Plant Simulation
The next conditions were applied during the modeling procedures:
• Productivity have to be analysed by taking into account 140% of the daily
average production quantities for meeting the annual demands (it means more
150 set of doors to be produced during all shifts);
• Examined time interval was a workday with 2 shifts (2*8 hours);
• Temporary stock between the rolling and riveting steps have to cover the supply
demand of an hour of production (of riveting-, assembly- and packaging
capacities) for ensuring the continuity of the production;
• The length of the door profiles in the calculations was equal to fixed in 4050mm
as that is the length of the main proportion of the user demands;
• Input coil weight was fixed to 2 tons;
• The duration of the coil changes was maximized to be an hour.;
• Having the necessary temporary stock was a preliminary condition at the start of
the simulative examinations;
• Production time of rolling machines was changeable and their operation was
interruptible, the production time of the other production capacities was fixed in
the model of the simulation.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 90 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
The main system parameters were: number of workers, coil-change time, processing time
of rolling machines. Minimum- and maximum values of simulation parameters are
defined on the next figure. (Fig. 2).
Parameters to be optimized
lower bound upper bound
number of workers [pcs]
(for material handling between rolling- and riveting machines
and for coil-changes at rolling machines)
time of coil-changes [sec]
rolling machine 215C [sec]
2
4
300
45
3600
80
rolling machine 2V [,sec]
20
60
rolling machine 9VL [sec]
45
Fig. 2 System parameters to be optimized
80
A multidimensional state-space was generated on the base of different combinations of
the parameter-values during the examinations. The optimal combinations of these
system-parameter value-pairs were searched in this state-space. This search is performed
by a pre-defined genetic algorithm (GA) of Plant Simulation.
Fig. 3 Buffer size in function of coil-change times
The target function was the maximization of the daily produced volumes. The actual
quantities in the buffer were examined during the analysis [2]. The analysis discovers a
close relationship between the coil-change time and the buffer size (Fig. 3). The GA
results 15 different possible combinations of the input parameters. The next figure (Fig.
4) shows two cases of these possibilities in details.
Results and conclusions of the simulation examinations
• required annual production volume could be ensured by 50%-75% utilization of
the rolling machine capacity;
• there is considerable amount of free capacities of rolling machines as their
operation speed exceeds the speeds of other production steps;
• coil-change time determines the size of the buffer between the production steps
as the following:;
o in case of 5 min: 50 pcs of door sets in the stock needed;
o in case of 60 min: 200 pcs of door sets in the stock needed;
• size of buffers have to be determined carefully for ensuring the flow of work
pieces continuously between riveting, assembly and packaging (for minimizing
the effects of the coil changes on the whole production procedure).
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 91 -
2. case: coil-changed time 60 min.
1. case: coil-changed time 5 min.
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
buffer size
utilization of machines
buffer size
utilization of machines
Fig. 4 Details of two cases
Conclusions of the first case:
• smaller buffer size could be realized as the contained temporary stock supply the
seamless production except of in case production difficulties;
• rolling procedure is continuous during all the time periods of the shifts;
• minimizing of waiting and failed states can be achieved by slowing down the
rolling machines.
Conclusions of the second case:
• reduction of operation time of machines causes growing of their specific
productivity ;
• increased temporary stock ensures continuous production;
• great buffer size is not easy to implement as there are not enough space between
the rolling and riveting machines;
• defined size of the buffer is enough for storing 200 pcs of door profiles.
III. 3D VISUALIZATION OF THE PRODUCTION SYSTEM
3D simulation model of the planned production system was built in the second part of
the VIRTLAB project work. This model covers all the planned production capacities. By
means of this 3D visualization the internal layout of the planned production plant can be
represented. (5) The modeling was performed by FactoryCAD (Tecnomatix) software
which provides a number of predefined 3D objects.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 92 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
These objects are the following (e.g.):
• production machines;
• material handling equipment (conveyor, crane, truck, robot);
• industrial objects (safety fence, stair, landing, ladder, ramp, door, window, wall);
• logistic objects (rack, warehouse, pallet, barrel, box).
Fig. 5 FactoryCAD model at the new plant
Spatial arrangement and utilization of the production plant area can be examined by
using the elaborated 3D model. It ensures the possibility of creating statistics about the
following:
• size of production areas;
• size of material handling area;
• size of social spaces;
• size of offices and corridors.
Conclusions regarding the internal layout of the production hall can be drawn easily.
Different spatial arrangements and layouts can be examined cheaply and quickly by
means of the applied modeling software.
IV. CONCLUSION
In this paper new digital planning methods of production factories are presented on the
base of the VIRTLAB project. This project work consists of two parts: building a
simulation model for optimizing the most important system parameters, and 3D
visualization. These two modeling methods help us to plan difficult and integrated
production systems more exactly.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 93 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
REFERENCES
[1]
[2]
[3]
[4]
Husi Géza - A lean alapú termelés kialakításának lépései (kivonat), Debreceni műszaki közlemények
2007/2, 2007
Cselényi J. – Illés B.: Anyagáramlási rendszerek tervezése I., Miskolci Egyetemi Kiadó, 2006. ISBN 963
661 672 8
Siemens Product Lifecycle Management: Tecnomatix Plant Simulation 11 User Guide (2011)
Steffen Bangsow - Manufacturing Simulation with Plant Simulation and SimTalk, Springer-Verlag,
2010, ISBN 978-3-642-05073-2
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 94 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Virtual user interface for operator
training process
1
1,2,3
Branislav SOBOTA, 2František HROZEK, 3Matúš KAŠPER
Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected], [email protected],
3
[email protected],
Abstract —Part of today's technology is so called augmented reality which combines
virtual reality with the real world. It is one of the newest innovations in the electronics
industry. This technology uses variety of graphics, sound and other sensory enhancements of
computer screens in real-time environments. Augmented reality is present in all sectors
nowadays. Its systems prefer graphics and adapt to the individual user's head, eye or hand
movements. This article presents possibilities of usage of virtual user interface for operator
training process in industry.
Keywords —augmented reality, computer graphics, gestures, user interfaces, virtual reality
I. INTRODUCTION
Augmented reality (AR) is used as a tool in the continuing strengthening of human
abilities such as awareness or performance. Augmented reality was originally developed
for military applications and subsequently was transferred to the civilian domain.
Currently it is used in areas such as healthcare, automotive, industrial control and
entertainment industries [1].
This technology can be also used as an interface in an interaction between human and
computers systems – HCI (human-computer interaction). Virtual interface was developed
at DCI FEEI TU of Košice (Department of computers and informatics, Faculty
of Electrical Engineering and Informatics of Košice). Its name is VUIUG (virtual user
interface using gestures) and it allows easy and interactive interaction using augmented
reality system.
Paper is divided into three parts. The first part presents AR and its technological
approaches. The second part in detail describes VUIUG (how it works and possible areas
of its applications). This part also presents applications which were created to present
VUIUG possibilities. The last part summarizes information presented in this paper about
VUIUG and its use possibilities as virtual user interface for operator training process.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 95 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
II. AGMENTED REALITY
There are several definitions of augmented reality. One was given by Ronald Azuma
[2] in 1997. Azuma's definition says that Augmented Reality: combines real and virtual,
is interactive in real time and is registered in 3D. Another one was given by Paul
Milgram and Fumio Kishino (Milgram's Reality-Virtuality Continuum) [3]. This
continuum is visualized as a line that is between reality and virtuality (Fig. 1).
Mixed reality
(MR)
Reality
Augmented reality
(AR)
Augmented virtuality
(AV)
Virtuality
Fig. 1 Visualized Milgram's Reality-Virtuality Continuum
This continuum was extended by Mann [4] into a two-dimensional plane of
"Virtuality" and "Mediality".
For the creation of an AR system it is also important to know which technology is used
for visualization and aligning of virtual objects into user’s view.
Based on how user sees augmented reality there can be two types of systems [1]:
• Optical see-through systems: user sees directly real world that contains added
computer generated objects. This category of systems usually works with semitransparent displays.
• Video see-through: user sees real world image with added virtual objects indirectly.
Usually via camera – display system.
According to method how virtual objects are aligned with real scene image there are
two systems used [1]:
• Marker systems – real scene will be added with special markers. These will be
recognized during runtime and replaced with virtual objects.
• Markerless systems – processing and inserting virtual objects is without markers.
Additional information is needed, for example image and face recognition, GPS
coordinates, etc.
III. VIRTUAL USER INTERFACE
A. Parts of VUIUG
VUIUG consists from pico-projector, camera, notebook and color marks. These marks
are used for better detection of the user's fingers in a 3D space. Hardware components
(projector and camera) are connected to the pendant like mobile wearable device. Both
are connected to the notebook which is in a bag on the back of a user. Visual information
can be projected by VUIUG on various surfaces and physical objects. Schematic view of
the interconnection between individual components is shown on the next figure (Fig. 2).
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 96 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Camera
Projected
image
Computer
Projector
Fig. 2 Schematic view of individual VUIUG parts
B. VUIUG workflow
The camera captures input image which contains user's hand gestures and physical
objects. The software processes the video stream data captured by the camera and
calculates the location of the colored marks on the tip of the user's fingers using
computer vision techniques. The movements and arrangements of these fiducials are
interpreted in gestures which act as interaction instructions for the application. The
maximum number of tracked fingers is limited by the number of unique fiducials. This
allows multi-touch and multi-user interactions.
The VUIUG workflow mentioned earlier can be divided into these steps (see Fig. 3):
1. camera captures the image and the user's hands gesture (fingers position)
2. application on the notebook process captured information and interprets hands
gesture (fingers position)
3. processed information are used for interaction with the application
4. output of the application is displayed on a surface using projector
Fig. 3 Workflow of the VUIUG
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 97 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
VUIUG can be used in many applications as their input/output interface. Two pilot
applications were created to present VUIUG possibilities:
• application Paint – application tracks user’s fingers (marked by color markers)
and using these information draws shapes and objects selected by a user.
Example of drawing using this application is shown in Fig. 4.
• application Image – display any image stored in the application. User can
control image attributes using one marker or multiple markers.
Fig. 4 Pilot application using VUIUG (example)
IV. CONCLUSION
HCI technology development is currently very rapid. Just the virtual-reality
technologies are probably the greatest progress in this area and also in industrial use [5].
Just deploying such technologies can be a significant change in the management of the
production process. At the same time, these technologies allow the creation of previously
impossible training procedures. These procedures especially their visual aspect and
interactivity may change, streamline and shorten the process of operator training.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 98 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
REFERENCES
[1]
[2]
[3]
[4]
[5]
B. Sobota, Š. Korečko, F. Hrozek, “Some Problems of Augmented Reality Application in Parallel
Computing System”, Proceedings of the Second International Conference on Computer Modelling and
Simulation, Brno, Czech Republic, 5.-7.9.2011, pp. 154-161, ISBN 978-80-214-4320-4
R. Azuma, “Tracking Requirements for Augmented Reality”, Communications of the ACM Vol. 36, No.
7, 1993, pp. 50-51
P. Milgram, F. Kishino, “A Taxonomy of Mixed Reality Visual Displays”, IEICE Transactions on
Information Systems, Vol E77-D, No.12, 1994, pp. 1321-1329
S. Mann, “Mediated reality with implementations for everyday life”. Presence Connect, 2002.
M. Hovanec, M. Varga, a kol., Inovatívne trendy a vízie v ergonómii využitím rozšírenej a virtuálnej
reality. 2012.In: Aktuálne otázky bezpečnosti práce : 25. medzinárodná konferencia : Štrbské Pleso Vysoké Tatry, 06.-08. 11.2012. - Košice : TU, 2012 S. 1-7. ISBN 978-80-553-1113-5.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 99 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Telescope: System Overview
1
Ladislav MIŽENKO, 2Daniel LORENČÍK, 3Jaroslav ONDO, 4Peter
SINČÁK
1, 2, 3, 4
Department of Cybernetics and Artificial Intelligence, Faculty of
Electrical Engineering and Informatics, Technical University of Košice, Slovak
Republic
1
3
[email protected], [email protected],
[email protected], [email protected]
Abstract — The Telescope system is intended to be a tool in remote diagnostic, monitoring
and controlling various system. In the scope of the VIRTLAB project, the Telescope is
developed as a platform for remote control of furnaces and other equipment. Since the
Telescope system is built to be platform independent, the testing platform is a robot Nao, as it
can be considered as a complex robotic system comprised from sensors and actuators. In this
paper, the final stage of Telescope system is described, in which the Telescope is up and
running and is ready to be put into production stage. Detailed technical documentation is a
separate document bundled with source codes.
Keywords — remote monitoring, remote diagnostic, remote control
I. TELESCOPE SYSTEM OVERVIEW
Telescope is a modular system of computer programs which allows:
• communication between user and connected devices
• communication between two or more connected devices
• operating connecting devices through the Internet all over the world
• In future it will allow to connect different modules according to user preferences
(telediagnostic module, video module, teleoperation module, etc.)
Telescope solves the problem of heterogeneous devices environment:
• Different interfaces for the programmer (API)
• Various programming languages
• Different interfaces for the user (GUI)
By device we mean every device that has the ability to communicate over the network
and can be accessed programmatically (has an API).
The Telescope system is created as a cloud-ready system (at any point can be ported to
the cloud architecture) and consists of Event and Diagnostic server (as a backend) and
web application offering the graphical user interface (GUI).
To speed up the development process the test bed for the Telescope is a robot Nao, as
it is a complex system consisting of sensors and actuators. The Telescope is intended to
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 100 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
be platform independent, therefore methods created for robot Nao are intended to work
on any complex (robotics) system. For any device to be able to connect to the Telescope,
the wrapper (similar to device driver) has to be created for the device. The required
documentation and code samples are available on Telescope system home page.
II. SYSTEM ARCHITECTURE
The Telescope system consists of two integral parts – Teleoperation and
Telediagnostics which, when combined, provide a full set of information for operator for
the need of completing the task remotely.
Main part of the system is Event server written in Python and acts as a semaphore for
exchanging messages between webserver and connected devices using websocket
technology. Webserver hosts Telescope and Telediagnostic website, and provides
controls and overview of connected devices for operators. Each connected devices must
have installed, or must communicate with Event server using Telescope wrapper
application. Wrapper opens websocket connection with server and exchange messages in
JSON format. Telediagnostic server runs parallel with Event server and provides services
for storing historical data of connected robots and has public Rest API for acquiring
these data and generate information about state of every single joint of the robot.
The system high-lever architecture overview is on the Figure 1.
Figure 1: Telescope - high level architecture overview
A. Event server
The essential part of backend is Event server.
• It is designed to run, communicate and cooperate with other Event Servers
• For a communication with the Event server the websocket technology is used
B. Web application
Web application is based on:
• PHP 5.3, HTML 5, CSS 3, Smarty templating language
• SQL database
Available and tuned for PC, SmartTV, mobile devices (iPhone, iPad, Android)
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 101 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
C. Diagnostic server
Designed for storing historical data of connected devices into database and calculates
health state of each joint.
• Provides public Rest API for easy communication among platforms
• Data is stored in JSON format in Mongo database
• Websocket communication with connected devices
III. CURRENT STATE OF THE PROJECT
The current project is split into two subprojects, where the main body of work on
Event server has been done prior to the summer 2013, and the Diagnostics server has
been created in 2014 (January to June)
A. Teleoperation
Teleoperation system is deployed and running live at www.telescopesystem.com
where users can register and add their devices into Telescope. Wrapper for robot Nao is
prepared and installer can be downloaded from website. After installation and restarting
device, wrapper is ready to communicate with Telescope and teleoperation is available at
user profile.
Teleoperation of robot Nao supports almost all robot features including single joint
movement, advanced behavior selection like walking, sitting, etc…, stiffness control and
text to speech provided by robots API.
Every user can add, remove or share device with other users. Online / offline state is
available to see for every device user added.
B. Telediagnostics
Along with installation of Telescope wrapper, Telediagnostic wrapper is also installed.
Diagnostic of device is available to turn on / off on Telescope website. Users can toggle
diagnostic using radio button on devices profile.
Telediagnostic wrapper communicates with server using websocket technology. On the
other side, Telescope website communicates with Diagnostics server using provided Rest
API. Website provides various views of devices state. User has overview of single joint
current state and historical data of joints and actuators, including temperature and battery
values. The use of Rest API allows for third party developers to consume the data stored
in the database of the Diagnostics server.
IV. EXPERIMENTS
During development of Telescope system, two main types of experiments were
conducted to test system responsiveness.
A. Experiments on local network
First set of test was test the system with all of the devices connected through the same
local network, when Telescope system, user and robot Nao were on the same subnet.
Tested were all features Telescope system is providing including robot control, behaviors
selection and diagnostics. All features were running smoothly with response under 50ms.
B. Experiments on remote network
Second set of experiments was to test the system responsiveness and functionality
when the devices were not on the same network.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 102 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
The test conducted included moving the robot outside the university, connect it to the
Telescope and measure the responsiveness and functionality.
First test was conducted in the same city – robot was connected to the Telescope
through the connection of local Internet provider, with the Operator being next to the
robot.
Second test was done with the robot being in Wagatsuma Laboratory in Kyushu
institute of Technology (KYUTECH) in Japan, with operators controlling the robot both
from KYUTECH and Technical university of Košice. During this test, we found out that
the general responsiveness is satisfactory, but for the Telediagnostics, the firewall rules
has to be changed. Video of this experiment was recorded and published on Youtube.
Third and fourth test has been done with the KYUTECH and Okinawa Institute of
Technology, when one of our colleagues was sent to help with test preparation and
execution there. We tested the connectivity and functionality with updated firewall rules
and also through the 3G cellular network, which also proved satisfactory.
V. FUTURE OF THE TELESCOPE
Currently, the Telescope system is up and running. Additional features are not
planned, only maintenance for the system. The videofeed feature has not been
implemented due to the focus on the teleoperation and telediagnostics. With the
Telescope system, the Redmine project planning environment and Gitlab source control
environment have been set up and can be used to track bugs in the Telescope system
during its period of active use.
The Telescope system is fully functional and prepared for the use.
VI. CONCLUSION
In this paper, we presented the current state of the project Telescope “as is” at the end
of the project HUSK Virtlab. The main source of detailed information is documentation
bundled with source codes of telescope and well-documented code of Telescope in itself.
The Telescope is ready for use, and the maintaining team has been created with the
bug tracking environment set up.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
REFERENCES
[1]
[2]
[3]
[4]
G. O. Young, “Synthetic structure of industrial plastics (Book style with paper title and editor),” in
Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 15–64.
W.-K. Chen, Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.
H. Poor, An Introduction to Signal Detection and Estimation. New York: Springer-Verlag, 1985, ch. 4.
B. Smith, “An approach to graphs of linear forms (Unpublished work style),” unpublished.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 103 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
[5]
[6]
[7]
E. H. Miller, “A note on reflector arrays (Periodical style—Accepted for publication),” IEEE Trans.
Antennas Propagat., to be published.
J. Wang, “Fundamentals of erbium-doped fiber amplifiers arrays (Periodical style—Submitted for
publication),” IEEE J. Quantum Electron., submitted for publication.
C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private communication, May 1995.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 104 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Graphic effects in computer
applications
Grafické efekty v počítačových aplikáciách
1
František HROZEK, 2Stanislav ŠVIDRAŇ
1,2
Department of Electronics and Multimedia Communications, Faculty of
Electrical Engineering and Informatics, Technical University of Košice, Slovak
Republic
1,2
Katedra Počítačov a Informatiky, Fakulta Elektrotechniky a Informatiky,
Technická Univerzita v Košiciach, Slovenská Republika
1
[email protected],[email protected],
Abstract — In this article we describe some graphics effects that are used in today's
computer games, their fundamentals and the principle of how they work. The goal of these
effects is to enhance the realistic impression from computer generated scenes.
Keywords — computer graphics effects, bump mapping, parallax occlusion maping,
normal mapping, tessellation, ambient occlusion
Abstrakt — V tomto článku sú opísané niektoré grafické efekty, ktoré sa využívajú
v dnešných počítačových hrach, ich hlavná podstata a princíp ako fungujú. Cieľom týchto
efektov je zvýšiť realisticky dojem z počítačovo vytvorenej scény.
Kľúčové slová — počítačové efekty, bump mapping, parallax occlusion maping,
normal mapping, teselacia, ambient occlusion
I. ÚVOD
V dnešnej dobe sú počítačové hry na veľmi vysokej úrovni, často krát ani nedokážeme
voľným okom spozorovať rozdiel medzi skutočnou scénou a scénou vytvorenou
pomocou počítača. Hlavný podiel na tom majú veľmi výkonné počítačové systémy, ale aj
kvalitné grafické efekty, ktoré sú dosahované s pomocou existujúcich API. Tieto grafické
efekty nemajú využitie len v počítačových hrách, ale aj v iných oblastiach (napr. tvorba
filmov a rôzne simulácie). Za každým grafickým efektom je stále kus umenia, lebo nie je
vôbec jednoduché správne naprogramovať takýto efekt. Sú potrebné komplexné znalosti
z matematiky a novodobej počítačovej grafiky. V konečnej fáze ešte musí nezaujatý
človek posúdiť či je efekt dostatočné dokonalý. Grafické efekty môžeme rozdeliť do
štyroch hlavných častí:
• efekty spojené s modelmi,
• časticové systémy,
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 105 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
• efekty na pixeloch,
• post efekty (efekty aplikovane na výsledný obraz).
II. TESELÁCIA
Teselácia patrí k efektom, ktoré pracujú s modelmi. Je dostupná na hardvéri, ktorý
podporuje minimálne DirectX 10. Ako prvá s teseláciou prišla firma ATI. Hlavnou
úlohou teselácie je zvýšiť polygonálnu zložitosť objektu (napr. objekt kocka vieme
pomocou teselácie zmeniť na guľu). Cieľom je viac zvrásniť povrch tým, že sa pri
výpočte generujú nove polygóny. Vlastne už existujúce polygóny sa rozdeľujú pomocou
určitých parametrov. V hrách sa teselácia používa veľmi opatrne, pretože môže dôjsť
k výraznému zníženiu plynulosti hrania. Teselácia sa používa hlavne tam, kde by ju bolo
najviac vidno (napr. na modeloch postav a zvierat). Teselácia nie je vhodná na modely
ako sú domy alebo rovné plochy, lebo tam nemá žiaden zmysel. Teselácia je sama
o sebe dosť náročná operácia, keďže potrebuje značné množstvo výpočtového výkonu
a pamäte. Niekedy sa môže stáť, že je strata výkonu príliš veľká v porovnaní so získaným
zvýšením kvality obrazu. V takýchto prípadoch treba prehodnotiť, alebo zefektívniť
použitie teselácie [1].
III. BUMP MAPPING
Bump mapping je technológia, ktorá pracuje s pixelmi. Táto technika dokáže výrazne
zvýšiť kvalitu výsledného obrazu s použitím dosť malého množstva výpočtového výkonu
grafickej karty. V počítačovej grafike sa normálový vektor polygónu počíta pomocou
umiestnenia jeho bodov v priestore. Neskôr sa vo fragment shaderi tento vektor
interpoluje, aby sme dostali normálový vektor pre každý pixel, ktorý reprezentuje nás
polygón. Hlavnou myšlienkou bump mappingu je pozmeniť tento normálový vektor
polygónu a tým aj zmeniť štruktúru povrchu nášho objektu. Pri bump mappingu je
potrebná ďalšia textúra, v ktorej sú uložené pomocné normálové vektory. Táto textúra sa
vytvára použitím špeciálnych algoritmov na klasickú difúznu textúru. Neskôr, keď sa
objekt renderuje, tak sa pre každý pixel vyberie hodnota z normálovej textúry a použije
sa pri výpočte osvetlenia. Výsledný efekt bump mappingu je, že povrch sa javí viac
štruktúrovaný, a zdá sa, akoby mal reálny materiál. Bump mapping je veľmi obľúbený
medzi programátormi, lebo vzhľadom na malú spotrebu výkonu výrazne ovplyvňuje
vzhľad scény. Existuje ešte jedna technika podobná bump mappingu, ktorá sa volá
normal mapping. Celková myšlienka je podobná bump mappingu, avšak u normal
mappingu sa textúra vytvára z veľmi zložitého polygonálneho modelu, ktorý ma aj
niekoľko miliónov polygónov. Ak sa vytvorí normálová mapa, tak sa model vhodne
zjednoduší (napr. na niekoľko tisíc polygónov). Výsledok normal mappingu je ušetrenie
obrovského množstva výpočtového výkonu, pretože s použitím normálovej mapy
a jednoduchého polygonálneho modelu sa dosiahne obraz, ktorý je porovnateľný
s obrazom získaným pri renderovaní zložitého polygonálneho modelu. Nevýhoda týchto
dvoch technik je, že nedokážu na seba správne vrhať tieň [2].
IV. PARALLAX OCCLUSION MAPPING
Táto technika pracuje na úrovni pixelov. Používa sa v najnovších vizualizačných
jadrách ako napríklad CryEngine 3, Unreal Engine 4. Používa o jednu textúru viac,
v ktorej sú uložené dáta pre výpočet povrchu polygónu. Všetko sa odohráva vo fragment
shaderi. Ak sa vypočítava výsledné osvetlenie pixelu, tak sa môže posunúť pozícia toho
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 106 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
pixelu v priestore, tj. zmení sa hĺbková hodnota pixelu. V konečnom dôsledku, keďže sú
pixely v inej hĺbke, tak dokážu správne vrhať realistické tiene. Ak použijeme na povrch
parallax mapping, tak je takmer nemožné zistiť, či je výsledný obraz vytvorený pomocou
obrovského množstva polygónov, alebo je to len úprava vo fragment shaderi. Veľmi
vhodní kandidáti pre paralax mapping sú tehlové steny, chodníky a iné kamenné
povrchy. Vzhľadom na vizuálnu stránku výsledného obrazu je výpočtová zložitosť často
krát akceptovateľná [3].
V. AMBIENT OCCLUSION
Je to technika, ktorá sa niekedy nazýva aj globálne osvetľovanie. Jej myšlienkou je
zahrnúť pri osvetľovaní objektov v scéne aj vzájomne pôsobenie týchto objektov.
V reálnom svete si môžeme všimnúť, že ak sú dva predmety bližšie pri sebe, tak je medzi
nimi menej osvetlenia, respektíve vzniká niečo také ako veľmi slabý rozmazaný tieň.
Pravé na tieto tiene sa zameriava globálne osvetľovanie. Princíp výpočtu globálneho
osvetľovania je taký, že od povrchu sú posielané lúče. Ak lúč narazí na plochu v určitej
vzdialenosti, tak sa na miesto emitovania lúča zaznačí určitá hodnota. Tieto hodnoty
reprezentujú vzájomnú blízkosť modelov alebo plôch. Neskôr sa vo fragment shaderi
táto hodnota skombinuje s množstvom svetla, akým sa ma daný povrch na konkrétnom
mieste osvetliť. Počet lúčov je rôzny podlá účelu. V skutočnosti je množstvo lúčov okolo
dvoch miliónov, avšak to je nesimulovateľné množstvo. V dnešných hrách sa počíta
s jedným až ôsmymi lúčmi. V špecializovaných renderovacích jadrách až s 64 lúčmi. Je
potrebné podotknúť, že globálne osvetlenie sa často prepočítava dopredu, lebo je veľmi
ťažké ho počítať v reálnom čase. Najprv sa prepočíta ešte pri návrhu scény, následne sa
uloží do textúry a potom sa použije pri výpočte osvetlenia v scéne. Existuje aj vylepšené
globálne osvetlenie, ktoré ma názov Scéne Space Ambient Occlusion (SSAO) [4]. SSAO
sa už počíta v reálnom čase. Existujú grafické karty, ktoré majú dostatočný výkon na
takéto výpočty. Všeobecne je globálne osvetľovanie veľmi dôležité a dokáže vytvoriť
takmer dokonalý obraz.
VI. POST EFEKTY
Veľmi dôležitou časťou v dnešných hrách je aj spracovanie finálneho obrazu. Hlavnou
myšlienkou je navodenie lepšej atmosféry pomocou zmeny farieb obrazu. Najčastejšie
používaným efektom je vinetacia (anglicky vignetting). Vinetacia je stmavnutie obrazu
okolo okraju. Ľudské oko si už na tento efekt, preto jeho neprítomnosť znižuje
vierohodnosť výsledného obrazu. Použitie vinetacie donúti ľudské oko pozerať do stredu
obrazu, čo je dosť podstatné pri hraní počítačových hier. V dnešných hrach je použitie
vinetacie veľmi obľúbené. Ďalšie post efekty slúžia na lepšie vtiahnutie do virtuálneho
sveta. Môžeme spomenúť napríklad zakrývanie obrazu ak je náš avatar v hre postrelený,
zamŕzanie obrazu ak je v zime alebo rozmazanie obrazu ak sa opije. Všetko sú to
jednoduché efekty, ktoré len minimálne znižujú výkon, ale vedia veľmi dobre navodiť
atmosféru hrania. Bez týchto efektov by bola výsledná hra veľmi ochudobnená o zážitok.
Na nasledujúcom obrázku (Obr. 1) je znázornená scéna bez a s použitím post efektov [5].
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 107 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Obr. 1 Scéna bez post efektov (hore) a s post efektmi (dole)
VII. ZÁVER
Dnešné aplikácie najmä počítačové hry využívajú veľmi veľa efektov a techník pre
zvýšenie kvality obrazu. Do budúcnosti sa môžeme tešiť na dokonalý herný a vizuálny
zážitok.
POĎAKOVANIE
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
POUŽITÁ LITERATÚRA
[1]
[2]
[3]
[4]
[5]
http://http.developer.nvidia.com/GPUGems3/gpugems3_part01.html
http://ocw.unican.es/ensenanzas-tecnicas/visualizacion-e-interaccion-grafica/material-de-clase-2/05TexturesMapping.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Tatarchuk-POM.pdf
http://john-chapman-graphics.blogspot.sk/2013/01/ssao-tutorial.html
http://www.svethardware.cz/graficke-enginy-her-a-realny-svet/18297
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 108 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Visualization and Virtualization and
Corresponding Engines Use
1
1,2
Štefan KOREČKO, 2Branislav SOBOTA
Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Slovak Republic
1
[email protected], [email protected]
Abstract —Part of today's technology is so called augmented reality which combines
virtual reality with the real world. It is one of the newest innovations in the electronics
industry. This technology uses variety of graphics, sound and other sensory enhancements of
computer interfaces in real-time environments. Augmented reality is present in all sectors
nowadays. Its systems prefer graphics and adapt to the individual user's head, eye or hand
movements. This article presents possibilities of usage of virtual user interface for operator
training process in industry.
Keywords — visualization, virtualization, visualization engine, virtual reality
I. INTRODUCTION
The visualisation, virtualisation and simulation in virtual environment can be used to
design and evaluate possible innovations that will make a factory more effective and
reliable in the future. To have an interactive visualization and simulation of a factory that
is run on a highly immersive hardware, can by very advantageous in at least two ways.
First, provided that the underlying simulation model is detailed enough, we can examine
how the machinery and other equipment of the factory will perform in extreme situations.
Second, it can be used to train personnel how to respond in emergency situations or to
evaluate their ability to respond accordingly. This is because a virtual-reality (VR)
system represents an interactive computer system that is able to create an illusion of
physical presence in places in an imaginary world or in the real one. Just in this context
VR system can be also seen as providing a perfect simulation within an environment of
tightly coupled human (operator, worker) – computer (factory control system)
interaction (HCI) [8]. VR systems, day by day, provide more immersive experiences,
they are more interactive, but the complexity of their implementation is rising, too. VRsubsystems categorization is accomplished especially according to senses which are
affected by individual VR-systems parts [8]: Visualization subsystem, Acoustic
subsystem, Kinematic and statokinetic subsystem, Subsystems of touch and contact and
other senses (e.g. sense of smell, taste, sensibility to pheromones, sensibility when being
ill, pain, sleep or thoughts). From the point of view of VR-systems implementation, it is
necessary to think about some of the above mentioned subsystems.
To be able to implement subsystems and their tasks, one has to possess appropriate
hardware and software. The hardware should at least include technologies for video and
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 109 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
audio output and a tracking system to provide a user with input system more natural than
the classical mouse and keyboard. Fortunately, such hardware is available [9] at the
Laboratory of Intelligent Interfaces of Communication and Information Systems
(LIRKIS) at the home institution of the authors. The appropriate software in this case
means a middleware between low-level graphics libraries (OpenGL, DirectX) and highlevel visualisation and simulation models. After initial experiments with the hardware
available at LIRKIS we decided to build the software for the factory visualisation on the
basis of some existing solution and this paper is dedicated to the task of finding the most
appropriate one.
II. VIRTUALIZATION SEQUENCE
Factory or industrial plant 3D model creation requires a lot of effort. Everything
begins with collecting of information and analysis (preparation phase). When the data are
prepared 3D model creation begins (modeling phase). A check of model for errors comes
after 3D digital model creation (verification phase). The visualization of the final model
is the last step. This process is depicted in Fig. 1 [8].
Preparation
Modeling
Verification
Visualization
Fig. 1 Modeling and visualization process
Modeling and especially visualization phase can be improved by using virtual reality
technologies/systems. Modeling phase can be improved with 3D scanning and
visualization phase with e.g. 3D displays and 3D printers. Mainly visualization phase is
processed by VR system. More detailed data flow between some parts of VR system is
described in the following subsections.
A. Data flow between engine, subsystems and calculation part
Data flow between engine, subsystems and calculation part of VR system consists of:
data flow between individual subsystems and engine of VR system (data sent
to engine to be processed and processed data received by individual subsystems)
• data flow between engine and calculation part of VR system (data that needs
to be calculated and calculated data)
• data flow within VR system engine (data generated by engine itself)
•
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 110 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Visualization
subsystem
Calculation part of
VR system
Acoustic
subsystem
Data generated by
engine
Kinematic and
statokinetic
subsystem
Subsystems of
touch and
contact
VR system
engine
Data obtained by
individual
subsystems
Subsystems for
other senses
Control signals for
individual
subsystems
Fig. 2 Data flow between engine, subsystems and calculation part of VR system
B. Data flow between devices (interfaces) and engine of VR system
Data flow between devices (interfaces) and VR system engine is shown in Fig. 3.
Graph has three main parts:
• inputs – input, input/output devices (interfaces) and input data
• outputs – input/output, output devices (interfaces) and output data
• VR system engine
Input/output data of VR system: 3D models (scenes), textures, sounds, sketches, video
(2D/3D), data from database, calculated values, etc.
Engine input data: position, rotation, scale, acceleration, direction of movement, bend,
pressure, sound intensity, 3D models, textures, video, pictures, data from database, etc.
Engine output data: modified / created 3D models, sounds, textures, sounds, data
calculated by VR system engine, data for input/output and output devices, etc.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 111 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
INPUTS
Input
devices
Input /
Output
devices
Input
data
Engine input data:
position, rotation,
scale, sound, etc.
Data
generated
by engine
VR system
engine
Engine output data:
modified/calculated
position, rotation, scale,
sound, etc.
OUTPUTS
Output
devices
Output
data
Fig. 3 Data flow between devices (interfaces) and VR system engine
The main part of VR system engine is visualization engine and therefore it is to choose
the most appropriate one. Selection and comparison process is described bellow. Next
section specifies and explains criteria important with respect to the factory visualisation.
Then several candidates for the software solution are reviewed according to the specified
criteria. Five systems are treated – three open source solutions and two commercial game
engines with limited free availability. Finally section concludes with the selection of the
best candidate.
III. VISUALIZATION ENGINES - SELECTION CRITERIA
In general, the purpose of graphics, or visualisation, middleware is to support loading
and displaying of scenes to be visualised. It also defines data format for the scenes and
provides processing of user input. It can also have additional functionality such as
support of special effects and physics and come with integrated environments for scene
development and scripting. More feature-rich middleware are also called 3D engines or
game engines if their primary purpose is to support games development. Among the
features that can be associated with the middleware the following [10] are most important
with respect to the factory visualisation to be implemented in the LIRKIS laboratory:
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 112 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
1.
2.
3.
4.
5.
6.
7.
8.
9.
Price and licensing. As there is no special funding for acquiring visualisation
software, we are searching for a solution that is free at least for non-commercial
use. The best option is an open-source middleware.
Extendibility of the software and availability of its source code. The LIRKIS
laboratory contains specific VR hardware and it is highly improbable that any
existing middleware will be able to work with it without any modification. It
should be possible to adjust the selected middleware using its application
program interface (API), but the best option is to have its whole source code
available for modification.
Quality of documentation. The middleware documentation should be complete,
easy to follow and up-to-date.
Supported standard 3D modelling formats. Determines the possibilities of
importing 3D models created using other software or scanned by means of 3D
scanners.
Support for latest 3D graphics features. Important for creating video output as
realistic as possible.
Programming languages available for scripting. Scripting or soft-coding is a
way how to program a visualisation control without a need to compile. In the case
of a commercial middleware it can be the only way how to interact with it on a
program level.
Support for advanced virtual reality hardware. This primarily means a support of
stereoscopic video output and motion tracking devices.
Availability of development tools for scene creation and scripting. Availability of
such a tool (editor or integrated development environment) can significantly
reduce time needed to prepare scenes to be visualised.
Parallelisation possibilities. To render one high quality video output requires a
lot of computing power. And in VR systems we need more than one output: For
each stereoscopic display we need to render two images and there can be multiple
displays (e.g. front, rear, left, right, top, bottom). To maintain quality it is
necessary to be able to render the images in parallel.
IV. VISUALIZATION ENGINES – OPEN SOURCE SOLUTIONS
A. OpenSceneGraph
The OpenSceneGraph (OSG) [11] is an open source high performance 3D graphics
toolkit, written in Standard C++. It uses OpenGL for rendering but not Direct X. It is
multiplatform and can be run on all MS Windows platforms, OS X, GNU/Linux, IRIX,
Solaris, HP-Ux, AIX and FreeBSD operating systems. Versions 3.0.0 and higher are also
available for mobile platforms (iOS, Android). It is used as a basis of several virtual
reality solutions, including VR JuggLua [12], CalVR [13] and Vrecko [14]. Scenes are
represented by a data structure called scene graph that arranges the logical and often also
spatial representation of the scene.
Being open-source it is the same bag as the next two solutions from the licensing and
extendibility point of view. The documentation is not the strongest point of OSG. It
contains some user and programmer guides and only one tutorial. Many methods in its
API reference are not described at all. Fortunately, this situation improved with the issue
of (as usually) two books, [15] in 2010 and [16] in 2012. Most of the commonly used 3D
formats are supported by means of plug-ins, which are a part of the OSG core
distribution. OSG provides effective implementation of state-of-the-art graphical
features, such as view-frustum, occlusion culling, progressive level of detail, rendering
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 113 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
state sorting and particle systems. Shaders can be implemented using OpenGL shader
language (GLSL). There is no support for scripting out of the box, but Java, Lua [40] and
Python [39] bindings have been implemented as community projects. From the solutions
analysed so far the OSG has the longest history of utilisation in VR systems. Support of
both stereoscopic visualisations and peripheral input devices has been implemented.
Concrete solutions can be found in the VR systems mentioned above. Two editors
dedicated to scene creation exist for OSG but they are not as good as Irrlicht’s irrEdit: the
osgSceneMaker has not been updated since 2008 and the osgDesigner is under
development currently and lacks any documentation. OSG directly supports parallel
computation thanks to the fact that the scene graph supports multiple graphics contexts
and the cull and draw traversals have been designed to cache rendering data locally and
use the scene graph almost entirely as a read-only operation. This allows multiple culldraw pairs to run on multiple CPU's which are bound to multiple graphics subsystems
[11]. Multithreading is also supported. Another way is to use the Equalizer [17]
middleware for parallelisation.
Fig. 4 Example of visualization based on OpenSceneGraph [18]
B. OGRE
OGRE [19] is a scene-oriented 3D engine, written in C++. The shortcut stands for
Object-Oriented Graphics Rendering Engine. As in the case of Irrlicht, OGRE is only a
rendering engine, so support for audio, physics and other features have to be added in the
form of 3rd party libraries. This extendibility is supported by its highly modular plugin architecture. It supports Direct X and OpenGL and is available for MS Windows, Mac
OS X and Linux. Its highlights are a coherent design and very good skeletal animation
support. So, OGRE is the right choice when designing heavily populated visualisations.
OGRE is free and open-source, therefore pricing and extendibility are no problem.
The engine is documented as well as Irrlicht (next section) and besides rich online
resources there are (again) two books [20] and [21]. ORGE supports only its own .mesh
format. Fortunately, export to it is available in 3D editors (i.e. in Blender). Support for
3D graphics features is sufficient, comparable to Irrlicht. Special features of OGRE are
hardware weighted multiple bone skinning in its animation engine and a support for
custom shaders written in HLSL. Scripting is not available directly but can be added
using community driven extensions, such as Python-Ogre. Stereoscopy support can be
added to OGRE by means of separate project called Stereo vision manager. To support
input VR devices the Virtual Reality Peripheral Network (VRPN) can be used. VRPN
[22] is a set of classes and servers implementing a network-transparent interface between
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 114 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
application programs and peripheral devices. Some connectors between VRPN and
OGRE have been already implemented, for example Vrpn2Ogre. There is a plug-in
based WYSIWYG editor for OGRE, called Ogitor, but it is still in development and its
documentation is almost non-existent. Build-in support for parallelisation is not
available but there have been several attempts to utilize Equalizer for parallel rendering.
The Equalizer [17] is a standard middleware to create and deploy parallel OpenGL-based
applications. It is open source and is written in C++.
Fig. 5 Example of visualization based on OGRE [23]
C. Irrlicht
Irrlicht [24] is an open source, fairly lightweight, 3D engine written in C++. It can be
run on various platforms; primarily on MS Windows (including CE), Mac OS X and
Linux, but there are also ports to Xbox, PlayStation Portable, Symbian, iOS and Google
Native Client. The engine has been “born” in 2003 by only one developer, Nikolaus
Gebhardt. Nowadays its development team includes about 10 members. For 3D
rendering Irrlicht uses both mainstream application program interfaces – Direct X and
OpenGL – as well as its own software renderers. One of the advantages of the engine is
that it doesn’t require any 3rd party libraries to be installed and configured separately, so
it is quite easy to install and execute.
Irrlicht is open source, which means that it is absolutely free even for commercial use.
It can be also altered, extended and redistributed in any way and without any charge. It
is well documented with complete API description and tutorials for both basic and
advanced topics. There are also books covering Irrlicht, namely [25] and [26]. Compared
to other solutions Irrlicht has the best support for 3D modelling formats – it can import
from 3D editors such as 3D Studio Max or Maya and also from other 3D engines, i.e.
OGRE and Quake 3. There is no official support for scripting. There have been some
community projects for various languages, such as Perl, Ruby [38], Python [39] and Lua
[40], but most of them are problematic to use or have been already abandoned. There is
an extensible free 3D world editor and radiosity lightmap generator for Irrlicht, called
irrEdit. Support for parallelisation is not available but can be implemented in principle
as the engine is open-source.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 115 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Fig. 6 Example of visualization based on Irrlicht [27]
V. VISUALIZATION ENGINES – COMMERCIAL SOLUTIONS
A. Unity and Unity Pro
Unity [28] is a game engine, developed by San Francisco-based Unity Technologies.
Contrary to Unreal engine or CryENGINE, there are no well-known AAA games
developed in Unity. Most probably this is caused by the fact that Unity focused to
independent developers who are unable to either create their own game engine or
purchase licenses to use better featured but also more expensive engines. However, this
is about to change as for example Square Enix is using Unity in some upcoming games.
Unity is multiplatform, can be run on PC with MS Windows, OS X and Linux and on
Xbox 360, Wii U and PS3. It was also one of the first engines to support tablets and
smartphones; there are versions for iOS, Android and Blacberry. There is also a plugin
for web browsers. On PC it uses both DirectX and OpenGL.
There are two versions of Unity. The free one, called simply Unity, has limited
graphical features and always shows Unity splash screen on the start-up. It can be used to
create commercial games but with some limitations. The Unity Pro is a paid, fully
featured version. It costs about 1500USD. Unity and Unity Pro are extensible via
scripting. Source code can be obtained, but the price can be significantly higher than that
of Unity Pro. Unity is sufficiently documented, with user manual, component reference,
scripting reference and a number of tutorials. In addition, free live training courses are
available. It is able to import models in standard 3D formats (collada, 3ds, obj, dfx).
Support for state-of-the-art graphics is as good as in CryEngine. However, there are
some serious limitations of the free version, especially in the quality of video and audio
output. These make it impossible to create a game with AAA look when using the free
version. Unity incorporates the Mono platform, an open source implementation of
Microsoft .NET Framework, for scripting. UnityScript (JavaScript-like), Boo and C# can
be used for scripting. Stereoscopic video output has been a goal of some community
projects and the Unity Augmented Reality Toolkit (UART) [29] can be used for VRPN
support. The staff that made UART has a long history in virtual and augmented reality
research; see for example [30]. The engine comes with the Unity Editor, a complete
solution for game development. For scripts development and debugging it uses a
modified version of the MonoDevelop, an open source integrated development
environment. As far as we know, no support for parallelisation has been implemented.
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 116 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Fig. 7 Example of visualization based on UNITY [31]
B. CryENGINE
The CryENGINE [32] is a professional game engine. It has been developed by the
German company Crytek. It is one of the most advanced game engines nowadays and is
used by several high-quality (AAA) games such as Far Cry and Crysis series. It can be
used on PC running MS Windows or on the mainstream video game consoles (PS3,
Xbox, Wii U). It uses DirectX on PC and Xbox. Being a commercial game engine
means that it not only covers graphical output rendering but also sound subsystem and
physics. CryENGINE is not used exclusively for games, it has been selected for virtual
training of U.S. Army personnel and its previous version (2) has been used in scientific
research to design a low-cost CAVE system [33].
The CryENGINE can be used for free in educational facilities, even if the
corresponding tuition is paid and for non-commercial use (i.e. if a game or application
developed is distributed for free). For commercial use there are several paid options but
exact prices are not given. The source code of the engine is available only in some
expensive paid distributions. In other versions the engine can be extended using its API
(applications can be then written in C++) or by scripting. The CryENGINE is well
documented, as it is common in the case of commercial products. It supports only its own
3D format, but there are exporters to it for widely used 3D editing software such as 3D
Studio Max or Blender. Its latest version, CryENGINE 3, supports the most recent 3D
graphics features implemented in DirectX 11. There are two scripting languages, a
lightweight multi-paradigm programming language Lua [40] and a visual scripting
system called Flow Graph. Stereoscopic visualisation is supported directly by the engine,
but no implementation of VR input devices is known. To create scenes (game levels) a
sophisticated editor called Sandbox is supplied with the CryENGINE, which fully
supports game development, including scripting. Parallelisation is not supported, at least
not in the free version. However, synchronisation between more computers running the
engine can be implemented in principle and it has been done to some extend for
CryENGINE 2 in [33].
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 117 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Fig. 8 Example of visualization based on CryENGINE 3 [27]
VI. VISUALIZATION ENGINES – SUMMARY
Results of the survey of five selected 3D graphics middleware solutions can be seen in
Table 1. Rows belong to the evaluation criteria and columns to the solutions. Most of the
findings are presented in the yes/no format with additional information in parentheses.
For the rest a school-like grade system is used with the range from “A” (best) to “E”
(worst).
Table 1
Evaluation of Visualization Engines Summary
Irrlicht
OGRE
OSG
CryENGINE
Unity
non-commercial
use
commercial use
yes
yes
yes
yes
yes
yes
yes
yes
no
yes (limited)
source code
yes
yes
yes
no
no
Extendibility
A
A
A
D
D
Documentation quality
B
B
C
A
A
Standard 3D formats support
yes
no
yes
no
yes
Export to its format available
yes
yes
yes
yes
no
Free
availab
ility
3D graphics features
Graphi
cs API
support
Scripti
ng
langua
ges
VR
hardwa
re
support
Parallel
isation
support
A
A
A
A
D
OpenGL
yes
yes
yes
no
yes
DirectX
yes
yes
no
yes
yes
build-in
no
no
no
yes
yes
3rd party
yes
(problematic)
yes
yes
not checked
not checked
no
no
no
yes
(stereoscopy)
no
3rd party
yes
yes
yes
yes
yes
build-in
build-in
no
no
yes
no
no
rd
no
yes
yes
no
no
Development tools quality
B
C
D
A
A
3 party
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 118 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Both commercial solutions, CryENGINE and Unity, support up-to-date visualisation
features and there is some support for advanced input and output VR equipment.
Contrary to the free solutions they also allow fast scene development thanks to their
feature-rich and well documented integrated development environments. On the other
hand limited modification possibilities, unavailable source code (at least not for an
affordable price) and no or very limited support for parallel computation in distributed
environment are serious drawbacks. Licencing is also problematic, as we plan to use the
visualisation system developed on a commercial basis in the future. Because of these
reasons the commercial engines has been excluded from our selection, however it is
probable that we will return to them in the future.
From the free solutions the OpenSceneGraph is the winner. Maybe it is not the
simplest middleware and definitely not the easiest one to learn but support for parallel
computing, VR technologies and plenty of experience worldwide make it the best
candidate for our purposes.
VII. CONCLUSION
Visualization technologies and especially visualization engines development is very
rapid nowadays. Also the virtual-reality technologies used mainly these visualization
engines are probably the greatest progress in this area and also in industrial use. At the
same time, these technologies allow the creation of previously impossible methodologies.
So visualization and virtualization gradually gets forward and it will be an integral part of
the processes of Factory of the Future.
ACKNOWLEDGMENT
This work is the result of the project implementation HUSK/1101/1.2.1/0039 ”Virtual
Reality Laboratory for Factory of the Future - VIRTLAB“ supported by the Hungary –
Slovakia Cross-Border Co-operation Programme 2007-2013 funded by the ERDF.
REFERENCES
[8]
[9]
[10]
[11]
[12]
[13]
Sobota, B., Perháč, J., Straka, M., Szabó, Cs.: Applications of parallel, distributed and network computer
systems for solving of computational processes in an area of large graphical data volumes processing;
elfa Košice, 2009, ps. 180, ISBN 978-80-8086-103-2 (in Slovak)
F. Hrozek, : Systems based on 3D interfaces, In: Proceedings of SCYR 2011, Herľany, Slovakia, 17. 5.
2011, Košice, Technical University of Košice, Faculty of Electrical Engineering and Informatics, 2011,
pp. 366-369, ISBN 978-80-553-0644-5
Korečko, Š. : Virtual Reality Engine for Factory Visualisation, In: Electrical Engineering and Informatics
4 : Proceedings of the Faculty of Electrical Engineering and Informatics of the Technical University of
Košice. - Košice : TU, 2013 S. 608-613. - ISBN 978-80-553-1440-2
OpenSceneGraph homepage. http://www.openscenegraph.org/
R.A. Pavlik, J.M. Vance, “VR JuggLua: A Framework for VR Applications Combining Lua,
OpenSceneGraph, and VR Juggler,” Workshop on Software Engineering and Architectures for Realtime
Interactive Systems (SEARIS) in IEEE Virtual Reality, Singapore: 2011.
J.P. Schulze, A. Prudhomme, P. Weber, T.A. DeFanti, “CalVR: An Advanced Open Source Virtual
Reality Software Framework” In: Proceedings of IS&T/SPIE Electronic Imaging, The Engineering
Reality of Virtual Reality, San Francisco, CA, February 4, 2013, ISBN: 9780819494221
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 119 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
[14] J. Flasar , L. Pokluda, R. Ošlejšek,P. Kolčárek, J. Sochor, “VRECKO: Virtual Reality Framework” In:
Theory and Practice of Computer Graphics 2005, Canterbury, United Kingdom, Eurographics
Association, 2005, pp.203-208
[15] R. Wang, X. Qian, OpenSceneGraph 3.0: Beginner's Guide, Packt Publishing, 2010, 412p., ISBN
1849512825
[16] R. Wang, X. Qian, OpenSceneGraph 3 Cookbook, Packt Publishing, 2012, 426p., ISBN 184951688X
[17] Equalizer homepage. http://www.equalizergraphics.com/
[18] OpenSceneGraph: http://www.openscenegraph.org/index.php/gallery
[19] Ogre3D homepage. http://www.ogre3d.org/
[20] G. Junker, Pro OGRE 3D Programming, 2006, 312p., ISBN 1590597109
[21] F. Kerge, OGRE 3D 1.7 Beginner's Guide, 2010, 300p., ISBN 1849512485
[22] VRPN homepage. http://www.cs.unc.edu/Research/vrpn/
[23] Ogre: http://runescape.wikia.com/wiki/Combat_Training_Camp
[24] Irrlicht homepage. http://irrlicht.sourceforge.net/
[25] A. Koscianski, Game Programming with Irrlicht, CreateSpace Independent Publishing Platform, 194 p.,
2011, ISBN 1460905148
[26] J. Stein, A. S. Kyaw, Irrlicht 1.7 Realtime 3D Engine Beginner's Guide, Packt Publishing, 2011, 272p.,
ISBN 1849513988
[27] Irrlicht, http://irrlicht.sourceforge.net/forum/viewtopic.php?t=32936
[28] Unity Game Engine homepage. http://unity3d.com/
[29] Unity AR Toolkit homepage. https://research.cc.gatech.edu/uart/content/home
[30] B., Evan, B. MacIntyre, E. Mynatt, “Here We Are! Where Are We? Locating Mixed Reality in The Age
of the Smartphone.” Proceedings of the IEEE, 100 (4) pp.929-936., 2012., IEEE
[31] Vizualizacky, homepage: http://www.vizualizacky.sk
[32] CryENGINE homepage. http://mycryengine.com/
[33] A. Juarez, W. Schonenberg, C. Bartneck, “Implementing a low-cost CAVE system using the
CryEngine2”, Entertainment Computing, vol. 1, pp. 157–164, 2010.
[34] Moddb , homepage: http://www.moddb.com/members/nero-angelo/images/cryengine-3-sdk-first-scene3
[35] Yangl, X., Petriu, D.C., Whalen, T.E., Petriu, E.M.: Script Language for Avatar Animation in 3D Virtual
Environments, VECIMS 2003 - lntemalional Symposium on Virtual Environments, Human Compuler
Interfaces, and Measurement Systems, Lugana, Switzerland, 27-29 July 2003, pp. 101-106
[36] Dietrich A., Gobbetti E., Yoon S.-E., ″Massive-Model Rendering Techniques: A Tutorial″, IEEE
Computer Graphics and Applications, vol. 27, no. 6, pp. 20-34, 2007.
[37] VRML – Virtual Reality Modeling Language - http://www.w3.org/MarkUp/VRML/
[38] Ruby official website, url: http://www.ruby-lang.org/en/
[39] Python Programming Language – official website, url: http://www.python.org/
[40] LUA - the programming language – official website, url: http://www.lua.org/
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 120 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
project
HUSK/1101/1.2.1/0039
”Virtual Reality Laboratory for Factory of the Future VIRTLAB“
supported by the Hungary – Slovakia Cross-Border Co-operation Programme
2007-2013 funded by the ERDF.
http://www.husk-cbc.eu/
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 121 -
Developments in Virtual Reality Laboratory for Factory of the Future 2013-2014
Developments in Virtual Reality Laboratory for Factory of the Future
Virtual Reality Laboratory for Factory of the Future kiadvány
Vývoj vo Virtual Reality Laboratory for Factory of the Future - zborník
2013-2014
(C) 2014
Bay Zoltán Nonprofit Ltd. for Applied Research
(Bay Zoltán Alkalmazott Kutatási Közhasznú Nonprofit Kft.)
H-3519 Miskolc, Iglói út 2.
in cooperation with
(együttműködésben a / v spolupráci s )
Technical university of Košice
(Technickou univerzitou v Košiciach)
1st edition
(1. kiadás / 1. vydanie)
pages: 122
(oldalak száma: 122 / počet strán 122)
Total printing 100pcs
(Nyomtatva 100 példányban / Celkový náklad 100 ks )
The content of these articles does not reflect the official opinion of the European
Union
Jelen kiadvány tartalma nem feltétlenül tükrözi az Európai Unió hivatalos álláspontját
Obsah príspevkov nereprezentuje oficiálne stanoviská Európskej únie
http://www.husk-cbc.eu/
ISBN 978-963-88122-4-7
ISBN 978-963-88122-4-7 © 2014 Bay Zoltán Nonprofit Ltd. for Applied Research, HUSK/1101/1.2.1/0039
- 122 -
Developments in Virtual Reality Laboratory for Factory of the Future
Virtual Reality Laboratory for Factory of the Future kiadvány
Vývoj vo Virtual Reality Laboratory for Factory of the Future - zborník
2013-2014
(C) 2014
Bay Zoltán Nonprofit Ltd. for Applied Research
(Bay Zoltán Alkalmazott Kutatási Közhasznú Nonprofit Kft.)
H-3519 Miskolc, Iglói út 2.
in cooperation with
(együttműködésben a / v spolupráci s )
Technical university of Košice
(Technickou univerzitou v Košiciach)
1st edition
(1. kiadás / 1. vydanie)
Total printing 100pcs
(Nyomtatva 100 példányban / Celkový náklad 100 ks)
The content of these articles does not reflect the official opinion of the European
Union
Jelen kiadvány tartalma nem feltétlenül tükrözi az Európai Unió hivatalos álláspontját
Obsah príspevkov nereprezentuje oficiálne stanoviská Európskej únie
http://www.husk-cbc.eu/
ISBN 978-963-88122-4-7
Download

developments in virtual reality laboratory for factory of the